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CHAPTER 227 

Hypothermia and the Kidney
Silvia de Rosa, Fiorella d’Ippoliti, Federico Visconti, and Massimo Antonelli

OBJECTIVES
This chapter will:
1. Detail the pathophysiology of ischemia/reperfusion injury 

and hypothermic protection described in experimental 
evidence.

2. Discuss the limitations of animal models.
3. Describe three clinical scenarios in which hypothermia is 

used in clinical settings of ischemia reperfusion injury: 
transplantation, deceased donors, and postcardiac arrest.

The effect of hypothermia on animal models and human 
physiology have been explored with clear evidence that 
it can protect organs at risk of ischemic injury either as 
preventive measure or as a therapy after the injury has 
occurred. Several studies have been performed with dif-
ferent models of ischemic damage in dogs, showing that 
hypothermia is protective against ischemic injury when 
applied during the reperfusion period. Indeed, although 
restoration of blood flow to an ischemic organ is essential to 
prevent irreversible cellular injury, reperfusion may amplify 
tissue damage exceeding that produced by ischemia alone 
(ischemia/reperfusion injury, IRI).1 Acute ischemic renal 
injury is one of the most common causes of acute kidney 
injury (AKI) that occurs in many clinical situations with 
high morbidity and mortality. IRI is particularly important 
in kidney transplantation. Almost 30% of the delayed graft 
dysfunction after kidney transplantation is attributable to IRI, 
in which a significant damage occurs during and after the 
reperfusion. In this setting, hypothermia is able to decrease 
cellular metabolism and oxygen consumption preventing a 
rapid loss of mitochondrial activity through disruption of 
membrane permeability and consequent accumulation of 
calcium, sodium, and water within the cell.2 However, if 
cooling the tissues can help to blunt some effects of ischemia, 
several drawbacks have to be counted when hypothermia is 
applied.3 Although there is significant laboratory evidence 
supporting the efficacy of hypothermia in preserving organ 
function,4,5 the cooling of whole body for neurologic protec-
tion is challenged by a series of trials showing no benefit 
in terms of improved neurologic outcomes.6,7 Few studies 
investigated benefits on kidney outcomes so far. More 
recently encouraging results of a randomized controlled 
trial8 suggested that mild hypothermia in deceased organ 
donors is a relatively safe and reliable intervention, with a 
meaningful impact on graft outcomes, particularly regarding 
kidneys from borderline donors.

PATHOPHYSIOLOGY OF  
ISCHEMIA/REPERFUSION INJURY  
AND HYPOTHERMIC PROTECTION

The most frequent cause of AKI in hospitalized patients 
is transient or prolonged renal hypoperfusion; in 55% of 

cases AKI may be considered a consequence of a significant 
decrease in mean arterial blood pressure (prerenal AKI). 
Prerenal AKI is generally reversible as long as the cause 
has been eliminated and the tissue has not been damaged 
at the cellular level.9,10 During blood flow interruption, the 
reduction in medullary blood flow and the resultant decrease 
of glucose and oxygen delivery to the tubular structures 
cause an imbalance between delivery and demand.11 Cells 
are forced to maintain adenosine 5′-triphosphate (ATP) 
production by anaerobic glycolysis using glycogen stores 
and the remaining glucose in the surrounding tissue fluid.11 
This leads to local tissue acidosis.12 The ATP depletion 
is followed by the increase of cytoplasmic calcium load, 
which activates proteases, phospholipases, and caspases13 
and the cellular accumulation of hypoxanthine and reactive 
oxygen species (ROS).13

Hypoxia, glucose depletion, acidosis, and ROS production 
can contribute to cell death: apoptosis and active necrosis 
as well. An early structural manifestation of ischemia is 
the loss of cell polarity with decreased reabsorption of 
sodium and water from the tubular lumen.14 Because of 
diminished sodium reabsorption, the macula densa releases 
signals that induce constriction of the vasa afferentia 
(tubuloglomerular feedback).9 The terminology acute tubular 
necrosis is misleading because the dominant pattern of 
tubular cell damage is apoptosis and not necrosis. During 
the reperfusion phase in presence of an acidotic pH, the 
cell killing is abrogated. Acidosis (pH < or = 7.0) provides 
significant protection against cell death during ischemia. 
On the contrary, the rise of intracellular pH during reperfu-
sion causes cell death. This phenomenon is defined as “pH 
paradox,”  and it is mediated by changes of intracellular 
pH in terms of rapidly increase more after reperfusion are 
responsible of acceleration of cell killing.15 Reperfusion 
induces Ca2+ delivery by depleted cells, producing Ca2+ 
overload and postischemic injury through multiple pathways 
(e.g., mitochondrial dysfunction, increased ROS formation, 
and phospholipase activation).16 The length of reperfusion is 
important for prevention or mitigation of ischemic AKI, and 
then for therapeutic implications. The delay of restoration 
of a normal renal function may be caused by an intense 
interstitial inflammation and microvasculopathy.

Tubular epithelial and vascular endothelial cells release 
a diverse range of proinflammatory cytokines, inducing and 
perpetuating inflammation.17 Postischemic renal inflamma-
tion may contribute to microvasculopathy characterized by 
endothelial cell swelling that can lead to prolonged ischemia 
and then a slower reperfusion, even if the primary cause has 
been eliminated; this is defined as no reflow-phenomenon.18 
Postischemic microvasculopathy has been associated with 
the risk of developing chronic renal failure in the long 
term, and it is therefore a meaningful therapeutic target.19

Advances in renal hypothermia to prevent ischemic 
damage were not introduced until the 1950s and 1960s. 
Experimental examinations performed in dogs, analyz-
ing the effects of hypothermic renal ischemia, showed a 
reduction of perfusion probably because of cold-induced 
vasoconstriction with intact tubular function because of the 



1354  Section 30 / Special Kidney Problems in the Intensive Care Unit

227.2). An alternative to cold storage is the hypothermic 
machine perfusion (HMP),25 which allows a continual flush 
of the microcirculation, preventing the accumulation of 
waste products, sustaining a normal metabolic rate, and 
reducing free radical production and renal cell apoptosis.26 
Typically, transplanted kidneys derive from living donors 
or after brainstem death (standard-criteria donor, SCD) in 
which the heart is still beating and general blood flow is 
preserved.27 The number of organs available from these 
donors is always inferior with respect to the demand. To 
increase the number of available organs, the novel expanded 
criteria donors (ECDs)28 and donation after cardiac death 
(DCD)29 recently have been applied. ECDs are normally 
aged 60 years or older, or over 50 years with at least two 
of the following conditions: hypertension history, serum 
creatinine > 1.5 mg/dL, and cause of death from cerebro-
vascular accident.28 ECD transplantation is associated with 
an increased risk of graft loss compared with transplants 
from an SCD.30

In the area of donor management, a recent RCT investi-
gated the effect of mild cooling from 37°C (±0.5°C) to 34.5°C 
(±0.5°C) in organ donors after brain death on delayed graft 
function (DGF) versus donors subjected to conventional 
normothermia before organ retrieval. Results showed that 

protective mechanism of hypothermia. In 1964, Shirmer and 
Walton investigated kidney ischemia in a dog model, and 
showed the renal effects of hypothermia conducted with 
local cooling: renal function was depressed only temporarily, 
and irreversible damage was limited (Table 227.1).20

A recent animal model of ischemia/reperfusion in the 
kidney was performed to evaluate the role of different 
temperature applications (normothermia [±37°C], mild 
hypothermia [26°C], moderate hypothermia [15°C], and deep 
hypothermia [4°C]) on the production of oxidative-stress 
markers. The results showed an increased catalase expres-
sion during deep hypothermia, suggesting the association of 
this level of temperature with higher antioxidative effects 
with a decreased free radical production.6 However, tissue 
protection was not observed. Experimental studies also have 
investigated the effect of body temperature on renal suscep-
tibility to ischemic injury showing that an elevated body 
temperature dramatically accentuates hypoxic injury, having 
a profound impact on renal ATP losses during hemorrhagic 
shock. In addition, hyperthermia is correlated significantly 
to ischemic renal injury, whereas hypothermia confers 
protection.21 Minimal temperature changes during renal 
ischemia alter functional and morphologic outcome.22 These 
findings in literature showed that in animals hypothermia 
is able to reduce the risk of renal failure after renal IRI.23

DECEASED DONORS

IRI is one of the most important nonimmunologic factors 
causing delayed graft function (DGF) and late allograft 
dysfunction in kidney transplantation because of activa-
tion of different programs of cell death. Several factors 
participate in the ischemic process: (1) clamping of renal 
artery in the allograft deriving from living related donor, 
(2) cold ischemia during allograft kidney storage, and (3) 
hemodynamic disturbances with impairment of blood flow in 
the allograft deriving from deceased donor before renal artery 
clamping.24 As a result, IRI can affect the kidney at various 
stages of kidney transplantation. However, hypothermic 
solutions flushing the kidneys after allograft withdrawal are 
administered to cool the organ and minimize the negative 
effects of ischemia and hypothermia (Fig. 227.1 and Table 

TABLE 227.1 

Effect of Hypothermia on Ischemia

ISCHEMIC EFFECTS HYPOTHERMIA EFFECTS

Suppression of reaction 
rates

Slowdown of metabolism
Reduction in oxygen demand
Reduction in energy depletion

Metabolic changes Displacement of joined 
biochemical pathways

Shifts from aerobic to anaerobic
Proton activity, ion 
transport, and cell 
swelling

pH regulation changes
Passive redistribution of ions and 
water across cell membranes

Generation of oxygen-
derived free radicals 
(ODFR)

Increased susceptibility of cells 
to generate ODFR and attenuates 
natural defense mechanisms

Structural changes Membrane phase changes and 
loss of phospholipids

Thermal shock
Induction of stress proteins
Cytoskeletal changes

Cell death Apoptosis or necrosis

Ischemic
effects

Hypothermia
effects

Generation of oxygen-derived
free radicals (ODFR)

Proton activity, ion transport,
and cell swelling

Metabolic changes and
cell death

Suppression of reaction rates

Increased susceptibility of
cells to generate ODFR

pH regulation change

Shifts from aerobic to
anaerobic

Slowdown in metabolism,
reduction in oxygen demand,

and energy depletion

FIGURE 227.1 Ischemia/reperfusion injury. The blood flow interruption 
causes an imbalance between O2 delivery and demand; the con-
sequent hypoxia, glucose depletion, acidosis, and ROS production 
contribute to cell death. In addition, tubular epithelial and vascular 
endothelial cells release proinflammatory cytokines (interstitial 
inflammation) that are also responsible for endothelia cell swelling 
with a consequent prolonged ischemia and slower reperfusion 
(interstitial microvasculopathy). During reperfusion, the restoration 
of pH induces Ca2+ delivery by depleted cells producing Ca2+ 
overload and increased oxygen free radical formation that contribute 
to inflammatory cascade and cell injury. 
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POSTCARDIAC ARREST

The restoration of spontaneous circulation (ROSC) after 
prolonged, complete, whole-body ischemia is a peculiar 
pathophysiologic state created by successful cardiopulmonary 
resuscitation (CPR). The ischemia and reperfusion during 
circulatory arrest (CA), resuscitation, and postresuscitation 
phases can affect the kidney; the alterations of epithelial 
cells, the interstitial inflammation, and the interstitial micro-
vasculopathy cause an abnormal repair process, including 
incomplete repair of tubular cells and fibrosis. The effects 
of whole-body ischemia followed by reperfusion activate 
a systemic inflammatory response, and the injury occurs 
simultaneously in multiple organs through the release of 
injury products into the circulation associated with defective 
clearance function after shock.34 Indeed, after ROSC, AKI is 
a common complication with an increase in mortality risk, 
dialysis requirement, and prolonged hospital stay.35 There 
is limited information on the epidemiology of AKI after CA, 
particularly because most studies were performed before the 
development of consensus definitions of AKI. Bellomo et al. 
investigated retrospectively the AKI from CA in isolation 
and AKI secondary to post-CA cardiogenic shock on 105 
adult patients who survived for more than 48 hours after 
successful resuscitation after CA. Although baseline serum 
creatinine (SCr) levels were not always available, results 
showed that CA in absence of postresuscitation cardiogenic 
shock is associated uncommonly with significant AKI.36 Geri 
et al. assessed retrospectively the prevalence of AKI (defined 
with Acute Kidney Injury Network [AKIN] classification 
AKIN) in 580 CA patients to identify risk factors and to 
evaluate the impact of AKI on outcome after CA. Results 
showed that AKIN stage 3 was present in 280 (48.3%) 
patients after CA with a significantly higher association 
with 30-day mortality. However, the urine output was 
collected within the first 24 hours, and the urine output 
criteria were evaluated only on the basis of this data. The 
admission SCr level was used as a surrogate of baseline 
renal function and the estimation of glomerular filtration 
rate (GFR) was performed using the Modification of Diet in 
Renal Disease equation to assess day-30 GFR leading to a 
potential misevaluation of renal recovery.37 The decrease in 
whole-body temperature performed through physical means 
for therapeutic purposes, defined therapeutic hypothermia 
(TH), could limit the ischemic injuries.

Although there is significant laboratory evidence sup-
porting the efficacy of hypothermia in preserving organ 
function, the cooling of whole body for neurologic protection 

DGF occurred in 79/280 (28.2%) of recipients in the inter-
vention arm versus 112/286 (39.2%) in the standard arm 
(p = .008), with an impressive difference of about 11% of 
absolute risk reduction. The beneficial effect of hypothermia 
was particularly notable in the ECD group (30% in the 
intervention vs. more than 50% in the standard arm). In the 
SCD group, although hypothermia reduced DGF, this did 
not reach statistical significance. Nevertheless, the authors 
did not consider in their study long-term outcomes such as 
acute rejection or graft survival nor outcomes of the other 
organs transplanted, such as livers and pancreases.4 DCD is 
defined as organ donation from patients with irremediable 
brain injuries who do not meet the criteria for brain death 
testing and who experience cardiopulmonary arrest after 
withdrawal of ventilator support; it has been investigated 
as a method to increase the number of organs available 
for donation.29

The ways in which organ retrieval can take place after 
circulatory death are described in the modified Maastricht 
Classification. The first two types are composed of patients 
who died suddenly on arrival at the emergency department 
(type I) and after an unsuccessful resuscitation (type II). 
After death declaration, an aortic cannula is placed through 
the femoral artery and the perfusion is started for kidney 
preservation. The maintenance of circulation before the 
cooling could be performed through the extracorporeal 
membrane oxygenator and also combined with a cooler 
to provide cold oxygenated blood to the abdominal visceral 
organs. Concerning patients awaiting from cardiac arrest 
(CA) (type III) or with CA while brain death (type IV), after 
the cessation of the heart beat, the patient is transferred to 
the operating room and the kidney is retrieved after in situ 
cooling. In the case of the unexpected CA in a critically 
ill patient (type V), the management will be the same of 
types II and I.31 DCD renal transplants are accompanied by 
a greater release of free radicals at reperfusion more than 
SCD and ECD, with an increase in tissue injury markers at 
reperfusion.32 DCD organs receive a warm ischemic insult 
before the onset of preservation but also a different degree of 
injury on the basis of the length of ischemia. For this reason, 
uncontrolled DCD kidneys are exposed to more prolonged 
warm ischemia injury compared with the warm ischemic 
time in controlled DCD (15 minutes).29 In addition, the 
combination of warm ischemia and cold reperfusion may 
exacerbate the injury. Although experimental data suggested 
that the duration of cooling has a strong influence on graft 
outcome,33 the direct impact of cold ischemia on long-term 
graft survival is less clear.

TABLE 227.2 

Preservation Solutions Components

COMPONENTS FUNCTION EXAMPLES

Impermeant Minimize swelling and provide stability Glucose, lactobionate, mannitol, raffinose, sucrose
Colloid Reduction of interstitial edema and endothelial 

cell swelling
Hydroxyethyl starch (HES)
Polyethylene glycol (PEG)

Buffers Maintain pH in the physiologically range and 
combat acidosis at low temperatures

Citrate, histidine, phosphate

Electrolytes Maintain intracellular electrolyte concentrations Calcium, chloride, magnesium, magnesium sulphate, 
potassium, sodium

Antioxidants Reduction of oxygen free radicals Scavenge oxygen free radicals (glutathione)
Inhibit the activity of xanthine oxidase (allopurinol)
Stabilize cellular membranes and prevent oxidant damage 
(tryptophan)

Additives Restore high-energy phosphate (adenosine)
Support anaerobic metabolism (ketoglutarate)
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ischemia, cold ischemia, and graft survival is still not clear. 
In the area of donor management, results from an RCT on 
application of hypothermia in heart-beating deceased donors 
showed improvement of short graft outcomes. However, the 
application of temperature decrease for preserving renal 
function during the donation process could be really helpful 
also in DCD, in whom there is a greater release of ROS at 
reperfusion than in a heart-beating donor and living donor, 
with an increase in tissue injury markers at reperfusion. 
Data on renal outcomes from TH studies performed to assess 
neuroprotection in post-ROSC patients demonstrated variable 
or absent renal impact. Future studies will have to address 
the best strategy for rewarming, possibly assessing a gentle 
temperature normalization. The possible application of TH to 
DCD to preserve renal function during the donation process 
also should be evaluated in large trials.

Key Points

1. Acute ischemic renal injury is one of the most 
common causes of acute kidney injury, particularly 
important in kidney transplantation. Hypothermia 
is able to decrease cellular metabolism and oxygen 
consumption, preventing a rapid loss of mitochon-
drial activity through disruption of membrane 
permeability and consequent accumulation of 
calcium, sodium, and water within the cell.

2. Experimental studies investigated the effect of body 
temperature on renal susceptibility to ischemic 
injury, showing that hyperthermia is correlated 
significantly to ischemic renal injury, whereas 
hypothermia confers protection. The clinical 
transfer of experimental results to complex human 
pathophysiology has several inherent limitations.

3. In kidney transplantation, cold preservation can 
help to combat the deleterious effects of ischemia; 
a prolonged hypothermia can be associated with 
worse recovery of renal function. In the area of 
donor management, the application of temperature 
decrease for preserving renal function during the 
donation process could be really helpful also in 
donation after cardiac death, in whom there is a 
greater release of reactive oxygen species at reperfu-
sion than in a heart-beating donor and living donor.
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in CA patients is challenged by a series of trials that show 
no benefit,7,8 and it remains unclear what therapeutic or 
harmful effect on renal function could result because of 
confounding perturbations in cardiovascular and renal 
physiology in the post-CA setting.38 Clinical guidelines 
suggest that TH increases urine output particularly in the 
induction phase, and this phenomenon is called cold-
induced diuresis (CID).39 Debate exists with regard to the 
significance or impact of CID, the nature of diuresis, and 
the physiologic mechanism responsible for CID. A school of 
thought suggests that CID is a renal autoregulatory response 
to a relative central hypervolemia induced by the peripheral 
vasoconstriction with increase in cardiac output and renal 
blood flow (RBF). Other authors think that CID may be due 
to osmotic alteration (tubular dysfunction) and incapability 
to appropriately concentrate the urine.39 Renal function is 
depressed progressively during TH; a progressive fall in 
systemic blood pressure causes a decrease in RBF with a 
consequent rise in renal vascular resistance, promoting a 
further decrease in RBF and GFR.40 Limited human data are 
available on this issue, given that the type of resuscitation 
fluids, cardiogenic shock, or AKI could influence the urine 
production.41

Raper et al. performed a secondary analysis of prospective 
study on patients receiving TH post-CA observing a modest 
increase in urine output rates during TH induction compared 
with the rewarming period. However, they included only 
a portion of total TH cases because of the incomplete 
reporting of urine output. Limited by numerous clinical 
confounding factors such as body mass index and AKI, the 
preliminary study supported the evidence of potential CID, 
but not a rewarm antidiuresis during TH.39 Previous trials 
comparing the effect of TH versus normothermia on kidney 
end points showed conflicting results resulting from small 
sample size and low study quality. In the Hypothermia 
After Clinical Arrest clinical trial, an increased need for 
volume replacement resulting from high urinary output 
during the cooling period was observed in all patients. 
Results showed no impairment of renal function and no need 
of hemofiltration, but also no benefits.42 A meta-analysis43 
including 19 trials suggested that TH, applied in different 
population settings including brain injury, out-of-hospital 
CA, and major cardiovascular surgery with cardiopulmonary 
bypass, has no impact on prevention of AKI (odds ratio [OR] 
1.01, 95% confidence interval [CI] 0.68, 1.51; p = .95) and 
dialysis requirement (OR 0.81; 95% CI 0.30, 2.19; p = .68), 
but it was associated with a lower mortality (OR 0.69; 95% 
CI 0.51, 0.92; p = .01). Only one study showed a protective 
effect of hypothermia against AKI.38 Unfortunately, most of 
the trials included were not designed originally to examine 
the effect of TH on kidney end points as their primary end 
point, and the sample size is small. In addition, it is evident 
the variability or lack of definition of AKI.

CONCLUSION

The application of hypothermia for kidney protection during 
IRI has a biologic rationale that has not been confirmed 
consistently, so far. Much of the evidence currently available 
relies on animal models. Unfortunately, the clinical transfer 
of experimental results to complex human pathophysiology 
has several inherent limitations. In kidney transplantation, 
hypothermia is a double-edged sword: cold preservation 
can help to combat the deleterious effects of ischemia; 
a prolonged hypothermia can be associated with worse 
recovery of renal function. The relationship between warm 
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