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CHAPTER 203 

Drug Dosing in Pediatric Acute Kidney 
Insufficiency and Renal Replacement Therapy
Gina-Marie Barletta and Jeffrey F. Barletta

OBJECTIVES
This chapter will:
1. Describe the pharmacokinetic alterations that occur in 

critically ill children with acute kidney insufficiency that 
may affect drug dosing.

2. Review the limitations of the various methods used to 
calculate drug doses in children receiving continuous renal 
replacement therapy.

3. Identify the factors that influence drug removal through 
continuous renal replacement therapy.

4. Identify the factors that influence drug removal through 
intermittent hemodialysis.

5. Present a standard approach for crafting an appropriate 
dosing regimen for critically ill children on continuous 
renal replacement therapy.

Drug dosing in the pediatric population can be a challenging 
task and is particularly problematic in patients with acute 
kidney insufficiency (AKI) or those receiving renal replace-
ment therapy (RRT). Dosing studies with RRT are sparse, 
especially for methods such as continuous renal replacement 
therapy (CRRT) and newer hybrid forms of dialysis such as 
slow low-efficiency dialysis and extended daily dialysis. 
In fact, less than 20% of currently used medications have 
dosing recommendations for CRRT, and less than 1% have 
recommendations for new hybrid therapies.1 There are 
even fewer recommendations specific to pediatric patients. 
Therefore drug doses often are extrapolated from either the 
adult literature or clinical experience.

Several limitations exist with extrapolating drug doses 
for the pediatric population from the adult literature. First 
is the physiologic changes that occur during maturation that 
affect drug pharmacokinetics. For example, bioavailability 
is variable owing to changes in gastric acidity, motility, and 
enzymatic activity. Volume of distribution (Vd), which is 
the mathematic concept representing the nonphysiologic 
compartment in which a drug disperses, is higher in chil-
dren, particularly for drugs that are highly water soluble 
(e.g., aminoglycosides). Protein binding is reduced, thereby 
increasing the free fraction or pharmacologically active 

portion of the drug at the site of action. Drug metabolism 
(phase I and phase II reactions) and elimination pathways 
are immature at birth but generally reach adult levels within 
1 year.2,3 Another limitation pertains to the methodology 
used in the adult literature. Many drug doses for CRRT 
are extrapolated from pharmacokinetic studies conducted 
in patients with chronic kidney disease on intermittent 
hemodialysis (IHD). They fail to account for the differences 
in nonrenal clearance that are observed in patients with 
AKI. Even studies that are specific to CRRT frequently use 
outdated CRRT technology and substandard dialysis doses, 
which can lead to dosing errors when applied to current 
practices. Furthermore, differences in drug removal may 
exist based on the method of clearance used because the 
efficiency of each mode can vary with each medication and 
its physical or chemical properties (i.e., molecular weight, 
water vs. lipid solubility). Finally, the dialysis prescription 
used in pediatric patients can provide greater clearance than 
that achievable with the same prescription used in adults. 
Because the dialysis prescription typically is measured by 
urea kinetic modeling (i.e., Kt/V where k = dialyzer clearance 
of urea, t = time of dialysis, and V = total body water) and V 
naturally is smaller in pediatric patients, greater clearance 
(and increased drug removal) can be obtained, in case K 
and t do not vary.

This chapter reviews principles of drug dosing in criti-
cally ill pediatric patients with AKI requiring RRT. The 
primary focus is to provide a framework for making dosing 
decisions rather than providing individual recommendations 
for specific agents given the lack of primary literature in 
this area and the variability that exists with local practices. 
Hopefully initiatives such as the Kidney Health Initiative, a 
partnership between the Food and Drug Administration and 
the American Society of Nephrology, will increase awareness 
for the importance of dosing studies in this realm.4,5

ESTIMATION OF CREATININE CLEARANCE

Quantification of kidney function is important in critically 
ill children to properly adjust the dosage of medications 
that are eliminated by the kidneys. The glomerular filtration 
rate (GFR) represents a direct overall measure of kidney 
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mass. Creatinine is filtered freely by glomeruli; however, 
it also is secreted into urine by renal proximal tubular 
cells. Because creatinine is filtered primarily through the 
glomerular capillary wall, a common approach to estimating 
GFR in pediatric and adult patients is to measure the 24-hour 
urinary creatinine clearance (CrCl). A measured CrCl is 
calculated by analyzing creatinine levels obtained from 
serum and from a 24-hour urine sample (Box 203.1).11,13 
In the critical care setting, however, medical decision 
making and institution of therapy typically occur before 
completion of such prolonged evaluations. As such, some 
clinicians have investigated the accuracy of shorter collection 
periods.14–16 One study of critically ill pediatric patients 
demonstrated that a 12-hour CrCl was as accurate as the 
standard 24-hour CrCl.15 A second study of critically ill 
adult patients recommended a minimum collection period 
of at least 8 hours for clinical decision making.14 Regard-
less of the urine collection period used, measured CrCl 
estimates can overestimate GFR by roughly 10% to 40% 
in healthy persons, owing to the renal tubular secretion 
of creatinine.7,11,17 This can be particularly relevant when 
estimated CrCl is low.

To overcome the need to perform timed urine collections, 
several equations have been developed to provide a rapid 

function and may be diminished significantly before the 
onset of overt signs or symptoms of kidney failure.6,7 GFR 
is a measure of the renal clearance of a substance from 
plasma and is expressed as the volume of plasma that is 
cleared of that substance over 1 minute—in absolute values 
(mL/min) or in relative values (mL/min/1.73 m2), after 
correction for body surface area.6–8 Glomerular filtration 
must be monitored closely in the setting of acute kidney 
injury, especially in those children receiving potentially 
nephrotoxic agents that are eliminated by the kidneys. GFR 
is measured most accurately by evaluating the urinary or 
plasma clearance of exogenous filtration markers such 
as inulin, iohexol (99mTc-diethylenetriaminepentaacetic 
acid),9 Cr-ethylenediaminetetraacetic acid (EDTA), or 
iothalamate.6,7,10,11 However, these infusion techniques are 
impractical in clinical situations in which merely a reliable 
approximation of GFR is required to adjust medication 
dosages or to evaluate a trend in variable kidney function. 
As an alternative, equations that use serum creatinine levels 
are implemented routinely by clinicians to estimate GFR.12

Creatinine is an endogenous metabolic product derived 
primarily from the metabolism of creatine and phospho-
creatine in muscle. Creatinine typically is present at 
relatively stable serum levels and reflects overall muscle 

Data from references 18–29.

BOX 203.1 

Common Equations to Assess Renal Function in Pediatric Patients

Timed Urine Specimen Creatine Clearance
CrCl = [Ucr × (Vur/SCr)] × [1.73/BSA]
CrCl, creatinine clearance (mL/min/1.73 m2); Ucr, urine 

creatinine (mg/dL); Vur, total urine volume (mL) divided 
by the duration of the collection (min); SCr, serum 
creatinine (mg/dL), (when midpoint values are not 
available, use average serum creatinine values from start 
and end of collection period); BSA, body surface area (m2)

Serum Creatinine-Based Formulas
Schwartz (updated)
Estimated GFR = 0.413 × (L/SCr)
GFR, glomerular filtration rate (mL/min/1.73 m2); L, length 

(cm); SCr, serum creatinine (mg/dL)
Flanders Metadata
Estimated GFR = (0.0414 × ln(age) + 0.3018) × L/SCr
GFR, glomerular filtration rate (mL/min/1.73 m2); L, length 

(cm); SCr, serum creatinine (mg/dL).
Counahan-Barratt
Estimated GFR = (0.43 × L)/SCr
GFR, glomerular filtration rate (mL/min/1.73 m2); L, length 

(cm); SCr, serum creatinine (mg/dL)

Cystatin C-Based Formulas
Hoek
Estimated GFR = −4.32 + 80.35 / CysC
GFR, glomerular filtration rate (mL/min/1.73 m2); CysC, 

cystatin C (mg/L)
LeBricon
Estimated GFR = (78 / CysC) + 4
GFR, glomerular filtration rate (mL/min/1.73 m2); CysC, 

cystatin C (mg/L)
Larsson
Estimated GFR = 77.24 × CysC-1.2623

GFR, glomerular filtration rate (mL/min); CysC, cystatin C 
(mg/L)

Rule
Native Chronic Kidney Disease: Estimated GFR = 66.8 × 

CysC-1.3

Transplant recipient: Estimated GFR = 77.6 × CysC-1.16

GFR, glomerular filtration rate (mL/min/1.73 m2); CysC, 
cystatin C (mg/L)

Filler and Lepage
Estimated GFR = 91.62 × CysC-1.123

GFR, glomerular filtration rate (mL/min/1.73 m2); CysC, 
cystatin C (mg/L)

Zappitelli
Estimated GFR = 75.94 × CysC-1.17

GFR, glomerular filtration rate (mL/min/1.73 m2); CysC, 
cystatin C (mg/L)

Combined SCr-Cystatin C-Based Formulas
Zappitelli
Estimated GFR = (43.82 × e(0.003 x Ht)) / (CysC0.635 × SCr0.547)  

[× 1.165 if renal transplant]  
[× 1.57 × SCr0.925 if spina bifida]

GFR, glomerular filtration rate (mL/min/1.73 m2); CysC, 
cystatin C (mg/L); SCr, serum creatinine (mg/dL); Ht, 
height

Chehade
Estimated GFR = 0.42 × (Ht/SCr) − 0.04 × (Ht/SCr)2 − 14.5 × 

CysC + 0.69 × Age + (18.25 if female or 21.88 if male)
GFR, glomerular filtration rate (mL/min/1.73 m2); CysC, 

cystatin C (mg/L); SCr, serum creatinine (mg/dL); Ht, 
height (cm); Age (yrs)

Chronic Kidney Disease in Children (CKiD) Study
Estimated GFR = 39.8 × (Ht/SCr)0.456 × (1.8 / CysC)0.418 × (30 / 

BUN)0.079 × 1.076male × (Ht / 1.4)0.179

GFR, glomerular filtration rate (mL/min/1.73 m2); CysC, 
cystatin C (mg/L); SCr, serum creatinine (mg/dL); Ht, 
height (m); BUN, blood urea nitrogen (mg/dL)

Bouvet
Estimated GFR = 63.2 × (SCr / 96)-0.35 × (CysC / 1.2)-0.56 × (Wt / 

45)0.30 × (Age / 14)0.40

GFR, glomerular filtration rate (mL/min); CysC, cystatin C 
(mg/L); SCr, serum creatinine (µmol/L); Age (yr)
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reduced muscle mass), recent studies have advocated for 
measuring other endogenous markers, such as serum cystatin 
C to estimate GFR.20,21,38,39 Cystatin C is a nonglycosylated 
protein produced by all nucleated cells at a relatively 
constant rate.40 Cystatin C is freely filtered, reabsorbed, 
and completely metabolized in renal tubular cells with 
little excreted in the urine; therefore it cannot be used to 
measure GFR by urinary clearance techniques. Production 
of cystatin C is independent of inflammatory conditions, 
muscle mass, gender, and age (>1 year).41,42 However, serum 
cystatin C levels can be influenced by non-GFR determinants 
such as thyroid disease, corticosteroid use, and degree of 
adipose tissue.36

One study using a cystatin C–based GFR equation 
provided an improved estimate of GFR in non–critically 
ill children compared with that obtained with the Schwartz 
equation.20 However, this equation has not been evaluated in 
critically ill children with AKI. Several additional cystatin 
C formulas have been derived and have not been proven 
superior to creatinine-based equations and are often much 
less practical.43 However, in specific situations, reduced 
muscle mass equations using cystatin C may be more 
accurate than creatinine-based equations, particularly in 
children less than 2 years of age.44

Equations for estimated GFR (eGFR) have been devel-
oped that combine serum creatinine and cystatin C with 
demographic variables (height, weight, age, gender). Several 
combined creatinine and cystatin C equations have been 
shown to improve GFR estimations.21–24 However, such 
equations become much more complex and less practical 
to use at the bedside, particularly in patients with evolving 
kidney injury.

PHARMACOKINETIC ALTERATIONS WITH 
ACUTE KIDNEY INSUFFICIENCY

The typical pharmacokinetic parameters that are evaluated 
in making drug dosing decisions are bioavailability, volume 
of distribution (Vd), elimination half-life, and clearance. 
Renal failure can have a profound effect on many of these 
parameters, and failure to recognize these changes can lead 
to inappropriate dosing regimens and possibly treatment 
failure.

The Vd can be altered significantly in critically ill chil-
dren with renal failure.45 Such alterations most commonly 
are due to increased extracellular volume, intravascular 
fluid shifts, and decreased protein binding. An increase 
in fluid volume from either fluid resuscitation or oliguria 
can increase the Vd, particularly for hydrophilic drugs 
such as the aminoglycosides. Accordingly, larger loading 
doses would be necessary to achieve similar peak serum 
concentrations. Conversely, the Vd of digoxin is known 
to be lower in patients with renal disease as a result of 
competitive inhibition of tissue binding.45 Loading doses 
therefore should be reduced.

Plasma protein concentrations can change in patients 
with renal failure, influencing Vd by altering the free or 
unbound portion of drug available at the site of action.46 
The three major plasma proteins that influence protein 
binding are albumin, α1-acid glycoprotein (AAG), and 
lipoproteins. Acidic drugs such as furosemide, theophylline, 
and phenytoin are bound primarily to albumin, whereas 
basic drugs such as lidocaine and morphine are bound 
to AAG.45 Albumin concentrations typically are reduced 
in children with AKI, so the unbound fraction of drug 

estimation of GFR or CrCl (see Box 203.1). Such equations 
typically incorporate patient weight, height, age, gender, 
and race. In addition, they assume that renal function 
is stable, with steady-state serum creatinine kinetics. In 
the pediatric population, the Schwartz equation has been 
evaluated broadly and used as eGFR.6,8,15,30 The Schwartz 
equation originally was derived in 1976 from data obtained 
in 186 non–critically ill pediatric patients using factors 
such as patient height (as a measure of muscle mass) and 
plasma creatinine.8 Subsequently, the Schwartz equation 
underwent several revisions for estimating GFR using 
patient height, serum creatinine level (using Jaffe creati-
nine methodology), and a constant based on the age and 
gender of the patient.6,8,31,32 This formula has demonstrated 
adequate correlation with measured CrCl, along with 
sufficient accuracy for clinical use in pediatric patients 
without acute critical illness. However, several studies 
have demonstrated that the Schwartz equation was not an 
accurate indicator of kidney function in critically ill pediatric  
patients.15,33,34

Much of the precision of estimating GFR when using 
creatinine-based equations is dependent upon the creatinine 
assay. Creatinine values determined by enzymatic creatinine 
assays differ and are more accurate than the Jaffe method. 
Particularly at low levels (as is the case in the pediatric 
population), enzymatic creatinine values tend to run 
lower than those obtained with the Jaffe method, thereby 
resulting in an overestimation of GFR if used with the 
same constant “k” values recommended by the original 
Schwartz formula.35,36 This prompted the development of 
updated values for constant “k” values to estimate GFR 
when obtaining serum creatinine levels with the enzymatic 
assay/analyzer. Using data obtained from the Chronic Kidney 
Disease in Children (CKiD) study, the largest prospective 
cohort study of chronic kidney disease (CKD) in children 
in North America, a new estimated growth factor recep-
tor (GFR) Schwartz formula was generated, based on the 
enzymatic creatinine method. This new formula provided 
the best correlation with measured GFR in children with 
CKD: eGFR = k L/SCR.18 In his formula k = 0.413 and L is 
the patient height (see Box 203.1).

Another equation that uses plasma creatinine to estimate 
GFR is the Counahan-Barratt equation.19 The Counahan-
Barratt equation uses the plasma creatinine and patient 
length to estimate body surface area-adjusted GFR (mL/
min/1.73 m2). The Schwartz and the Counahan-Barratt 
equations are simple techniques to estimate GFR and remain 
the standard for rapid assessment of GFR in non–critically 
ill pediatric patients.

The evaluation of kidney function in critically ill pedi-
atric patients represents an exceptional challenge owing 
to the significant variability in kidney function, altered 
body composition or muscle mass, inconsistent or poor 
nutritional status, irregular volume status, and hemodynamic 
instability seen in this population. As a result of such wide 
inconsistency, steady-state serum creatinine kinetics cannot 
be achieved readily, limiting the accuracy particularly of 
creatinine-based equations for evaluation of kidney func-
tion. In addition, such formulas do not account for obligate 
renal tubular secretion of creatinine, which may represent 
a greater overall proportion of total observed clearance at 
lower GFR.37 Furthermore, an increase in serum creatinine 
typically is delayed behind the actual decrease in overall 
kidney function, so equations that estimate CrCl may not 
detect declining kidney function until a significant propor-
tion of that function is lost.

Given the limitations associated with serum creatinine-
based estimates of GFR in children (particularly in those with 
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is increased. AAG, on the other hand, often is increased 
in AKI, so unbound drugs may be lower and the clinical 
effects are reduced.

Although renal failure naturally affects the clearance 
of drugs that are eliminated primarily by the kidney, it 
also can affect the clearance of drugs that are not. Hepatic 
metabolism can be reduced significantly in patients with 
end-stage or chronic kidney disease, but in patients with 
AKI, it can be highly variable.47 In fact, some studies have 
demonstrated higher nonrenal clearance values for drugs 
in patients with AKI than in those with chronic kidney 
disease who have similar CrCl values.48 For example, the 
nonrenal clearance of imipenem has been reported to be 
90 to 95 mL/min in adult patients with AKI, compared 
with 50 mL/min for those with end-stage kidney disease 
(p < .02).48 Meropenem has a nonrenal clearance of 40 to 
60 mL/min in patients with AKI versus 30 to 35 mL/min 
with end-stage kidney disease. Extrapolating drug doses 
recommended for patients with chronic kidney disease 
to those with AKI therefore should be done with caution 
because of the associated risk for underdosing. Additional 
studies that are specific to pediatric patients are needed to 
address this concern.

Acute kidney injury increases not only the half-life of the 
parent compound (for renally eliminated medications) but 
also its active metabolites. This is of particular concern with 
drugs that have a narrow therapeutic window. For example, 
the active metabolite of midazolam, 1-OH-midazolam-
glucuronide, has been shown to accumulate in patients 
with renal failure, leading to prolonged sedation.49 In fact, 
one study noted levels of 1-OH-midazolam-glucuronide in a 
child with renal failure that were twice that of the population 
mean.50 1-OH-midazolam-glucuronide is removed effectively 
with continuous venovenous hemofiltration (CVVH) and 
continuous venovenous hemodialysis (CVVHD), whereas 
midazolam (the parent drug) is not.51,52

DOSING CONSIDERATIONS WITH  
RENAL FAILURE

Several key principles must be considered in establish-
ing a dosing regimen for a critically ill child with renal 
failure (Box 203.2). One factor is the proportion of renal 
clearance for a given medication in relation to total body 
clearance. Generally, when renal clearance accounts for less 
than 30% of total body clearance, AKI will have minimal 
impact on drug removal.53 Dosing adjustments therefore are 
not required. A second consideration, which is extremely 
important in the critically ill, addresses the balance between 
a need for aggressive therapy with the adverse effect profile 
of the individual agent. Depending on the severity of disease, 
it may not always be appropriate to choose drug doses that 
are at the lower end of the dosing range, particularly for 
medications that generally are considered safe (e.g., β-lactam 
antibiotics). A third consideration is the ability to reach 
the patient-specific pharmacodynamic goal after consider-
ing the pharmacokinetic alterations that exist with AKI 
(Table 203.1). Pharmacodynamics refers to the relationship 
between the concentration of a drug and the response that 
is obtained in the patient. For example, higher vancomycin 
concentrations may be necessary in a patient with an infec-
tion caused by methicillin-resistant Staphylococcus aureus 
in which the minimum inhibitory concentration (MIC) is 
2 mcg/mL compared to a similar infection in which the 
MIC is 0.5 mcg/mL. Finally is the potential accumulation 

BOX 203.2

Principles of Drug Dosing in Acute Kidney Injury

•	 The	proportion	of	renal	clearance	in	relation	to	total	
body clearance must be assessed. Drugs that are cleared 
predominantly by nonrenal mechanisms do not require 
dosing adjustments for AKI.

•	 The	degree	of	renal	insufficiency	should	be	determined	
as the thresholds for dosing adjustments vary by 
medication.

•	 Accumulation	of	active	metabolites	and	toxic	excipients	
must be considered when selecting a medication in AKI. 
In some cases, a safer alternative may exist (e.g., 
hydromorphone instead of morphine).

•	 Dosing	adjustments	in	the	critically	ill	should	balance	
the need for aggressive therapy because of high disease 
severity with the adverse effect profile of the medication. 
Clinicians should be careful to not underdose safe 
medications in the critically ill.

•	 Clinicians	should	consider	the	starting	medication	dose	
if renal function were normal and adjust downward 
rather than using a fixed dose from a tertiary reference. 
In some instances (e.g., meningitis), higher doses are 
required.

•	 Clinicians	should	recognize	the	limitations	of	creatinine	
clearance (CrCl) estimates particularly when CrCl is  
in the range of a dosing adjustment (e.g., an estimated 
CrCl of 28 mL/min when a dosing adjustment is 
recommended for CrCl < 30 mL/min).

•	 Drug	doses	should	factor	in	pharmacokinetic	alterations	
encountered with AKI and patient specific 
pharmacodynamics.

TABLE 203.1

Pharmacodynamic Goals of Commonly Used 
Antimicrobial Medications

ANTIMICROBIAL

PHARMACODYNAMIC 
PARAMETER THAT 
BEST DESCRIBES 
ACTIVITY

THRESHOLD FOR 
EFFICACY

Penicillins fT > MIC Greater than 50%
Cephalosporins fT > MIC Greater than 

50%–70%
Carbapenems fT > MIC Greater than 40%
Aminoglycosides fCmax:MIC Greater than 8–10:1
Fluoroquinolones AUC:MIC Gram-negative: 

Greater than 125:1
Gram-positive: 
Greater than 30:1

Vancomycin AUC:MIC Greater than 400:1
Linezolid fT > MIC

AUC:MIC
Greater than 
40%–80%

Greater than 
80–120:1

AUC:MIC, Ratio of area under the curve (AUC) to MIC; fCmax:MIC, ratio of 
maximum free concentration (fCmax) to MIC; fT > MIC, percentage of 
time the free concentration (fT) is above the minimum inhibitory 
concentration (MIC).
Data from references 54–56.

of active metabolites or the presence of toxic excipients 
found in IV formulations (e.g., benzyl alcohol, propylene 
glycol). In such instances, a safer alternative may exist 
(e.g., hydromorphone instead of morphine because of active 
metabolites with morphine that can accumulate in AKI and 
are not dialyzable).
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advancements in filter technology. High-flux hemofilters 
have increased permeability to mid-molecular weight 
molecules, such as vancomycin, and will remove more 
drug than low-flux filters. High-flux filters are used in almost 
all CRRT machines.59

The major dialysis-related factors that influence clearance 
are CRRT mode, CRRT dose (or effluent rate), and filter 
type. Drug removal through CVVH occurs by convection, 
whereas drug removal through CVVHD occurs by diffu-
sion. Convective clearance is more efficient with removal 
of mid-molecular weight molecules versus diffusion, par-
ticularly with higher flow rates.58 Clearance for drugs such 
as vancomycin therefore may be greater with CVVH than 
CVVHD. Many institutions use a combination of diffusive 
and convective mechanisms (e.g., continuous venovenous 
hemodiafiltration (CVVHDF)), which presents the most 
challenging scenario for optimizing drug dosing. This is 
not only because of the lack of pharmacokinetic literature 
specific to pediatric patients but also the pharmacokinetic 
variability related to the mode of dialysis. Unfortunately, 
combining the two methods does not always yield solute 
removal equivalent to the sum of the clearances for both 
methods used alone. In one study, clearance of smaller 
particles by CVVHDF using an M-60 filter was reduced 
moderately compared with the sum of the individual 
clearances.9 Clearance values using an M-100 filter, on the 
other hand, were similar to the sum of convective clearance 
and diffusive clearance measured separately. By contrast, 
clearance of larger particles was markedly lower with both 
filters. In fact, the addition of diffusion did not increase 
clearance beyond that achieved with convection alone. 
This limitation can have considerable impact in use of 
medications with a larger molecular weight.

One of the most important dialysis-related factors 
influencing clearance is the CRRT dose or effluent rate. 
The relationship between drug clearance and CRRT dose 
has been established clearly.60–62 Unfortunately, there is great 
variability in flow rates used in practice today that may 
not be consistent with that reported in drug-dosing studies. 
This led to concerns with underdosing of medications in 
CRRT.63 In fact, several manuscripts have described the 
potential for underdosing in CRRT in pediatric and adult 
populations. One study described a pediatric pharmaco-
kinetic model for meropenem and reported only 29% of 
patients younger than 1 year of age and 70% of patients 
between the ages of 1 and 5 achieved target attainment of 

DOSING CONSIDERATIONS WITH RENAL 
REPLACEMENT THERAPY

Continuous Renal Replacement Therapy
Continuous renal replacement therapy (CRRT) is becoming 
the most popular modality for dialysis in the critically ill 
patient with AKI.57 When crafting a dosing regimen for 
CRRT, the clinician must evaluate several factors, which can 
be categorized as either drug related or dialysis related.58

The major drug-related factors that influence extra-
corporeal clearance are volume of distribution, protein 
binding, and molecular weight. Drugs that have a smaller 
Vd (i.e., less than 0.6 L/kg) are removed more effectively than 
drugs with a larger Vd. This is because drugs with a smaller 
Vd generally are confined to the plasma (which in pharma-
cokinetic terms is known as the central compartment), and 
only solutes present in the plasma are removed by CRRT 
(Fig. 203.1). Drugs with a larger Vd distribute within deeper 
tissues and are less affected by the dialysis prescription. 
Instead, as drug is cleared from the central compartment 
during CRRT, an equilibration ultimately will occur as 
the drug is transferred back into the central compartment 
from the deeper tissues. The primary factor affecting drug 
removal in this case is not the rate at which the drug can 
be eliminated by means of CRRT, but the rate at which the 
drug can transfer from the auxiliary compartments into the 
central compartment. Another important point pertaining to 
Vd is that many patients with AKI will be fluid-overloaded 
secondary to oliguria, which will increase the Vd, particularly 
for water-soluble drugs (e.g., aminoglycosides). Removal 
of this fluid using CRRT therefore will lower the Vd and 
increase drug removal.

Another drug-related factor that can influence 
extracorporeal clearance is protein binding. Drugs that 
are highly protein bound (i.e., greater than 80%) are less 
likely to be removed via CRRT. In fact, protein binding often 
is used as a surrogate for sieving coefficients (applicable 
for hemofiltration) and saturation coefficients (applicable 
for hemodialysis). Clinicians should use caution, though, 
when estimating protein binding using tertiary references 
because they are not reflective of the variability that may 
exist secondary to critical illness.

Drug removal also can be influenced by molecular 
weight. However, this has become less relevant with the 
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FIGURE 203.1 Pharmacokinetics of drug removal through continuous renal replacement therapy. Qb, Blood flow rate; Qd, dialysate flow 
rate. 
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After a hemodialysis session, occurrence of a “rebound” 
effect is not uncommon when the transfer rate of drug 
from blood to dialysate exceeds the transfer rate from the 
tissues to blood. For example, one study in adult patients 
demonstrated an increase in gentamicin serum concentra-
tion of approximately 27% within 11

2 hours after dialysis.67 
Clinicians must be cautious when interpreting postdialysis 
drug concentrations that are drawn immediately after dialysis 
because the effectiveness of clearance can be overestimated. 
This error can lead to supratherapeutic doses and potentially 
increased toxicity.

In establishing drug regimens in the critically ill patient 
on hemodialysis, doses typically begin with the appropri-
ate dose based on the estimated degree of residual renal 
function. Supplemental doses therefore are administered 
for medications that are eliminated adequately through 
hemodialysis. If doses are extrapolated from adult guide-
lines, a greater degree of drug removal for the pediatric 
patient should be considered.68 Careful coordination of drug 
administration and the dialysis schedule is necessary to 
ensure that optimal drug concentrations are maintained. For 
example, administration of medications for which a high 
degree of clearance occurs through hemodialysis should be 
scheduled after the dialysis session has been completed. 
Greater clearance has been noted even for drugs that have 
a large Vd (and therefore minimal expected clearance) 
if they are administered immediately before or during 
dialysis, before distribution to the deeper tissues has been  
completed.

THERAPEUTIC DRUG MONITORING

Therapeutic drug monitoring can be particularly useful in 
optimizing dosing regimens for drugs that have a narrow 
therapeutic index. However, some important considerations 
arise in evaluating serum concentrations in patients with 
AKI. First is whether or not the serum concentration repre-
sents a steady-state level. Typically, it takes approximately 4 
to 5 half-lives to reach steady state, but in the patient with 
AKI, half-life is prolonged significantly. Second is the timing 
of the level in relation to the dose. The most appropriate 
time for assessment (e.g., peak versus trough) will vary 
for each individual drug. It is essential to confirm that the 
blood sample actually was drawn at the time intended. For 
peak levels, adequate time for distribution must be allowed; 
otherwise, artificially high levels will be recorded. Samples 
for trough levels should be drawn within 1 hour before the 
next dose. A third factor is the timing of sampling in relation 
to dialysis and the potential for drug rebound. Finally, the 
severity of disease and specific pharmacodynamic principles 
(e.g., peak to MIC ratio for antibiotics) must be considered 
in determining the necessary therapeutic range.

CONCLUSION

A multitude of factors may affect drug dosing in critically 
ill children with renal failure who are undergoing renal 
replacement therapy. These factors can be drug specific, 
practitioner specific, or patient specific. Failure to appreci-
ate this variability can lead to suboptimal drug dosing, 
potentially increasing the risk for treatment failure or drug 
toxicity. Unfortunately, the literature evaluating drug dosing 
in renal failure that is specific to pediatric patients is limited. 
Extrapolations from the adult literature, clinical guidelines, 

40% time above the MIC with a 20 mg/kg dose every 12 
hours.64 This increased to only 56% and 86%, respectively, 
with a dosage of 20 mg/kg every 8 hours. Total effluent rate 
was significantly higher in younger children. A second 
study described β-lactam regimens in adult intensive care 
unit (ICU) patients with severe sepsis and septic shock.65 
Pharmacodynamic goals (i.e., 4 times the MIC) were achieved 
with doses recommended in CRRT66 for meropenem in 
81%, piperacillin-tazobactam in 71%, ceftazidime in 53%, 
and cefepime in 0. The preferred method for developing 
dosing regimens in critically ill children on CRRT is to 
use an individualized approach using data from published 
pharmacokinetic studies specific to the pediatric population. 
It is important that the dialysis filter type, CRRT modality, 
and effluent rates used in the study be similar to that used 
in the clinician’s individual practice. Unfortunately, this 
literature is limited, and extrapolations from adult-based 
recommendations often must be made. In such instances, 
the pharmacokinetic alterations specific to children and 
the shortcomings of these studies themselves (regarding 
filter type, dialysis fluid rates, residual clearance, and so 
on) must be considered. A stepwise approach for crafting 
drug dosages in CRRT is presented in Box 203.3.

Intermittent Hemodialysis
The predominant mechanism for drug removal by hemodi-
alysis is diffusion. Drug characteristics that favor elimina-
tion through hemodialysis are a small Vd, a low degree of 
protein binding, high water solubility, and a low molecular 
weight.45,53 As with CRRT, the impact of molecular weight 
has changed substantially with the availability of newer, 
high-flux dialysis filters. These filters have larger pore sizes, 
allowing for passage of molecules up to 20,000 daltons. 
Conventional filters typically are impermeable to molecules 
larger than 1000 daltons. Vancomycin, which generally is 
considered a larger medication, has a molecular weight of 
approximately 1450 daltons.

BOX 203.3

Stepwise Approach for Crafting Drug Dosing Regimens 
in Continuous Renal Replacement Therapy

•	 Use	doses	derived	from	clinical	studies	conducted	in	
pediatric patients in whom the dialysis prescription (e.g., 
CRRT dose, mode, filter type) is similar to local 
practices.

•	 Extrapolate	data	from	clinical	studies	conducted	in	adult	
patients in whom the dialysis prescription is similar to 
local practices. It is important to recognize the 
dissimilarities that exist between adult and pediatric 
patients.

•	 Use	doses	derived	from	in	vitro	pharmacokinetic	studies	
in which the dialysis prescription is similar to local 
practices.

•	 Calculate	the	dose	using	pharmacokinetic	principles	and	
the estimated degree of clearance.
•	 Dosage	adjustment	factor	= (ClCRRT + ClNonrenal + 

ClResidual) / ClNormal

•	 ClCRRT = (1 − % protein bound) × Q, where Q = 
ultrafiltration rate or dialysate rate as indicated by 
mode

•	 Use	pharmacodynamics	principles	to	determine	if	
dose should be lowered or frequency prolonged.

•	 Always	consider	patient-specific	factors,	such	as	the	
severity of infection, location of infection, and 
organism MIC.



or continuous venovenous hemodiafiltration), and 
the dialysis prescription within each mode.

4. Dialysis prescriptions that use convective and 
diffusive mechanisms represent the most difficult 
scenarios for drug dosing, because combining the 
two methods may not always yield solute removal 
equivalent to the sum of removal with each method 
alone.

5. The availability of newer, high-flux dialysis filters 
has allowed for removal of drugs with much larger 
molecular weights, such as vancomycin.

6. Therapeutic drug monitoring should be used to 
optimize dosing regimens for drugs that have a 
narrow therapeutic index.
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should be used when applicable.
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