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CHAPTER 224 

Erythropoietin Therapy in Critically Ill 
and Acute Kidney Injury Patients
Zoltan Endre and Steve Elliott

OBJECTIVES
This chapter will:
1. Describe the issues with and treatment options for critical 

care patients with anemia.
2. Discuss the risks and benefits of transfusions versus 

erythropoiesis-stimulating agents (ESAs) treatment.
3. Present results of clinical trials of critical care patients 

treated with ESAs.
4. Evaluate hypotheses associated with organ protection by 

ESAs.

ANEMIA AND TRANSFUSION IN  
THE INTENSIVE CARE UNIT

U.S. studies report that almost all patients are anemic by day 
3 after admission to an intensive care unit (ICU).1 Despite 
controversies regarding the benefits,2 approximately 50% of 
patients in the United States are transfused, usually early 
in the course of the admission.3,4 Similarly, a multicenter 
European study showed that 63% of ICU patients had a 
hemoglobin less than 12 g/dL, and 29% less than 10 g/dL, 
at the time of admission and 37% were transfused during 
their ICU stay.5 However, transfusions have been associated 
with longer hospital lengths of stay and an increase in 
mortality.3

Factors contributing to anemia in ICU subjects include 
direct causes such as hemorrhage or hemolysis associated 
with the initiating events such as trauma, infarction, and 
stroke. Additional factors include coagulopathies, occult 
blood loss, and the large amount (perhaps 40 to 60 mL daily) 
of blood removed during repeated diagnostic phlebotomy in 
the ICU.4 Indirect factors blunt the erythropoietic response 
to anemia. These include activation of proinflammatory 
cytokines that directly inhibit erythropoiesis (by blunting 
the response to erythropoietin) including IL-1, TNF-α, and 

IL-6. The latter upregulates the acute phase protein hepcidin. 
By mediating degradation and internalization of the iron 
transport protein, ferroportin-1, hepcidin-1 limits availability 
of iron absorption in the gut and release from stores. IL-6 
thus indirectly limits erythropoiesis by impairing heme 
synthesis.6,7 Additional factors include shortened red cell 
survival from pathogen and immune-mediated hemolysis. 
The resultant anemia in critically ill subjects is usually 
normocytic and normochromic as in subjects with chronic 
kidney disease.

Publication in 1999 of the Transfusion Requirements 
in Critical Care study (TRICC),8 when there was a liberal 
approach to transfusion in the ICU, resulted in a reassess-
ment in use of transfusions in critical care patients. The 
TRICC trial demonstrated that a restrictive approach to 
transfusion (Hb threshold for transfusion <70 g/L) had 
similar or even superior mortality outcomes to a more 
liberal approach (Hb <90 g/L), with better outcomes in 
younger, less critically ill subjects) but with the possible 
exception of patients with acute myocardial infarction 
and unstable angina. Similar results were obtained in a 
large randomized controlled trial of liberal (Hb <100 g/L) 
versus restrictive (Hb <80 g/L) transfusion in 2016 patients 
undergoing surgery for hip fracture.9 A liberal transfusion 
strategy (a hemoglobin threshold of 100 g/L), as compared 
with a restrictive strategy (symptoms of anemia or at physi-
cian discretion for a hemoglobin level of <80 g/L), did not 
reduce rates of death or inability to walk independently 
(across a room) on 60-day follow-up or reduce in-hospital 
morbidity in elderly patients at high cardiovascular risk.

Further studies of transfusion in subjects with myocardial 
ischemia suggest that the benefits of transfusion outweigh the 
risks when Hb is below 70 g/L.7,10,11 The results of transfu-
sion are even more controversial in anemia associated with 
sepsis. Although some studies show no benefit of transfusion 
on tissue oxygenation,7,12 others suggest that because the 
microcirculation is improved by blood transfusion but not 
by crystalloids or colloids, that transfusion remains a useful 
option, perhaps particularly in sepsis.13,14
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with severe blood loss. For less severe conditions, a slower 
rise in Hb may be desirable because of the ability of the 
body to adapt. With ESA administration, iron is mobilized 
to support Hb synthesis. In the absence of administered 
iron, there can be depletion of iron stores, which has been 
hypothesized to promote a prothrombotic state.15

The major rationale for use of ESAs was that admin-
istration would not only treat symptoms of anemia but 
also reduce the number of transfusions and thereby avoid 
their negative impacts.16 Thus a number of clinical trials 
were initiated to determine if ESA treatment would reduce 
transfusion rates and improve outcomes.

Erythropoietin-Stimulating Agents and  
Anemia Correction
In clinical trials with patients having heart and kidney 
disease, ESAs were shown to increase Hb levels in a 
dose-dependent manner and reduce blood transfusion 
rates (Tables 224.1 and 224.2). There also was evidence 
that anemia symptoms could be improved, especially in 
cardiac patients (dyspnea, exercise tolerance) (Fig. 224.1) 
but with little or no improvement in quality of life. Some 
studies showed an improvement in outcomes (e.g., mortality 
or rehospitalization rates), such as in patients after trauma 
(Fig. 224.2). However, in larger trials and in meta-analysis 
of the combined results of the small trials, the benefits 

Erythropoietin-Stimulating Agent Administration in 
the Critical Care Setting; Comparison to Transfusions
Erythropoietin (EPO) is the primary regulator of red blood 
cell formation. Because EPO is produced mainly by the 
kidney, patients with kidney disease can have severe 
anemia because of decreased EPO production. The pre-
ferred treatment option for patients with end-stage kidney 
disease (ESKD) is renal transplantation, which not only 
restores renal function but also alleviates the symptoms 
of anemia. The next most frequent treatment option, for 
renal patients and also other ICU patients, is to administer 
transfusions with the associated problems noted earlier. In 
long-term treatment settings, such as with ESKD patients, 
transfusions also could result in iron overload and produce 
allosensitization, which will reduce the number of suitable 
donor kidneys for a given individual with ESKD, or increase 
the risk of rejection of the transplanted kidney. With the 
approval of the first erythropoiesis-stimulating agent (ESA, 
epoetin alfa) there was a potentially practical alternative 
to transfusion, which offered pharmacologic treatment of 
anemia in multiple patient populations.

It is tempting to assume that the process of raising Hb 
with an ESA would be physiologically similar to that of 
transfusion. However, ESA treatment provides a slow rather 
than instantaneous (transfusion) rate of rise in Hb, and it may 
be desirable to have a fast or slow increase depending on 
conditions. For example, immediate correction is warranted 

TABLE 224.1 

Outcomes in Randomized Controlled Trials to Prevent or Correct Anemia

REFERENCE GROUP ESA TREATMENT SUBJECTS OUTCOMES IN ESA/HIGH Hb ARMS

Ghali 200840 Cardiac failure 
and anemia

DA (0.75 ug/kg/SC/2 wks) 
with dose adjusted to 
target an Hb of 
130–150 g/L

N = 319: ESA 
(162), placebo 
(157)

Increased Hb. No improvement in exercise 
duration, NYHA class, or quality of life score

Abraham 
201041

Cardiac failure 
and anemia

Pooled analysis of 2 
studies. DA (0.75 ug/kg/
SC/2 wks or 50 ug/kg/
SC/2 wks) with 
adjustments to target an 
Hb of 130–150 g/L

N = 475: ESA 
(266), placebo 
(209)

No difference in composite of all-cause 
mortality and rate of first hospitalization for 
cardiac failure. Improvement in composite 
for the ESA subgroup that had a Hb increase 
> 10 g/L

Swedberg 
201342

Cardiac failure 
and anemia

DA (0.75 ug/kg/SC/2 wks) 
with dose adjusted to 
target an Hb of 130 g/dL

N = 2278: ESA 
(1136), 
placebo (1142)

Increased Hb, reduced blood transfusion rate. 
No effect on all-cause mortality or first 
hospitalization for worsening cardiac failure. 
Increased rate of ischemic stroke, embolic, 
and thrombotic events

Roger 200443 CKD and 
anemia

Epoetin α administered 
weekly (SC) with dose 
adjusted to target an Hb of 
105–115 or 130–150 g/L

N = 152: high 
Hb (75), low 
Hb (78)

Increased Hb. No difference in LVMI or eGFR 
or creatinine at 2 yr

Levin 200544 CKD and 
anemia

Epoetin α with dose 
adjusted to target an Hb 
of 90–105 or 120–140 g/L. 
Starting dose 2000 U/wk/
SC then titrated

N = 152: high 
Hb (78), low 
Hb (74)

Increased Hb. No difference in LVMI, NYHA 
level, or rate of change in creatinine 
clearance

Drueke 
200645

CKD and 
anemia

Epoetin β with dose 
adjusted to target a Hb of 
110–125 or 130–150 g/L. 
Median weekly dose 
5000 U in high Hb and 
2000 U in low Hb median 
dose/wk

N = 603: high 
Hb (301), low 
Hb (302)

Increased Hb. No difference in deaths or 
cardiovascular event (sudden death, 
myocardial infarction, acute heart failure, 
stroke, transient ischemic attack, angina 
pectoris, prolongation of hospitalization, 
amputation, necrosis, or cardiac arrhythmia). 
No difference in cardiac (LVMI, time to 
increased NYHA class) or renal function 
(eGFR)
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REFERENCE GROUP ESA TREATMENT SUBJECTS OUTCOMES IN ESA/HIGH Hb ARMS

Singh 
200646, 
Inrig 201247

CKD and 
anemia

Epoetin α with dose 
adjusted to target an Hb 
of 105–110 g/dL or 
130–135 g/dL. Average 
dose 11,215 U/wk/SC 
(high Hb) and 6,276 U/
wk/SC (low Hb)

N = 1432: high 
Hb (715), low 
Hb (717)

Increased Hb. More rapid progression of 
composite end point (death, myocardial 
infarction, hospitalization for CHF) and 
kidney disease (composite of doubling of 
serum creatinine, RRT, or death). No 
difference in myocardial infarction or stroke

Ritz 200748 CKD, diabetes, 
and anemia

Epoetin β (2,000 U/SC - 
initial dose) with 
adjustments to target high 
(130–150 g/L) or low Hb 
(105–115 g/L)

N = 160: high 
Hb (85), low 
Hb (75)

Increased Hb. No effect on cardiac function 
(LVMI, FS, or LVEF) or renal function (rate of 
creatinine clearance or eGFR decrease)

Pfeffer 
200949

CKD, diabetes, 
and anemia

DA monthly (average 
176 ug/SC) targeted to Hb 
of 130 g/L

N = 4038: high 
Hb (2012), 
control (2026)

Increased Hb, reduced transfusion rate.  
No effect on time to first fatal or nonfatal 
cardiac failure or myocardial infarction, 
hospitalization for myocardial ischemia, or 
progression to ESKD. Increased risk of stroke

Still 199550 Critical illness: 
Burns

Epoetin α (300 U/kg/IV) 
within 72 hr then daily × 
7, then 150 U/kg alternate 
daily to 30 d

N = 40: ESA 
(19), control 
(21)

No differences in Hb, transfusion rate, or 
mortality

Corwin 
199951

Critical illness Epoetin α (300 U/kg/SC) on 
d3, daily × 5 then alternate 
daily until Hct > 38%

N = 160: ESA 
(80), placebo 
(80)

Increased Hb, reduced blood transfusion rate. 
No differences in mortality, DVT, adverse 
events

Corwin 
200252

Critical illness Epoetin α (40,000 U/SC) 
on d3 and continued 
weekly (×3). Added dose 
on ICU day 21

N = 1302: ESA 
(650), placebo 
(652)

Increased Hb, reduced blood transfusion rate. 
No differences in 29-day mortality, morbidity, 
or hospital length of stay. Reduced mortality 
in trauma patients

Georgopoulos 
200553

Critical illness rHuEpo (not specified) 
40,000 U/SC 1×/wk or 
3×/wk for 1–3 wks 
targeted to Hb of 120 g/L

N = 148: ESA 
(100), control 
(48)

Dose-dependent increase in Hb, reduced blood 
transfusion rate. No differences in ICU length 
of stay, hospital length of stay, incidence of 
adverse events, or mortality

Silver 200654 Critical illness: 
Long-term 
care

Epoetin α (40,000 U/SC) 
before d7 then weekly up 
to 12 doses

N = 86: ESA 
(42) placebo 
(44)

Increased Hb, decreased transfusion rate. No 
differences in mortality or serious adverse 
clinical event

Corwin 
200755

Critical illness Epoetin α (40,000 U/SC) 
on day 1, then weekly  
(×3)

N =1460: ESA 
(733) placebo 
(727)

Increased Hb, no difference in transfusion 
rate. No difference in mortality, ICU, or 
hospital length of stay. Reduced mortality in 
trauma patient subgroup. Increased 
thrombotic events

Lundy 
201056

Critical illness: 
Burns

rHuEPO (not specified) 
(40,000 U) within 72 hrs 
post admission then 
weekly for 1–35 wks 
(mean 10 wks)

N = 105: ESA 
(25), no ESA 
(27), historical 
control (53)

No reduction in transfusion rate. No 
differences in Hb, mortality, thrombotic 
events

Luchette 
201257

Critical illness: 
Blunt trauma 
and anemia

Epoetin α (10,000–
40,000 U/SC) weekly for 
up to 12 wks after 
discharge or until Hb 
≥120 g/dL (mean 3.1 wks)

N = 192: ESA 
(97), placebo 
(95)

Increased Hb. No difference in transfusion 
rate, patient health (SF-36, APACHE II, 
SOFA) or neurologic function (COG)

Weber 200558 Surgery: 
Orthopedic 
moderate/no 
anemia

Epoetin α (40,000 U/SC) 
for 3 wks before (×3), at 
surgery then weekly (×3)

N = 733: ESA 
(487), control 
(237)

Increased Hb and reduced transfusion rate. No 
effect on time to ambulation or time to 
discharge. In both groups transfused patients 
had a longer time to discharge.

Cladellas 
201259

Surgery: 
Cardiac valve 
replacement 
and anemia

Epoetin β (500 U/kg/d/IV) 
and iron sucrose (IV) 
weekly, fifth dose 48 hrs 
preoperatively

N = 134: ESA 
(75), control 
(59)

Increased Hb and reduced transfusion rate. 
Decreased hospitalization, morbidity, 
in-hospital mortality, acute kidney injury, 
and cardiac failure

Talving 
201060

Traumatic 
brain injury 
and anemia

Epoetin α (100 U/kg/SC 
weekly) or DA (0.45 mcg/
kg/SC weekly) for 30 d

N = 286: ESA 
(89), no ESA 
(178)

Increased Hb, no difference in transfusion 
rate. Decreased in-hospital mortality. No 
difference in morbidity but increased length 
of stay in hospital

Talving 
201261

Traumatic 
brain injury 
and anemia

DA (0.40 µg/kg/SC weekly) 
for 30 days

N = 150: ESA 
(75), no ESA 
(75)

Increased Hb, no difference in transfusion 
rate. Decreased in-hospital mortality but 
longer stay in the ICU and hospital. No 
difference in complications or neurologic 
outcome (GCS)

APACHE II, Acute physiology and chronic health evaluation II; CHF, congestive heart failure; CKD, chronic kidney disease; COG, cognitive function test; 
d, day; DA, darbepoetin alfa; DVT, deep vein thrombosis; eGFR, estimated glomerular filtration rate; ESA, erythropoiesis stimulating agent; ESKD, 
end-stage kidney disease; FS, fractional shortening; GCS, Glasgow Coma Scale; hr, hour; LVEF, left ventricular ejection fraction; LVMI, left ventricular 
mass index; min, minute; mo, month; NYHA, New York Heart Association; RRT, renal replacement therapy; SF-36 PF, 36-item short form health survey; 
SOFA, sepsis-related organ failure assessment; wk, week.

TABLE 224.1 

Outcomes in Randomized Controlled Trials to Prevent or Correct Anemia—cont’d
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TABLE 224.2 

Outcomes in Randomized Controlled Trials to Prevent or Correct Anemia (Meta-Analysis)

REFERENCE GROUP ESA TREATMENT SUBJECTS OUTCOMES IN ESA/HIGH Hb ARMS

Alghamadi 
200662

Surgery: cardiac ESA (40–800 U/SC/
IV) and iron (IV/oral) 
administered at least 
1 wk before surgery 
and 1–3×/wk for 
1–4 wks

11 trials, N = 7 08: ESA 
(471), control (237)

Reduced risk of transfusion

Alsaleh 
201363

Surgery: knee and 
hip arthroplasty

ESA (40,000–
120,000 U total) 
0–28 days before 
surgery

26 trials, N = 3450: ESA 
or ESA + ABD (2059), 
ABD, placebo or iron 
(1391)

Increased Hb and reduced 
transfusions. No difference in 
thromboembolism

Desai 
201064

Chronic heart 
failure and anemia

ESA 1–3×/wk for 
2–72 mos to raise Hb 
to target

9 trials, N = 2039: ESA 
(1023) control (1016) 
(TREAT49 HF subset)

Neutral for mortality and nonfatal 
heart failure events

Kotecha 
201139

Chronic heart 
failure and anemia

ESA to raise Hb to 
higher target 
(epoetin α or β 
- 1–3× wk/4000–
15,000/weekly total, 
DA - q2wk-
qMonthly/1.5–2.0 
ug/kg monthly total)

11 trials, N = 794: ESA 
(430), control (placebo 
or no ESA, 352) (does 
not include RED-HF42)

Increased Hb, improved exercise 
tolerance (exercise duration, peak O2 
consumption), cardiac function 
(NYHA class, ejection fraction, 
B-type natriuretic peptide), and 
quality-of-life. Reduced CHF-related 
hospitalization and reduction in 
all-cause mortality. No difference in 
stroke or thrombotic events

Kang 
201665

Chronic heart 
failure and anemia

ESA (epoetin - 1–3× 
wk/4000–15,000/
weekly total, DA 
- 1/0r 2×/mo/1.5–
5.0 ug/kg monthly 
total) to raise Hb to 
higher target

13 trials, N = 3172: ESA 
(1609), control (1523) 
(includes RED-HF42)

Increase in Hb. No effect on all-cause 
mortality or rehospitalization. 
Improved dyspnea, NYHA grade, and 
quality-of-life measured by subjective 
questionnaires. Increased risk for 
thromboembolic events

Zarychanski 
200766

Critical illness: 
Mixed medical, 
surgical

Medium-term ESA 
(rHuEpo - daily-
weekly/40,000–
140,000/weekly 
total) for 3–12 wks

9 trials, N = 3314: ESA 
(1695), control (placebo 
or no ESA (1619)

Reduced risk of transfusion. No effect 
on overall mortality or length of stay 
in hospital or intensive care unit.

French 
201632

Critical illness: 
traumatic brain 
injury, mixed 
medical, surgical

Epoetin α or β within 
6 hr to 6 d of injury, 
1–10 doses with 
total/mo of 20,000–
160,000 U 

9 trials, N = 2607: ESA 
(1221), control (placebo 
or no ESA, 1184)

No difference in transfusions. No 
difference in functional neurologic 
outcome. Reduced mortality overall 
but no difference in patients with 
traumatic brain injury. No difference 
in thrombotic events

Parfrey 
200911

CKD, ESKD, and 
anemia

ESA to increase Hb to 
target (ESA, dose 
and schedule not 
disclosed)

15 trials: N = 1731: high 
(>120 g/L) vs. low 
(<120 g/L) Hb target

Reductions in LVMI when starting at 
low (<100 g/L) but not moderate 
(>100 g/L) Hb

Palmer 
201010

CKD and anemia Epoetin α, epoetin β, 
or DA to target low 
(95–120 g/L) vs. high 
(120–150 g/L) Hb 
(dose and schedule 
not disclosed)

27 trials, N = 10,452: 
high (>120 g/L) vs. low 
(<120 g/L) Hb target. 
(includes TREAT49)

No differences in mortality, serious 
cardiovascular events, or progression 
to ESKD with higher Hb target. 
Increased risks for hypertension, 
stroke, and vascular access 
thrombosis

Koulouridis 
201367

CKD, ESKD, and 
anemia

Epoetin α, epoetin β, 
or DA to raise Hb to 
higher target 
(epoetin α or β 
- starting dose 
5,500–44,000 U)

31 trials: N = 12,956 
(includes TREAT68): 
high Hb (100–150 g/L) 
vs. low (range 8.2–11.5)

Reduced transfusion risk. No 
association between ESA dose and 
annual eGFR change, progression to 
ESKD, or cardiovascular events. 
Increase in all-cause mortality, stroke, 
and thrombotic events but decreased 
serious adverse events with increased 
dose

Elliott 
201717

CKD and anemia Epoetin α, epoetin β, 
or DA (epoetin 
- 1×–3× wk/20,000–
80,000 total/wk,  
DA - 1×–4×/mo, 
120–200 ug total/mo) 
to correct anemia

18 trials, N = 8020: 
targeted to high (3964) 
or low Hb (4056)

No difference in progression to RRT

ABD, Autologous blood donation; CHF, congestive heart failure; CKD, chronic kidney disease; ESKD, chronic kidney disease; DA, darbepoetin alfa; 
eGFR, estimated glomerular filtration rate; ESA, erythropoiesis stimulating agent; ESKD, end-stage kidney disease; LVMI, left ventricular mass index; 
NYHA, New York Heart Association; RRT, renal replacement therapy.
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FIGURE 224.1 Mortality in critical care trauma patients: meta-analysis of randomized clinical trials. (From French CJ, et al. Erythropoiesis-
stimulating agents in critically ill trauma patients: a systematic review and meta-analysis. Ann Surg. 2016.)
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FIGURE 224.2 Effect of ESAs on exercise capacity and heart function in heart failure patients. (From Kotecha D, et al. Erythropoietin as 
a treatment of anemia in heart failure: systematic review of randomized trials. [Review]. Am Heart J. 2011:61:822–831.)
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TABLE 224.3 

Tissue Protection with Short-Term ESA Treatment

REFERENCE GROUP ESA TREATMENT SUBJECTS OUTCOMES IN ESA/HIGH Hb ARMS

Binbrek 
200969

Cardioprotection: 
STEMI

Epoetin β (30,000 U/
IV) before 
thrombolysis

N = 236: ESA 
(115), no ESA 
(121)

No difference in Hb. No difference in cardiac 
function (enzymatically estimated infarct 
size, ECHO, mitral flow, EF, LV end systolic 
volume or LV wall motion score index)

Liem 200970 Cardioprotection: 
Non-STE-ACS

Epoetin α (40,000 U/
IV) within 8 hr of 
diagnosis

N = 51: ESA (26) 
placebo (25)

No effect on troponin or infarct size (CK-MB 
release)

Ott 201071 Cardioprotection: 
STEMI

Epoetin β (3× 
33,300 U) 
immediately after 
PCI, 24, and 48 hr

N = 138: ESA 
(68), Placebo (70)

No difference at 3 mos of LVEF or infarct size. 
No difference at 6 mos of death, recurrent 
myocardial infarction, stroke, vessel 
revascularization, LVEF measured by MRI, or 
infarct size

Ludman 
201172

Cardioprotection: 
STEMI

Epoetin β (50,000 U/
IV) before PCI and 
24 hr later

N = 51: ESA (26), 
placebo (25)

No difference in length of hospital stay, LVEF, 
troponin T or infarct size (CMR). Increased 
LVEDV, LVESV, and LV mass

Najjar 
201173

Cardioprotection: 
STEMI

Epoetin α (15,000, 
30,000 or 60,000 U/
IV) within 4 hrs of 
reperfusion

N = 222: ESA 
(125) placebo 
(97)

No difference in Hb. infarct size (CMR), LV 
mass, LVEF, death, stroke, or thrombosis. 
Increase in adverse events and composite 
outcome (death, MI, stroke, or stent 
thrombosis)

Suh 201174 Cardioprotection: 
STEMI

Epokine (50 U/kg/IV) 
immediately before 
PCI

N = 57: ESA (29), 
control (27)

No difference in infarct size (CK, CK-MK, 
MRI), or LVEF

Prunier 
201275

Cardioprotection: 
STEMI

Epoetin β (1,000 U/
kg/IV) immediately 
after PCI 

N = 107: ESA 
(53), placebo (44)

At d5 no difference in peak CK release but 
decreased incidence of MVO, reduced LV 
volume, mass, and function impairment. At 
3 mos no difference in infarct size, LV mass, 
volume, or function

Roubille 
2013

Cardioprotection: 
STEMI

DA (150 ug/
intracoronary) after 
PCI

N = 51: ESA (27), 
control (24)

No difference in creatinine kinase or infarct 
size (by CMR)

Fokkema 
201376

Cardioprotection: 
STEMI

Epoetin α (60,000 U/
IV) within 3 hr after 
PCI

N = 529: ESA 
(263), control 
(266)

No difference in composite end point 
(all-cause mortality, re-infarction, target 
vessel revascularization, stroke, or heart 
failure) or thrombotic events

Yoo 201177 Cardioprotection: 
valvular heart 
surgery with 
anemia

ESA (epocain, 500 U/
kg/IV) 16–24 hrs 
before surgery

N = 74: ESA (37) 
control (37)

Reduced transfusion risk and risk of AKI. No 
difference in mortality

Dardashti 
201478

Cardioprotection, 
renoprotection, 
neuroprotection: 
Surgery (CABG), 
patients with 
impaired renal 
function

ESA (Retacrit 400 U/
kg/IV) preoperatively

N = 70: ESA (35) 
placebo (35)

No difference in Hb, transfusions. No 
difference in markers of renal function 
(cystatin C, NGAL, creatinine, eGFR), 
incidence of AKI, heart function (BNP, 
CK-MB), brain damage (S100B), or adverse 
events

Joyeux-
Faure 
201279

Cardioprotection, 
neuroprotection: 
Surgery (CABG)

Epoetin β (800 U/kg/
IV) 1–3 hrs before 
CPB

N = 50: ESA (25), 
placebo (25)

No difference in cardiac function ejection 
fraction and markers (troponin T, NT-proBNP, 
creatine kinase MB), cerebral (S100B) 
markers, inflammation markers (TNF-α, IL-6, 
IL-10. No difference in mortality

Springborg 
200780

Neuroprotection: 
Stroke 
(subarachnoid 
hemorrhage)

Epoetin α (500 U/kg 
IV) immediately after 
randomization and at 
24 and 48 hr

N = 53: ESA (24) 
placebo (30)

No difference in Glasgow outcome score, 
markers of brain damage (S-100B and NSE), 
surrogate markers of secondary ischemia 
(glutamate, lactate/pyruvate), blood–brain 
barrier integrity (CSF:serum ratio of albumin) 
or brain injury (mean maximum flow 
velocities in the middle or anterior cerebral 
arteries)

the rate of progression of chronic kidney disease,17 but 
there was evidence of improvement in cardiac function. 
For example, there were reports that anemia correction may 
reduce left ventricular mass index and improve cardiac 
failure (NYHA class). The benefit of anemia correction in 
improving heart function was greater in patients at a lower 
starting Hb level.11

disappeared. In addition, there was evidence of increased 
risk of thrombotic events and ischemic stroke in some 
settings, but without an increase in mortality.

Clinical trials to test the possibility that ESA treatment 
may improve cardiac function or reduce progression of 
renal disease produced mixed results (Tables 224.1 through 
224.4), with meta-analysis showing no benefit in slowing 

Continued
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REFERENCE GROUP ESA TREATMENT SUBJECTS OUTCOMES IN ESA/HIGH Hb ARMS

Ehrenreich 
200927

Neuroprotection: 
Stroke 
(ischemic)

Epoetin α (40,000 U/
IV) within 6 hr of 
symptom onset, and 
at 24 and 48 hr

N = 522: ESA 
(238), placebo 
(253)

No difference in MRI imaging (d7), Barthel 
Index, or NIHSS on d30 or d90. Increased 
mortality and intracerebral hemorrhage. 
Increased deaths

Tseng 
200981

Neuroprotection: 
Stroke 
(subarachnoid 
hemorrhage)

Epoetin β (30,000 U/
IV) on day of 
recruitment and 
every 48 hr 
(90,000 U total)

N = 80: ESA (40) 
placebo (40)

No difference in vasospasm or ischemia 
(THRT). Reduced severe vasospasm. No 
difference in overall mRS or GOS score at 
discharge or 6 mos. No difference in 
thromobembolisms

Yip 201182 Neuroprotection: 
Stroke 
(ischemic)

Epoetin β (5000 U/SC) 
at 48 and 72 hr after 
stroke

N = 167: ESA (83) 
placebo (84)

No change in Hb. Improvement in 90 d 
clinical outcome (MANE). No difference in 
NIHSS, mRS. or Barthel index

Pang 201383 Neuroprotection: 
CO2 poisoning

rHuEPO (10,000 U/
SC) within 12 hr of 
poisoning, then daily 
for 1 wk

N = 103: ESA(54), 
placebo (49)

Improved NIHSS score and Barthel index 
(30 d) and S-100β levels decreased

Cramer 
201484

Neuroprotection: 
Stroke 
(ischemic)

Epoetin α (escalating 
dose 4000–20,000 U/
IV, d7, 8, 9) and 
β-hCG (10,000 U/IV) 
on d1,3,5) initiated 
24–48 hr after stroke 
onset

N = 96: ESA (72), 
placebo (24)

No difference in neurologic recovery (NIHS 
baseline to d90, Barthel index or mRankin), 
adverse events or death

Robertson 
201430

Neuroprotection: 
TBI

Epoetin α (500 U/kg/
IV) within 6 hr of 
injury, daily for 2 d, 
then weekly for 
2 wks (74 patients) or 
1 dose within 6 hr of 
injury (126 patients)

N = 200: ESA 
(102), placebo 
(98)

No difference in transfusions. No difference in 
mortality or neurologic outcome (GOS) at 
6 mos. Higher Hb transfusion threshold (70 
vs. 100 g/L), had increased thrombotic events

Nichol 
201531

Neuroprotection: 
TBI

Epoetin α (40,000 U/
SC) 1×/wk, up to 3× 
starting within 24 hr 
of injury

N = 606: ESA 
(308), placebo 
(298)

No difference in proportion of patients with a 
GOS (extended) level of 1–4, 6-month 
mortality, lesion mass, or occurrence of lower 
limb DVT

Cariou 
201685

Neuroprotection: 
Cardiac arrest

Epoetin α (40,000 U/
IV) ×5 every 12 hr 
immediately 
postresuscitation

N = 476: ESA 
(234), No ESA 
(242)

No difference in CPC, irreversible brain 
damage, or mortality. Increased SAEs and 
thrombotic events in ESA group

Endre 
201035

Renoprotection: 
AKI

Epoetin β (500 U/kg/
IV to a maximum of 
50,000 U) within 6 
hr and a second dose 
24 hr later

N = 163: ESA (84) 
placebo (78)

No difference in incidence of AKI, dialysis, 
length of hospital stay, or deaths

de Seigneux 
201286

Renoprotection: 
Cardiac surgery

Epoetin α (20,000 U 
or 40,000 U/IV) 1 to 
4 hr after surgery

N = 80: ESA (40) 
placebo (40)

No difference (0–48 hr) in Hb, incidence of 
AKI, creatinine, cystatin C and urinary NGAL 
levels, mortality, or hospital stays

Tasanarong 
201387

Renoprotection: 
Cardiac surgery

Epoetin β (200 U/kg/
IV) 3 d before CABG 
and 100 U/kg at 
surgery

N = 100: ESA (50) 
or saline (50)

No difference in Hb. At 1–3 d, there was 
reduced incidence of AKI. Improvement in 
eGFR and urine NGAL

Oh 201288 Renoprotection: 
Coronary artery 
bypass grafting

Epoetin β (300 U/kg/
IV) before CABG

N = 71: ESA (36), 
saline (35)

Reduced incidence of AKI

Olweny 
201289

Renoprotection: 
Partial 
nephrectomy

Epoetin α (500 IU/kg/
IV) 30 min before 
hilar occlusion

N = 106: ESA 
(52), control (54)

No difference in adverse events or eGFR at 
3 wks or 12 mos

Kim 201390 Renoprotection: 
Valvular heart 
surgery

Epocain (300 U/kg/IV) 
after anesthetic 
induction

N = 98: ESA (49) 
control (49)

No difference in Hb, incidence of AKI, SCr 
levels, eGFR, creatinine clearance, or 
biomarkers of renal injury (cystatin C and 
NGAL)

Kim 201691 Renoprotection: 
Thoracic aorta 
surgery

Epocain (500 U/kg/IV) 
before surgery 

N = 63: ESA (31) 
Saline (32)

No difference in incidence or severity of AKI, 
NGAL (0–48 hr), creatinine (0–7 d), time in 
ICU or hospital, or mortality

ACS, Acute coronary syndrome; AKI, acute kidney injury; CABG, coronary artery bypass graft; CMR, cardiac magnetic resonance; CPB, cardiopulmonary 
bypass; CPC, cerebral performance category; d, day; DVT, deep vein thrombosis; eGFR, estimated glomerular filtration rate; GOS, Glasgow outcome 
score; hr, hour; LVEF, left ventricular ejection fraction; LVEDV, left ventricular end diastolic volume; LVESV, left ventricular end systolic volume;  
MANE, major adverse neurologic event; min, minute; mo, month; mRS, modified Rankin score; NGAL, neutrophil gelatinase-associated lipocalin;  
PCI, percutaneous coronary intervention; SCr, serum creatinine; TBI, traumatic brain injury; THRT, transient hyperemic response test; wk, week.

TABLE 224.3 

Tissue Protection with Short-Term ESA Treatment—cont’d
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detect false-positive results. Importantly many such studies 
demonstrated low/no EpoR and no effects in vitro.18,23

In contrast to in vitro studies, most of which are 
predicated on EPO working through EpoR, studies in 
experimental animals tended to show positive results in 
tissue protection after cardiac, renal, and cerebral ischemia. 
Alternative hypotheses to receptor-mediated protection 
also were developed to explain tissue protection, such as 
indirect cytoprotection or neovascularization through the 
EPO-mediated mobilization of endothelial progenitor cells.25

Despite the serious concerns, numerous clinical studies 
have been performed to assess mortality in the critical care 
setting and to determine whether ESAs reduce ischemic 
damage to the heart, brain, kidney, and other organs because 
of blood loss or trauma. The results of such clinical trials 
are summarized in Tables 224.3 and 224.4, whereas the 
affects and subject groups are discussed below.

Effect of Erythropoietin-Stimulating Agents  
on Anemia
ESAs had little effect on Hb levels in tissue-protection 
studies mostly because of the short time period that patients 
were in the ICU and the limited number of ESA administra-
tions. There was therefore little effect on transfusion rates. 
In addition, it was thought that single high doses of ESAs 
would show immediate benefit through direct effects on 
ischemic tissues, limiting the need of excessive drug expo-
sure. Overall, although some positive effects were reported, 
there was little benefit on organ function in most trials.

Erythropoietin-Stimulating Agents and  
Tissue Protection
In preclinical studies, animals subject to ischemic damage to 
the brain and heart had reduced damage and better recovery 
of function. This work was followed by numerous other 
studies suggesting that ESAs may protect other organs such 
as kidney, liver, and other adverse conditions.18 Indeed, 
the “powerful and beneficial pleotropic effects” of ESAs 
promoted considerable excitement, particularly as some of 
the evidence suggested that these benefits extended beyond 
prevention to protection after administration after tissue 
injury.19 A possible mechanism was proposed: EPO receptors 
(EpoR) may be present on cell surfaces at high levels, and 
the receptors were functional in the tissues of interest. 
ESAs were thought to activate such receptors resulting in 
the anti-apoptotic effects observed in various tissues (e.g., 
in the kidney20 and the brain21).

The hypothesis was controversial, however. Many 
preclinical studies showed no benefit of ESAs in tissue 
protection experiments.18,22,23 Supportive studies were based 
on detection of EpoR transcripts and protein, primarily via 
RT-PCR and western blots or immunohistochemistry experi-
ments with anti-EpoR antibodies. In the absence of direct 
detection of EpoR, in vitro experiments were performed in 
which cell lines or cell cultures were treated with ESAs and 
functional responses were reported, indirectly supporting the 
presence of EpoR. However, the antibodies employed were 
shown to give false-positive results because of nonspecificity. 
RT-PCR can detect vanishingly low levels of transcripts 
of questionable significance.24 The in vitro experiments 
showed only modest effects and lacked critical controls to 

TABLE 224.4 

Tissue Protection with Short-Term ESA Treatment (Meta-Analyses)

REFERENCE GROUP ESA TREATMENT SUBJECTS OUTCOMES IN ESA/HIGH Hb ARMS

Gao 201292 Cardioprotection: 
STEMI

ESA (1–3×, 4,000–100,000 U 
total), 1 d before or up to 2 d 
after event

13 RCTs N = 1564 No difference in LVEF, infarct 
size, creatinine kinase, risk of 
heart failure, risk of stent 
thrombosis

Ali-Hassan 
201593

Cardioprotection: 
STEMI or AMI

1–3 ESA doses (epoetin 
14,000–60,000 U, or DA 
300 ug) before or within 3 hrs 
of PCI, with additional doses 
24–48 hrs post PCI

5–14 trials depending on 
end point: N = 
525–2044

No difference in cardiac function 
(LVEF, LVESV, LVEDV, 
incidence of heart failure, 
infarct size, creatinine kinase), 
all-cause mortality, or incidence 
of stroke or thrombosis

Tie 201594 Renoprotection; 
Cardiac 
surgery

Single dose of epoetin (20,000–
40,000 U/IV) before or 
immediately post surgery

5 trials: N= 423 No difference in incidence of 
AKI or hospital mortality

Zhao 
201595

Renoprotection: 
Trauma and 
surgical

1–4 doses (14,000–40,000 U) 
before surgery or up to 3d after 
admission to the ICU with 
additional doses for up to 
3 wks 

10 trials, N = 2759: ESA 
(1391), placebo or no 
treatment (1368)

No difference in incidence of 
AKI, requirement for dialysis 
or mortality

Elliott and 
Endre 
201617

Renoprotection: 
AKI - trauma 
and surgical or 
kidney 
transplant

AKI trials: 14,000 U–40,000 U 
preoperatively or within 6 hrs 
of event, or 7000 U within 
14 d of AKI (1 trial).

Transplant trials: 7,000–100,000 
U at time of surgery with 
additional doses up to 14 days 
postsurgery. In 2 trials 
lower-doses 10,000–17,000 U 
were given within 1 wk and 
continued for 1–3 mos 

7 AKI trials, N = 1020: 
ESA (490), placebo or 
no ESA (530). 7 
transplant trials, N = 
450: ESA (223), placebo 
or no ESA (227)

No difference in incidence of 
AKI in patients at risk for AKI 
or delayed graft function/renal 
recovery in kidney transplant 
patients

AKI, Acute kidney injury; AMI, acute myocardial infarction; d, day; ECHO, echocardiogram; ESA, erythropoiesis stimulating agent; hr, hour; LVEF, left 
ventricular ejection fraction; LVESV, left ventricular end systolic volume; LVEDV, left ventricular end diastolic volume; mo, month; STEMI, ST segment 
elevated myocardial infarction; wk, week.
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Effect of Erythropoietin-Stimulating Agents  
on Stroke
In an early ESA stroke study, there was a nonsignificant 
trend toward reduced infarct size and improved cognitive 
function when ESAs were administered within a few hours 
of stroke symptoms.26 These promising results were not 
replicated in a larger stroke trial of high-dose epoetin α 
in 522 subjects, where mortality actually increased in the 
ESA study arm.27

Effect of Erythropoietin-Stimulating Agents on 
Traumatic Brain Injury
Trauma is a major global cause of disability, and traumatic 
brain injury is particularly devastating.28 Early studies in 
experimental TBI suggested that ESA administration offered 
useful neuroprotection.29 These encouraged clinical studies 
of neuroprotection, the results of which have been less 
inspiring. In one study of 200 patients with closed head 
injury, neither the administration of erythropoietin nor 
maintaining a hemoglobin concentration of greater than 
100 g/L resulted in improved neurologic outcome at 6 
months.30 Furthermore, the transfusion threshold of 100 g/L 
was associated with a higher incidence of adverse events. 
In a recent, larger (606-patient) multicenter, multinational 
trial of high-dose epoetin α in patients with traumatic brain 
injury (EPO-TBI), in which ESA was started within 6 hours 
of injury, there was no benefit from ESA on the extended 
global outcome score (GOS-E).31 At 6 months there was no 
difference in mortality, and unlike in some other studies 
(Table 224.3), there was no increase in thrombotic events.

A recent meta-analysis of nine studies, comprising 2607 
critically ill trauma patients randomly assigned to ESA or 
placebo, showed that ESA therapy was associated with a 
substantial reduction in mortality (RR 0.63 CI: 0.49–0.79) 
compared with placebo.32 This benefit persisted across 
relevant subgroups and did not appear to be influenced 
by the dose, route, or timing of ESA administration. Given 
the doubt surrounding true tissue protection by EPO (see 
later in this chapter), an alternative explanation offered 
by the meta-analysis authors for the survival benefit seen 
was that ESAs may reduce the risk of hemorrhagic death. 
ESA therapy did not increase the risk of lower limb venous 
thrombosis. However, after TBI, the number of survivors 
with moderate disability or good recovery were not increased 
with ESAs. Given the broad societal implications of a poor 
functional outcome of survivors of trauma, the burden 
for patients and caregivers, and the health economic 
consequences, the results emphasize that any future trials 
rigorously evaluate functional outcome and quality of life. 
Indeed, the meta-analysis authors concluded that, despite 
the overall improvement in survival, “routine use of ESAs 
is not advised, particularly in TBI, where the effect on 
long-term functional neurologic outcome and quality of 
life remains uncertain.”32

Effect of Erythropoietin-Stimulating Agents on 
Myocardial Infarction and Cardiac Failure
Outcomes with ESAs in cardiac patients were similar to 
those with brain injury. Cardiac patients such as those 
presenting in the ICU with myocardial infarction or 

undergoing surgical procedures showed only modest or 
no improvement in ischemic damage to the heart, or to 
heart function, over time. Most of those trials were small, 
making conclusions difficult. However, in a recent large 
trial in 529 patients presenting with myocardial infarct 
given a high-dose ESA within 3 hours of PCI, there was no 
mortality or cardiovascular benefit compared with controls.33 
A meta-analysis of 10 similar trials with a total of 1242 
patients also showed no difference in outcomes.34

Effect of Erythropoietin-Stimulating Agents  
on Acute Kidney Injury
Patients with, or at risk of, acute kidney injury (AKI) also 
were examined in ESA clinical trials with mixed results, 
possibly because all trials were small in size (see Table 
224.3). The largest trial randomized 162 patients and 
was double-blind and placebo controlled.35 In that trial, 
there was no difference in renal outcomes, nor was there 
benefit in meta-analyses of that and other similar trials (see  
Table 224.4).

ESA-treated kidney transplant recipients may be a 
considered a good human model to test the preclinical 
tissue-protection hypothesis. In such studies, patients 
present to the clinic under controlled conditions and are 
given kidneys subjected to prior ischemic damage (due 
to removal from the donor). Importantly, ESAs can be 
given at scheduled, although perhaps not optimal, times. 
Meta-analysis of trials in such subjects also showed no 
improvement in renal outcomes with ESAs.17 It may be 
argued that most of these studies were confounded by 
relatively long and variable ischemia times before organ 
retrieval, because ESA was administered to the kidney 
recipient rather than given directly to the donor kidney 
before retrieval by administration to the deceased donor. 
Furthermore, it must also be acknowledged that most, if 
not all, of these studies were underpowered and major 
heterogeneity of methodologic differences between the 
studies limits interpretation of the outcomes.

Failure to Translate Preclinical Success Into  
Clinical Utility
Except for improved survival after trauma, most studies 
do not support the use of low- or high-dose ESA for tissue 
protection, especially where short-term treatment offers 
little possibility of reductions in symptoms of anemia or 
reductions in transfusion rates. Explanations for this is a 
broad topic, too extensive to discuss in detail here. Briefly, 
the inability to translate results of preclinical studies to the 
clinic could be explained by the heterogeneity in patient 
context, including comorbidity, preclinical or clinical study 
design, or by the difficulty in replicating such conditions in 
the laboratory. Alternatively, the hypothesis and interpreta-
tion of earlier results may have to be reconsidered. Indeed, 
a consortium of investigators recently attempted to test 
the neuroprotection hypothesis by performing multiple 
controlled rat studies in three established models in which 
the animals were subjected to traumatic brain injury and 
given two doses of ESA. Overall there was no difference 
in terms of behavioral, histopathologic, and biomarker 
outcomes in ESA-treated animals compared with controls.36

Such newer studies raise questions about the methodo-
logic rigor in the design of experimental studies in early 
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clear clinical trial support or a better understanding of 
mechanisms associated with harm.

Key Points

1. Anemia is a frequent occurrence with serious 
consequences in critical care patients.

2. Anemia can be corrected in critical care patients 
with transfusions and ESAs, but if the time in the 
hospital or the number of administrations ESAs 
is inadequate, the effect on Hb levels is limited.

3. Transfusions and ESAs can have different risks 
and benefits.

4. There is little effect on organ function but some 
benefits on mortality with anemia correction, 
particularly in patients with very low hemoglobin 
levels.

5. Beneficial direct organ protecting effects of ESAs 
observed in vitro and in animals have not translated 
into benefit in the clinic.
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studies of tissue protection with ESAs. In general, they 
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AKI by any agent into clinical success.37 Recommendations 
to improve preclinical study design have been made. For 
example, animal experiments involving a test compound 
should be blinded, power calculations should be performed 
with predefined primary outcomes, and all outcomes, 
including unanticipated experimental mortality, should be 
reported.37 It remains to be seen whether implementation 
of such reasonable but expensive strategies to foreshadow 
and underpin translational studies will be funded outside 
industry-supported consortia.

CONCLUSION

Short-term ESA administration in the ICU has had little 
benefit on hard end points (mortality, Hb increase, or 
organ function). Longer-term treatment that produces a 
corresponding increase in Hb can reduce blood transfusions. 
There may be improvement in some anemia symptoms 
with longer-term ESA treatment (e.g., dyspnea and LVMI 
in CHF patients with anemia correction, especially when 
patients are initiated with ESA at a low starting Hb). Clearly 
this is of little benefit in the ICU. Although there is some 
evidence for increased survival in trauma patients, there is 
also evidence for an increased rate of thrombotic adverse 
events, including stroke, in some settings.

Overall, the risk-benefit ratio from these studies does not 
support a role for the off-label use of ESAs in the critically 
ill. The temptation to switch to transfusions to treat anemia 
also should be considered cautiously. Transfusions also 
have risks that may exceed those of ESAs in some end 
points, and the negative effects seem to be increased when 
the Hb transfusion trigger is high.38 Clearly patients with 
severe anemia should be treated; the question becomes one 
of balancing risks and benefits and assessing the degree of 
anemia where this balance favors ESA treatment.

There may still be a place for ESAs in subjects in whom 
blood transfusions are needed but cannot be administered 
for religious or other reasons (e.g., Jehovah’s witnesses), 
or where the benefits clearly outweigh risks (e.g., CKD 
patients with severe anemia). However, ESA administration 
beyond the treatment of anemia is not warranted without 
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