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CHAPTER 217 

Anticancer Drugs and the Kidney
Joannie Lefebvre and Ilya G. Glezerman

OBJECTIVES
This chapter will:
1.	 Characterize major nephrotoxic chemotherapy agents and 

their effect on kidney function and electrolyte homeostasis.
2.	 Describe strategies aimed at preventing and alleviating 

chemotherapy-induced acute kidney injury.
3.	 Provide guidelines for administration of chemotherapeutic 

agents to patients undergoing renal replacement therapy.

The kidneys represent the major elimination pathway for 
many chemotherapeutic agents and are vulnerable to toxic 
effects of chemotherapy. Antineoplastic agents are known to 
cause acute kidney injury (AKI) and chronic kidney failure 
(CKD) as well as electrolyte abnormalities. Dose, patient 
characteristics, and coadministration of other nephrotoxins 
determine the degree of kidney impairment.

CONVENTIONAL CHEMOTHERAPY

Cisplatin
Cisplatin, a platinum-based compound, is used widely as 
first-line chemotherapy for a variety of solid tumors. After 
intravenous administration, more than 90% of cisplatin is 
protein bound, and only 30% is eliminated by the kidneys 
in the first 24 hours via glomerular filtration and tubular 
secretion.1 Nephrotoxicity is its dose-limiting side effect. The 
S3 segment of the proximal tubule in the corticomedullary 
region is the most common site of cisplatin nephrotoxicity 
in rats. More distal sites also may be affected in humans, 
whereas glomeruli remain unaffected.2,3

Cisplatin causes decreases in renal function in a dose-
dependent fashion. Single doses less than 50 mg/m2 rarely 
cause clinically significant AKI. Acute nonoliguric renal 
failure occurs with higher doses usually 3 to 5 days after 
exposure and is associated with minimal proteinuria 
(<0.5 g/day). Function usually returns to baseline within 
2 to 4 weeks, although recovery may be delayed for several 
months.4 CKD also may develop after prolonged exposure, 
but few patients progress to end-stage renal disease.5,6

Cisplatin-induced renal salt wasting may result in signifi-
cant morbidity, including severe hyponatremia, orthostatic 
hypotension, mental status changes, and prerenal azotemia. 
This syndrome develops 2 to 4 months after starting cisplatin 
and is treated with normal saline hydration and oral sodium 
supplementation where feasible.7,8

Magnesium-wasting is present in virtually all patients 
treated with multiple courses of cisplatin. Cisplatin impairs 
magnesium reabsorption in the ascending limb of loop of 
Henle and distal tubules resulting in hypermagnesiuria 
despite low serum magnesium concentrations. Hypomag-
nesemia also may be exacerbated by coadministration of 
aminoglycosides, amphotericin, loop diuretics, foscarnet, 

and others. Cisplatin-induced hypomagnesemia may persist 
for up to a number of years and can be associated with 
hypokalemia and hypocalcemia.9

Vigorous saline diuresis and fractionated or continuous 
infusion of the total cisplatin dose have been effective in 
reducing cisplatin nephrotoxicity. Recent studies showed 
that osmotic and loop diuretics given do not significantly 
attenuate kidney toxicity of cisplatin and cannot be recom-
mended at this time.10

Although numerous compounds have been tested to 
prevent cisplatin nephrotoxicity, only amifostine, an 
inorganic thiophosphate, has been approved for prevention 
of cisplatin-induced kidney damage. It likely acts via free 
radical scavenging mechanism and intracellular binding 
of the drug, but concerns that amifostine also diminishes 
antitumor effect have limited its use in clinical practice.10

Carboplatin
Carboplatin is another platinum-containing antineoplastic 
agent. Its dose-limiting toxicity is myelosuppression with 
the maximum tolerated dose of 1200 mg/m2. Higher doses 
(up to 2.1 g/m2) require stem cell transplant rescue and may 
lead to nephrotoxicity. High-dose carboplatin-induced renal 
toxicity is a transient but frequent complication occasionally 
requiring renal replacement therapy, although irreversible 
renal failure is infrequent.11

Methotrexate
Methotrexate (MTX) is a folic acid antagonist antimetabolite 
that is effective against many malignancies. When given at 
doses that exceed 1 g/m2 MTX has a tendency to precipitate 
in the renal tubules, especially in an acidic pH. This may 
lead to crystal-induced nonoliguric, nonproteinuric renal 
failure 1 to 2 days after initial exposure. Because MTX is 
excreted by the kidney, renal failure leads to toxic MTX 
blood levels. The accumulation of MTX places patients at 
risk for prolonged myelosuppression, severe mucositis, and 
hepatitis. Vigorous intravenous saline and, when necessary, 
loop diuretics are administered to maintain high urine flow 
during infusion and afterward until nontoxic levels of MTX 
(<0.1 µmol/L) are achieved. Sodium bicarbonate is infused 
concomitantly to alkalinize the urine and inhibit crystal 
formation.12 When appropriate preventative measures are 
employed, MTX-induced AKI is relatively rare. Only 1.8% 
of patients treated with high-dose MTX for osteosarcoma 
develop grade 2 or greater nephrotoxicity. However, once 
AKI develops, mortality is 4.4%.13

Because AKI is usually self-limited and resolves in 12 
+/- 7 (mean +/- SD) days,14 the goal of therapy is to prevent 
extrarenal MTX toxicity. Intravenous leucovorin is given as 
an antidote at doses ranging from 100 to 1000 mg/m2 every 
3 to 6 hours depending on MTX level and until such level is 
below the toxic threshold.12 Glucarpidase (carboxipeptidase-
G2) selectively hydrolyzes MTX to inactive metabolites and 
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because of renal or pulmonary failure or from progression 
of cancer.29

Ifosfamide
Ifosfamide is a nitrogen mustard analogue alkylating agent. 
Its active metabolite, acrolein, is toxic to urinary epithe-
lium and causes hemorrhagic cystitis. Ifosfamide also has 
significant renal toxicity with proximal tubular damage 
resulting in Fanconi syndrome with urinary phosphorus 
and potassium wasting, non–anion gap metabolic acidosis 
(proximal renal tubular acidosis), glycosuria at normal serum 
glucose levels, and aminoaciduria. Distal tubular defects 
also may be present, causing nephrogenic diabetes insipidus 
and distal tubular acidosis.30,31 Acute as well as chronic 
kidney failure have been reported.32 Moderate to severe 
nephrotoxicity occurs in 18% to 28% of patients treated with 
ifosfamide. Risk factors for the development of renal dysfunc-
tion include prior or concurrent cisplatin administration, 
unilateral nephrectomy, and cumulative dose of the drug 
exceeding 60 to 72 g/m2.31 A safe dose limit has not been 
established; doses as low as 6 g/m2 given over 2 days have 
been reported to be toxic.33 Age younger than 5 years also 
has been reported as risk factor, but recent reports indicate 
that adults may be equally susceptible to ifosfamide renal 
toxicity.31,34 Saline infusion has been used for prevention of 
ifosfamide nephrotoxicity and hemorrhagic cystitis. Mesna 
compound (2-mercaptoethane sulfonic acid) given orally or 
intravenously is converted into active metabolites, which 
bind acrolein and prevent development of hemorrhagic 
cystitis. It is ineffective against renal toxicity.35

Bisphosphonates
Pamidronate and zoledronic acid are intravenous bisphos-
phonates used in oncology for treatment of hypercalcemia 
of malignancy and lytic metastatic bone lesions. Both drugs 
are excreted renally unchanged and have been associated 
with significant nephrotoxicity. Acute tubular necrosis has 
been reported with both agents.36,37 Pamidronate also has 
been linked to focal segmental glomerulosclerosis with 
nephrotic syndrome and renal failure.38 In clinical trials, 
9% to 15% of the patients who received zoledronic acid 
developed renal dysfunction manifested by elevated serum 
creatinine levels. Of patients who developed AKI, 25% 
received only a single dose of the drug. Risk factors for 
nephrotoxicity include advanced cancer, previous exposure 
to bisphosphonates, and use of nonsteroidal antiinflamma-
tory drugs as well as duration and dose of the infusion.39,40 
Careful monitoring of renal function in patients treated 
with intravenous bisphosphonates is mandatory. According 
to the manufacturers, pamidronate should not be given 
to patients with serum creatinine of 3 mg/dL or higher, 
and zoledronic acid should be avoided in patients with 
creatinine clearance of 30 mL/min or less. Treatment should 
be discontinued if renal function deteriorates. Patients may 
be rechallenged with the drug once renal function returns 
to within 10% of baseline.41

TARGETED AND BIOLOGIC THERAPY

Targeted and biologic therapies are being used more 
frequently in treatment of cancer. They offer potential for 
lower systemic toxicity and improved patient outcome.

lowers MTX levels by a median of 97% (range 73%–99%) 
within 15 minutes of administration.15 Although a number of 
studies showed rapid rates of MTX removal in patients with 
HDMTX nephrotoxicity, none had a control group, and true 
clinical impact of glucarpidase is difficult to assess.16 Time 
to renal recovery in most studies was similar to that of the 
leucovorin rescue case series.16,17 Glucarpidase affects only 
extracellular levels of MTX, which may explain the delay 
in renal recovery after MTX removal from circulation.18 The 
use of glucarpidase is limited by its high cost (>$100,000/
patient), and therefore it should be considered only after 
standard supportive measures are maximized.16

Hemodialysis, high-flux hemodialysis, charcoal-based 
hemoperfusion, and hemofiltration have been used also to 
remove MTX in patients with AKI. High-flux hemodialysis 
appears to be most effective with a median MTX reduc-
tion ratio of 75.5% (42%–94%). All modalities exhibited 
significant postprocedure rebound.13 Patients who develop 
MTX renal toxicity can be rechallenged successfully once 
renal failure resolves.19

Pemetrexed
Pemetrexed is excreted unchanged by the kidney (70%–90% 
in 24 hours).20 Consequently, there is a risk of nonrenal 
toxicity secondary to accumulation of the drug in renal insuf-
ficiency. In clinical trials renal toxicity has been reported 
with high dose (600 mg/m2). Cases of acute tubular necrosis, 
interstitial nephritis, and nephrogenic diabetes insipidus 
have been described.21–24

Gemcitabine
Gemcitabine is a nucleoside analogue with antineoplastic 
activity against a variety of solid tumors, including pancreatic, 
non–small cell lung, bladder, ovarian, and breast carcinomas. 
The primary toxicity of gemcitabine is myelosuppression and 
liver function abnormalities. Thrombotic microangiopathy 
(TMA) is a well-described complication with an incidence 
of up to 0.31%. The presentation is subacute with insidious 
onset of renal dysfunction, microangiopathic hemolytic 
anemia (MAHA), hypertension, and thrombocytopenia. 
When unrecognized, progression to fulminant acute renal 
failure and hypertensive crisis can occur.25,26 In a report from 
a single institution, 29 patients with gemcitabine-induced 
TMA were described. Gemcitabine was discontinued as 
soon as TMA was recognized. Patients were treated with 
supportive therapy only. Nineteen patients achieved full or 
partial renal recovery, seven patients progressed to end-stage 
renal disease (ESRD), and three developed CKD but did 
not require dialysis.27 Eculizumab, a monoclonal antibody 
directed against the complement protein C5 approved for 
treatment of atypical hemolytic uremic syndrome, has been 
used to treat gemcitabine-induced TMA. Although there may 
be rapid resolution of thrombocytopenia, improvements of 
MAHA and kidney function are less predictable.28

Mitomycin
Mitomycin is used as salvage therapy for many solid malig-
nancies. It is an alkylating agent isolated from Streptomyces 
caespitosus. Mitomycin is associated with TMA at total 
cumulative doses above 40 to 60 mg/m2. TMA usually 
occurs within 4 to 8 weeks after the last dose and carries 
a poor prognosis, with most patients dying within 4 months 
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more severe with 4 out of 13 patients requiring dialysis. 
Biopsy revealed AIN in 12 patients with granulomatous 
features in 3. One patient had TMA. All patients treated with 
steroid taper showed partial or complete improvement.64 
Authors estimated that based on review of data from clinical 
trials of immunotherapy enrolling a total of 3695 patients 
the incidence of AKI was 2.2%. The incidence was higher 
(4.9%) for the combination therapy of CTLA-4 and PD-1 
inhibitors.64

Others
Cetuximab and panitumumab are epithelial growth factor 
receptor (EGFR)–blocking antibodies used to treat certain 
tumors of epithelial origin characterized by overexpression 
of EGFR. EGFR activity is necessary for magnesium reabsorp-
tion in the distal convoluted tubule, and hypomagnesemia 
secondary to this therapy has been reported.65–69 Hypo-
magnesemia can be severe, and concomitant hypocalcemia 
is described.66,67 Hypomagnesemia resolved when EGFR 
pathway inhibitors are stopped.66

Crizotinib acting as an inhibitor of the anaplastic 
lymphoma kinase is used for the treatment of advanced 
non–small cell lung cancer. Its use is associated with 
hypophosphatemia.70 Crizotinib also is associated with an 
increased risk of development and progression of renal cyst, 
especially for Asian patients.71 Treatment modification is 
generally not necessary and spontaneous regression can 
occur, but close monitoring is recommended.72 Imatinib 
is a TKI used mainly for the treatment of chronic myelog-
enous leukemias and gastrointestinal stromal tumors. 
Patients treated with imatinib are at risk of developing 
hypophosphatemia with low fractional tubular reabsorption. 
The exact mechanism by which hypophosphatemia occurs 
is not yet known.73–75 Vemurafenib is a therapy targeting 
the rapidly accelerated fibrosarcoma kinase B (BRAF). It 
is used to treat patients with metastatic melanoma. Case 
reports of kidney failure secondary to this new treatment 
have been described. The mechanism of the kidney failure 
is not known yet.76,77

Bortezomib and carfilzomib are proteasome inhibitors 
(PI) used for treatment of multiple myeloma. In recent 
case reports they have been linked to the development 
of TMA. The mechanism of TMA is unclear, but the class 
effect is possible; therefore a high degree of suspicion for 
drug-induced TMA should be maintained in all patients 
treated with PI.78

Cancer Chemotherapy in Kidney Disease
Because of the aging population, a growing number of 
patients with CKD also carry a diagnosis of cancer. In Table 
217.1 we provide recommendations for administration of 
chemotherapy to patients with kidney disease.1,4,79

CONCLUSION

Despite the progress made in recent decades, nephrotoxic-
ity of antineoplastic agents continues to be a significant 
clinical challenge in treatment of patients with cancer. 
Appropriate prophylactic measures, dose adjustments, and 
early recognition of toxicity may reduce kidney morbid-
ity and permit more effective treatment of the underlying  
neoplasm.

Antiangiogenic Therapy
Angiogenesis is seminal for tumor growth and develop-
ment of metastases. Vascular endothelial growth factor 
(VEGF) is a proangiogenic factor that binds to a family 
of VEGF receptors (VEGFR), with tyrosine kinase activity. 
The receptor binding triggers intracytoplasmic signaling 
pathways promoting angiogenesis.42 In the kidneys, VEGF 
is expressed in podocytes and regulates their survival.43 
VEGF also influences blood pressure (BP) through a variety 
of mechanisms.44 Several classes of antiangiogenic therapies 
targeting VEGF pathway are now available. Bevacizumab 
is a blocking humanized monoclonal antibody directed 
against VEGF. Another class is represented by a group 
of drugs known as small molecule multi-target tyrosine 
kinase inhibitors (TKI). These agents inhibit VEGFR as 
well as a number of other TKIs and include sunitinib, 
sorafenib, axitinib, and other drugs. Ramucirumab is a 
recombinant human monoclonal antibody directed against  
VEGFR.

Anti-VEGF antibody and TKI inhibitors have been 
associated with increased risk of hypertension (HTN) with 
relative risk (RR) of HTN increasing with higher doses 
of these agents.45,46 Proteinuria was also more common 
in treated patients with greater RR in patients receiving 
higher doses.46,47 Nephrotic syndrome associated with anti-
VEGF therapy has been described in a number of case  
reports.48–51

TMA is the predominant glomerular lesion associated 
with anti-VEGF antibody therapy. It has been reported after 
intravenous52–55 as well as intraocular administration.56 
Concurrent mesangial IgA deposits, cryoglobulinemic 
glomerulonephritis,57 and immune complex–mediated focal 
proliferative glomerulonephritis58 also have been reported. 
In patients with kidney biopsy findings of TMA the clinical 
course varied from subnephrotic range proteinuria to more 
fulminant disease with worsening renal function, HTN, 
and MAHA.52–55

Fulminant cases of TMA with worsening renal function, 
severe HTN, and MAHA also have been reported with TKI 
inhibitors.53,59–61 However, in a cohort study of 29 patients 
treated with TKIs who developed proteinuria and HTN 
and underwent a biopsy, minimal change disease and/
or collapsing-like focal segmental glomerulosclerosis was 
found in 20 cases.55

Immunotherapy
Immunotherapeutic agents represent an important advance 
in anticancer treatment. These are monoclonal antibod-
ies that block inhibitory immune signals and allow for 
effective antitumor immune system activity. Currently, 
two inhibitory receptors are targeted by immune therapy: 
cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4) 
and programmed cell death 1 protein (PD-1) and its ligand 
(PD-1L).62 Because these agents have an activating effect on 
the immune system overall, they have been associated with 
significant autoimmune morbidity affecting liver, lung, colon, 
thyroid, and pituitary.62 Recently, they have been linked to 
autoimmune acute interstitial nephritis (AIN) as well. In a 
case series of patients receiving PD-1 inhibitors, AKI and 
biopsy-proven AIN developed between 3 and 16 months 
after initiation of the drug. The severity of AKI varied, but 
no patient required dialysis, and all responded to steroid 
taper.63 In another case series with most patients receiving 
a combination of PD-1 and CTLA-4 inhibitors, the median 
time to onset of AKI was 91 days (21–245). The AKI was 
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Key Points

1.	 Nephrotoxicity of antineoplastic agents is a sig-
nificant clinical challenge with a high burden of 
acute kidney injury risk.

2.	 Several chemotherapy agents are listed as potential 
causes of acute kidney injury, and clinicians should 
be well aware of the risks on kidney function the 
patients will run.

3.	 Dose, patient characteristics, and coadministration 
of other nephrotoxins determine degree of kidney 
impairment.

4.	 Patients with anamnesis of renal dysfunction should 
receive adjusted chemotherapy doses.

TABLE 217.1 

Recommendations for Dosage Adjustment of Antineoplastic Drugs in Patients with Kidney Disease

DRUG CKD ESRD

Conventional Chemotherapy
Taxanes: paclitaxel, 
docetaxel

Hepatic metabolism; no dose adjustment Pharmacokinetics are not altered by HD in 
anephric patients; no dose adjustment

Cisplatin Avoid if CrCl <60 mL/min Reduce dose by 50%; administer after HD; 
protein bound within 2 hr of administration

Carboplatin Dosage based on the AUC-directed methoda Dialyzable: administer on off HD day
Etoposide 40%; hepatic metabolism

CrCl 10–50 mL/min; reduce by 25%; CrCl  
<10%–50%

Protein bound; poorly dialyzable

Fluorouracil Metabolized by liver and other tissues; no dose 
adjustment

Metabolized by liver and other tissues; 
metabolism may be affected by uremia; 
reduce dose by 50%

Methotrexate Predominant renal excretion. Avoid in CrCl  
<30 mL/min

Not recommended because of postdialysis 
rebound effect

Pemetrexed Renally excreted; avoid use in CrCl <45 mL/min Not recommended
Cyclophosphamide Hepatic metabolism; no dose adjustment Dialyzable; reduce dose by 25%; administer 

after HD
Ifosfamide More than 80% renally excreted; dose 

adjustment is empiric; CrCl <10 mg/mL; reduce 
the dose by 25%

Dialyzable; use with caution; initial dose 
1.5 g/m2; adjust dose based on neuro- and 
myelotoxicity

Anthracyclines (doxorubicin, 
epirubicin, daunorubicin)

Hepatic metabolism; no dose adjustment Nondialyzable because of large volume of 
distribution and long half-life

Vinca alkaloids (vincristine, 
vinblastine, vindesine)

Hepatic metabolism; no dose adjustment Nondialyzable because of large volume of 
distribution, high metabolic rate and long 
half-life

Targeted Therapies
Monoclonal antibodies
•	 Bevacizumab
•	 Cetuximab
•	 Trastuzumab

Reticuloendothelial system metabolism; no dose 
adjustment

Unlikely to be dialyzable because of 
biochemical properties

No adjustment necessary

Tyrosine Kinase Inhibitors
Sunitinib Eliminated via feces route; no dose adjustment Nondialyzable; no dose adjustment needed
Sorafenib Hepatic metabolism; CrCl 20–39 mL/min; reduce 

dose to 200 mg twice a day
Pharmacokinetics unchanged in patients on 
HD; may reduce dose to 200 mg daily

Imatinib Hepatic metabolism (decreased clearance in 
uremic environment) no dose adjustments with 
CrCl >20 mg/mL

Pharmacokinetics unchanged in patients on 
HD

AUC, Area under concentration-time curve; CKD, chronic kidney disease; CrCl, creatinine clearance; ESRD, end-stage renal disease; HD, hemodialysis.
aDose determined by Calvert formula: Dose(mg) = AUC (mg/mL × min) × (glomerular filtration rate [GFR] (mL/min) + 25).80 Target AUC is 5–7 mg/mL × 
min. Assume GFR of 0 mL/min in HD patients.
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