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CHAPTER 225 

Vasoactive Drugs, Renal Function, 
and Acute Kidney Injury
Yugeesh R. Lankadeva, Roger G. Evans, Rinaldo Bellomo, and Clive N. May

OBJECTIVES
This chapter will:
1.	 Discuss acute kidney injury as a frequent complication in 

patients with sepsis that is associated with a high risk of 
mortality.

2.	 Review our current understanding of the pathophysiology 
of sepsis-induced acute kidney injury, highlighting the 
potential role of renal tissue ischemia and hypoxia.

3.	 Evaluate the renal effects of commonly used vasopressor 
drugs to restore blood pressure in patients with sepsis, 
such as norepinephrine, epinephrine, vasopressin, or its 
analogue terlipressin, dopamine, phenylephrine, and 
angiotensin II, which may be promising vasopressors for 
use in sepsis.

Sepsis is the most common cause of acute kidney injury 
(AKI), accounting for nearly 50% of cases of renal failure 
in intensive care units (ICUs).1,2 AKI is also an independent 
risk factor for death in patients with sepsis, with a mortal-
ity rate of up to 50% to 60% depending on its severity.1 
Recent epidemiologic studies indicate that patients who 
survive AKI are at a greater risk of developing chronic 
and end-stage kidney disease in later stages of life.3 These 
studies demonstrate that all severities of AKI predispose 
individuals to short- and long-term organ dysfunction, 
morbidity, and mortality.

Conventionally, sepsis-induced AKI was considered 
a disease of the renal macrocirculation resulting from 
global renal ischemia, cellular damage, and acute tubular 
necrosis.4 However, accumulating evidence from human5,6 
and experimental animal models of hyperdynamic sepsis7,8 
recently has challenged this paradigm by suggesting that 
AKI can develop despite maintained or even increased 
renal blood flow. Furthermore, histologic assessment of 
postmortem kidneys from patients with septic AKI reported 
heterogeneous tubular injury with apical vacuolization, 
but with an absence of tubular necrosis or even extensive 
apoptosis.9,10 It is obvious that an understanding of the 
mechanisms causing reductions in renal function in the 
face of renal hyperperfusion is vital if we are to develop 
new therapeutic interventions and improve management 
of patients.

Renal tissue hypoxia is emerging as a critical mediatory 
factor in the pathogenesis of multiple forms of AKI arising 
because of stressors such as cardiothoracic surgery requiring 
cardiopulmonary bypass, radiocontrast administration, and 
sepsis.11–13 An increase in global renal blood flow during 
sepsis does not preclude the possibility of redistribution 
of intrarenal blood flow, with some portions of the kidney 
receiving a more than adequate perfusion at the expense 

of others experiencing local tissue ischemia and hypoxia. 
Increased heterogeneity of perfusion in the sublingual 
circulation in humans, resulting from microcirculatory 
dysfunction, is a hallmark of sepsis and is associated with 
a high mortality.14–16 However, whether heterogeneity of 
perfusion contributes to the development of septic AKI has 
received little attention. Recent experimental evidence in 
conscious sheep with hyperdynamic sepsis and AKI, which 
closely mimics the human septic phenotype, demonstrated 
an early onset of tissue ischemia and hypoxia selective to 
the renal medulla (Fig. 225.1), despite an increase in total 
renal blood flow and oxygen delivery.17,18 In turn, hypoxia 
can lead to inflammation and oxidative stress, which can 
initiate a vicious cycle leading to cellular injury, further 
kidney injury, and reduced function.11 Thus the development 
and implementation of therapeutic strategies for patients 
with sepsis should include consideration of their effects 
on intrarenal oxygenation.

Central hemodynamic support with the use of intravenous 
fluids and vasopressors remains the mainstay of therapy 
in patients with septic shock.19 In critically ill patients, 
with or at risk of developing AKI, the main therapeutic 
goals for the use of vasopressors are to improve arterial 
pressure and maintain renal function. The most commonly 
used vasopressor drugs in patients with septic shock are 
norepinephrine, epinephrine, vasopressin or its longer-acting 
analogue terlipressin, dopamine, and phenylephrine.19 There 
is also an increasing level of interest in the potential of 
angiotensin II as an effective adjunctive therapy for patients 
with catecholamine-refractory septic shock.20 Now that we 
appreciate the harmful effects of renal tissue hypoxia in the 
pathogenesis of septic AKI, it is imperative to understand 
how restoring renal function with vasopressors affects 
regional kidney perfusion and oxygenation.

VASOPRESSOR DRUGS

Norepinephrine
Norepinephrine is the first-choice vasopressor used 
clinically to restore blood pressure and renal function 
in patients with septic shock.19 Norepinephrine is a 
potent α-adrenergic receptor agonist with low affinity for 
β-adrenergic receptors.21,22 Norepinephrine increases arterial 
pressure by α-adrenergic receptor-mediated vasoconstric-
tion, with a small β-adrenergic receptor-mediated increase 
in stroke volume, and thus cardiac output.21,22 The use of 
norepinephrine in the treatment of septic AKI has been 
the subject of ongoing debates resulting from the fear of 
it causing further deterioration in renal function due to 
renal ischemia.21–23 Nevertheless, in patients with sepsis 
norepinephrine therapy has been shown to consistently 
reverse hypotension and transiently improve renal function, 
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Epinephrine
Epinephrine is recommended as the first alternative therapy 
to norepinephrine to maintain arterial blood pressure in 
patients with sepsis.19 Epinephrine is a potent agonist 
at β- and α-adrenergic receptors that increases arterial 
blood pressure by increasing cardiac output and systemic 
vascular resistance.21,22 The main concern with the use of 
epinephrine in patients with sepsis is its potential to cause 
metabolic acidosis and reduce regional blood flow, especially 
in the splanchnic and renal circulation.29–32 Randomized 
clinical trials comparing epinephrine to norepinephrine 
treatment have been unable to detect differences in the 
risk of overall mortality.33 However, there appears to be a 
common occurrence of transient lactic acidosis, tachycardia, 

as assessed through estimated glomerular filtration rate, 
with fewer adverse effects than dopamine, vasopressin, 
epinephrine, and phenylephrine.24–27 These findings, among 
others, have provided the clinical basis for the administration 
of norepinephrine as the first line of therapy for patients 
with septic shock.

It is now becoming increasingly evident from clinically 
relevant animal models of sepsis that a preservation of global 
kidney blood flow and oxygen delivery does not preclude 
the possibility of localized tissue ischemia and hypoxia.7,17,18 
Indeed, restoration of arterial blood pressure with a clinically 
relevant dose of norepinephrine (0.4–0.8 µg/kg/min) was 
shown to exacerbate the underlying renal medullary ischemia 
and hypoxia in conscious sheep with established septic AKI 
(Fig. 225.2).17 Importantly, these effects of norepinephrine 
occurred in face of preserved global kidney blood flow 
and oxygen delivery and without measurable changes in 
whole-kidney oxygen consumption.17 These findings are 
not surprising considering the evidence that restoration 
of systemic hemodynamics with norepinephrine does not 
improve microcirculatory flow abnormalities in patients with 
septic shock.15,16 Experimental evidence in a porcine model 
of septic shock further demonstrated that resuscitation with 
norepinephrine has the potential to worsen microcirculatory 
flow abnormalities in the mesenteric circulation.28

The long-term consequences for kidney health of 
this exaggerated renal medullary ischemia and hypoxia 
induced by norepinephrine in sepsis are unknown and 
merit further investigation. However, there is evidence 
from a meta-analysis that most survivors of septic AKI 
are predisposed to a greater risk of developing chronic 
kidney disease in later stages of life.3 This provides the 
impetus for using caution when using vasopressors that 
have the potential to worsen the underlying pathologic 
and reparative processes that occur during septic AKI. It is 
also critical to determine if other vasopressors commonly 
used in the ICU in the treatment of septic AKI have similar 
effects on regional kidney oxygenation or if these effects 
are specific to norepinephrine. Such studies may lead to 
the development of therapies that restore blood pressure 
while preserving regional kidney oxygenation and thus renal 
function, which may hold the key to the better management 
of patients with septic AKI.
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FIGURE 225.1  Time course of changes in medullary tissue oxygen 
tension and urine flow during the development of septic acute 
kidney injury in conscious sheep. Each point is the between-animal 
mean ± SEM of 60-minute averages (n = 13). (Figure modified from 
Lankadeva et al. Kidney Int. 2016;90[1]:100–108.)
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FIGURE 225.2  Renal medullary tissue perfusion and oxygen tension 
(pO2) during infusion of Escherichia coli (E. coli) from 0 to 32 
hours and subsequent treatment of norepinephrine (n = 7) or saline 
(n = 8) from 24 to 30 hours in conscious sheep. Time 0 is the mean 
of the 24th hour of the baseline period, and times 24 to 32 hours 
are means of 1-hour periods. Data are between-animal mean ± 
SEM. *p < .05 represents significant differences between norepi-
nephrine and saline treatment. (Figure modified from Lankadeva 
et al. Kidney Int. 2016;90[1]:100–108.)
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flow are a poor indicator of regional kidney perfusion and 
oxygenation under “healthy” and “pathologic” conditions. 
Also considering the evidence that renal medullary hypoxia 
may play a critical role in the pathogenesis septic AKI,11–13 
it is feasible that vasopressors that conserve medullary 
oxygenation may improve or at least prevent a further 
decline in kidney function. In relation to sepsis, restoration 
of blood pressure with low-dose vasopressin (0.02 IU/min) 
significantly improved urine flow and creatinine clearance 
in sheep with AKI.39 Moreover, results from the VASST 
trial reported enhanced improvement in urine flow and 
glomerular filtration rate with vasopressin, when compared 
with norepinephrine in patients.37,40 In collation, there 
is evidence from clinical and experimental studies that 
vasopressin (<0.05 IU/min) at lower doses may offer a degree 
of renoprotection in the setting of sepsis-induced AKI and 
thus merits future investigation.

Terlipressin
Terlipressin is a synthetic analogue of vasopressin, with a 
greater selectivity to V1 receptors and a longer half-life.41 
Terlipressin is the drug of choice for the treatment of hepa-
torenal syndrome, another pathologic condition character-
ized by systemic vasodilatation and renal dysfunction42 (a 
similar state to septic shock). In patients with hepatorenal 
syndrome, treatment with terlipressin has been reported 
to significantly increase creatinine clearance and urine 
output, with no overt signs of splanchnic, myocardial, or 
digital ischemia.43,44 Thus it is not surprising that terlipres-
sin has been considered as a rescue therapy for patients 
with catecholamine-resistant septic shock to restore blood 
pressure and improve renal function.45–47

Because of its longer half-life, terlipressin often is admin-
istered by intermittent high-dose bolus infusion (1 mg every 
4-6 hours).41 However, administration of high-dose bolus 
infusions of terlipressin can lead to excessive vasoconstric-
tion and reductions in cardiac output and oxygen delivery 
to vital organs, thereby limiting its clinical applicability 
in septic shock.48,49 In conscious sheep with hyperdynamic 
sepsis, restoring blood pressure with terlipressin (1 mg; 
bolus) improved renal function but resulted in reduc-
tions in cardiac output (approximately 30%), mesenteric 
blood flow (approximately 40%), and coronary blood flow 
(approximately 20%).48 In contrast, continuous low-dose 
infusion of terlipressin (2 mg over 24 hours) was shown to 
restore blood pressure and prevent unfavorable effects on 
cardiac output, compared with septic sheep treated with 
intermittent high-dose bolus infusions of terlipressin (1 mg 
every 6 hours).50 A randomized pilot study demonstrated 
that administration of a continuous infusion of low-dose 
terlipressin (1.3 µg/kg/hr) as a first-line therapy for patients 
with septic shock was effective at maintaining blood pres-
sure and reducing norepinephrine requirements.51 Further 
experimental studies are necessary to evaluate the effects 
of high-dose bolus and low-dose continuous infusions 
of terlipressin on intrarenal perfusion and oxygenation 
in clinically relevant models of septic AKI. Such studies 
could inform major clinical trials in the future to investigate 
whether terlipressin improves health outcomes in patients 
with septic AKI compared with standard therapy.

Dopamine
The existing international consensus guidelines for 
management of septic shock only recommends the use of 

and arrhythmias in patients with sepsis resuscitated with 
epinephrine when compared with norepinephrine.25,31,32 In a 
porcine model of septic shock, treatment with epinephrine 
was associated with distribution of blood flow away from 
the mesenteric circulation, indicative of possible deleterious 
effects on the gut.28

There are limited studies investigating the renal effects 
of epinephrine, compared with other vasopressor drugs in 
patients with septic AKI. Thus most evidence on the effects 
of epinephrine on renal hemodynamics and function comes 
from experimental animal models of sepsis. In conscious 
sheep with hyperdynamic sepsis, restoring blood pressure 
with epinephrine (0.4 µg/kg/min) reduced renal blood flow 
and increased urine flow with no improvement in creati-
nine clearance.34 These observations were similar to those 
observed in patients with severe hyperdynamic sepsis.30 In 
another sheep model of sepsis, epinephrine was shown to 
have no effect on renal blood flow, but transiently reduce 
creatinine clearance.35 The brief improvements in urine flow 
with epinephrine in sepsis therefore can be attributed to 
an increase in renal perfusion pressure leading to diuresis, 
rather than a protective effect on renal hemodynamics and 
regional perfusion. Whether epinephrine has any adverse 
outcomes on regional kidney perfusion during sepsis is cur-
rently unknown. However, given the inability of epinephrine 
to improve glomerular filtration rate in sepsis, the risks of 
using epinephrine certainly seems to outweigh its benefits, 
at least in the setting of septic AKI.

Vasopressin
The current international consensus guidelines do not 
recommend the use of vasopressin as a single vasopressor 
agent for the management of patients with septic shock.19 
Instead, vasopressin is used as a second-line therapy for 
patients that have become unresponsive to norepinephrine 
or epinephrine and/or for decreasing the dosage of nor-
epinephrine.19 This is largely due to the evidence that at 
higher doses vasopressin (>0.05 IU/min) has the potential 
to induce myocardial, digital, and mesenteric ischemia.19,36 
Vasopressin increases arterial pressure mainly via stimulat-
ing the V1 receptors located on the vascular smooth muscle 
cells to induce vasoconstriction.36 Vasopressin also may 
increase blood pressure by preventing excessive opening 
of ATP-sensitive potassium channels in sepsis.36 Sepsis is 
characterized by a transient increase in endogenous levels 
of vasopressin at early stages, which then is followed by a 
rapid reduction in prolonged shock states.36 Therefore the 
potent vasopressor effects of vasopressin, even in patients 
with catecholamine-resistant septic shock, can be attributed 
to its relatively low levels in the circulation in sepsis.

In the Vasopressin and Septic Shock Trial (VASST), 
treatment with low-dose vasopressin (0.01–0.03 U/min) 
was not associated with lesser mortality than treatment 
with norepinephrine (5–15 µg/min).24 However, subsequent 
analysis of the VASST trial revealed that vasopressin reduced 
the progression of renal injury and mortality rate in patients 
at risk of sepsis-induced AKI.37 In accordance with these 
clinical observations, recent experimental studies in con-
scious healthy sheep reported that infusion of vasopressin 
preserved intrarenal perfusion and oxygenation, despite a 
reduction in global kidney blood flow and oxygen delivery.38 
This was in contrast to norepinephrine that resulted in 
dose-dependent reductions in renal cortical and medullary 
perfusion and oxygenation despite a preservation in global 
kidney blood flow and oxygen delivery.38 These findings 
provide direct evidence that overall measures of renal blood 
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phenylephrine as a replacement therapy to norepinephrine 
reported reductions in creatinine clearance in patients with 
septic shock.26 In contrast, administration of phenylephrine 
as a first-line therapy in patients with septic AKI was shown 
to cause similar increases in urine flow and creatinine 
clearance to treatment with norepinephrine.55 Therefore the 
timing of phenylephrine treatment during sepsis may play a 
pivotal role in achieving favorable effects on kidney function. 
Collectively, available evidence indicates that phenylephrine 
does not have major adverse effects on renal and mesenteric 
hemodynamics and function in sepsis. The positive effects 
on redistribution of microcirculatory blood flow in the 
mesenteric circulation during phenylephrine treatment is 
promising, especially if these effects extend to the renal 
microcirculation in septic AKI. Therefore administration of 
phenylephrine as a first-line therapy to treat sepsis-induced 
AKI merits further investigation, particularly in terms of 
regional kidney perfusion and oxygenation.

Angiotensin II
In relation to septic shock, there is extensive evidence that 
excessive levels of catecholamines and their metabolites 
have many adverse effects.46 These include deleterious 
effects on immune function and metabolic efficiency, 
stimulation of bacterial growth, and increased pulmonary 
artery pressure causing myocardial injury.57 This hypothesis 
was supported by findings from a randomized clinical trial 
in patients with sepsis treated with norepinephrine or a 
combination therapy of norepinephrine with esmolol.58 In 
this study, β-adrenergic blockade with esmolol significantly 
reduced the 28-day mortality rates (49.4%) compared with 
norepinephrine alone (80.5%).58 Thus vasopressors that do 
not possess the harmful effects of catecholamines may be 
beneficial in patients with sepsis. Angiotensin II is one such 
vasopressor, which acts mainly via the angiotensin type 
I receptors to cause vasoconstriction and increase blood 
pressure. Angiotensin II currently is not recommended 
as a standard vasopressor by the international consensus 
guidelines for management of septic shock. However, 
accumulating data from experimental and clinical studies 
provide evidence that angiotensin II is a safe and effective 
vasopressor in restoring blood pressure and renal function 
in septic AKI.

In ovine hyperdynamic sepsis, resuscitation with 
angiotensin II restored blood pressure, reduced renal blood 
flow, normalized creatinine clearance, and increased urine 
flow.59 Angiotensin II caused these renal changes without 
major adverse effects on blood flows to other vital organs, 
blood lactate, or biochemical variables.59 In a pilot study, 
angiotensin II also was shown to effectively restore blood 
pressure and double renal function in patients with 
catecholamine-resistant septic shock.20 It has been proposed 
that this potent renal action of angiotensin II in sepsis is 
due to its ability to preferentially increase resistance in the 
efferent compared with the afferent arteriole, thus increasing 
glomerular perfusion pressure and filtration rate.60 This 
concept also may explain the results from the VASST trial 
that vasopressin, another vasoconstrictor with a preferential 
effect on the efferent arteriole, improved renal function 
more than norepinephrine.37

Studies using animal models of septic shock provide 
evidence that adrenergic vasopressors (norepinephrine 
and epinephrine) that have β-adrenergic receptor activity 
exacerbate microcirculatory abnormalities.28 These find-
ings have relevance to the pathophysiology of septic AKI, 
given that norepinephrine was shown to exacerbate the 

dopamine in patients with a low risk of tachyarrhythmias 
and absolute and relative bradycardia.19 Dopamine acts on 
dopaminergic receptors and α-adrenergic and β-adrenergic 
receptors. At low doses, dopamine (<5 µg/kg/min) is more 
selective for the dopaminergic (D1 and D2) receptors, leading 
to vasodilation in the renal and mesenteric circulation.22 
At higher doses, dopamine (>10 µg/kg/min) predominantly 
acts on α-adrenergic receptors to induce vasoconstric-
tion and increase arterial blood pressure.22 The use of 
dopamine to resuscitate patients with septic shock has 
fallen out of favor because of the high risk of tachycardia 
and cardiac arrhythmia.21,22 Several clinical trials have 
provided evidence that norepinephrine is more effective 
than dopamine in improving systemic hemodynamics and 
kidney function and enhancing survival in patients with  
septic shock.21,22

Traditionally, it was believed that low-dose dopamine 
(2 µg/kg/min) was renoprotective in critically ill patients. 
However, there is now convincing evidence that low-dose 
dopamine has no beneficial effects on reducing the risk of 
AKI or the need for renal replacement therapy in patients 
but may worsen myocardial and visceral perfusion.52,53 Even 
at these lower doses, dopamine has been shown to worsen 
renal perfusion in patients with acute renal failure.54 It is also 
feasible that the natriuretic effects of dopamine, mediated 
at the level of the proximal tubule, would increase solute 
delivery to the loop of Henle and so increase medullary 
oxygen consumption and thus exacerbate the underlying 
medullary hypoxia in the setting of AKI. Therefore the use 
dopamine in the treatment of patients with sepsis-induced 
AKI should be abandoned.19

Phenylephrine
Phenylephrine is a selective α1-adrenergic receptor agonist 
that increases blood pressure mainly by increasing sys-
temic vascular resistance, without an associated increase 
in myocardial contractility.21 Therefore phenylephrine 
is recommended only for patients experiencing serious 
arrhythmia with norepinephrine, have a high cardiac output, 
or as a salvage therapy.19 Because of its high selectivity for 
α1-adrenergic receptors, phenylephrine is believed to reduce 
perfusion to the splanchnic and renal circulation. However, 
a randomized clinical trial comparing norepinephrine with 
phenylephrine as an initial treatment was unable to detect 
differences in hepatosplanchnic perfusion, gastrointestinal 
perfusion, or cardiopulmonary performance in patients with 
septic shock.55 An advantage of phenylephrine is that, unlike 
norepinephrine, it does not stimulate β-adrenergic receptors 
and so does not increase heart rate and myocardial oxygen 
demand in sepsis. In anesthetized pigs with peritonitis-
induced septic shock, administration of norepinephrine 
redistributed blood flow away from the mesentery (jejunal 
mucosa and jejuna muscularis) to other regions of the body 
via β-adrenergic stimulation.28 In contrast, treatment with 
phenylephrine did not impair microcirculatory blood flow 
in the mesentery and even improved blood flow to jejuna 
mucosa.28 In accord with these findings, restoration of 
blood pressure with phenylephrine in ovine hyperdynamic 
sepsis had negligible effect on mesenteric blood flow and 
increased renal blood flow.56 It is conceivable that selec-
tive α1-adrenergic receptor agonists may be beneficial in 
septic shock, because they restore blood pressure without 
causing deleterious effects on regional tissue blood flow 
via β-adrenergic stimulation.

The renal effects of phenylephrine have not been 
elucidated fully in septic AKI. Clinical trials that used 
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preserved or increased total renal blood flow and 
oxygen delivery.

2.	 In sepsis, heterogeneity of perfusion renders the 
renal medulla particularly susceptible to develop-
ment of ischemia and hypoxia, which may in turn 
play a critical role in the pathogenesis of AKI.

3.	 Vasopressors (norepinephrine, epinephrine, and 
dopamine) that stimulate α-adrenergic and β- 
adrenergic receptors may exacerbate the under
lying microcirculatory flow abnormalities in  
septic AKI.

4.	 Treatment with vasopressors that are highly selec-
tive for α1-adrenergic receptors (phenylephrine) 
or are nonadrenergic (vasopressin, terlipressin, 
angiotensin II) may preserve intrarenal oxygenation 
and offer a safe alternative in the treatment of 
septic AKI.

5.	 Development of treatment strategies that optimize 
regional kidney perfusion and oxygenation may 
be the solution to preventing the progression of 
kidney injury in sepsis.
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underlying medullary ischemia and hypoxia (Fig. 225.2).17 
In contrast to norepinephrine, infusion of angiotensin II 
did not reduce renal cortical or medullary perfusion in 
“healthy” conscious sheep,38 and further studies are required 
to determine the effect of angiotensin II on intrarenal perfu-
sion and oxygenation in sepsis. Collectively, the use of 
vasopressors that are either highly selective to α1-adrenergic 
receptors, or at least lack β-adrenergic receptor actions, may 
prove beneficial in the treatment of septic AKI. Therefore 
angiotensin II has promise as an alternative first-line therapy 
to norepinephrine or as an adjunctive therapy in patients 
with sepsis-induced AKI. A randomized, double-blinded, 
multicenter, Phase III clinical trial is currently underway 
to test the efficacy of angiotensin II in maintaining blood 
pressure in approximately 300 patients with catecholamine-
resistant septic shock.

CONCLUSION

Currently, there is insufficient clinical evidence to support 
the use of one vasopressor agent over another to protect the 
kidney of patients with septic AKI. A major limitation in 
the field has been that the majority of experimental studies 
have relied on global measures of kidney blood flow and 
oxygen delivery as an accurate predictor of kidney function 
and health. It is evident that heterogeneity of perfusion is a 
hallmark of septic AKI and monitoring global kidney blood 
flow and oxygenation are poor predictors of abnormali-
ties in regional perfusion and oxygenation. Thus future 
studies should rather focus on the renal microcirculation 
as a potential therapeutic target. The renal medulla appears 
to be particularly susceptible to ischemia and hypoxia in 
multiple forms of AKI, including septic shock. AKI develops 
within the first 24 hours of sepsis in 64% of patients.61 
There is evolving evidence that therapies to preserve 
renal medullary tissue perfusion and oxygenation during 
the early stages of sepsis may be an effective strategy to 
ameliorate AKI and improve management of critically ill  
patients.

Key Points

1.	 Septic acute kidney injury can develop as a result 
of microcirculatory dysfunction in the face of 
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