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CHAPTER 187 

Continuous-Flow Peritoneal Dialysis as 
Acute Therapy
Richard Amerling and Aicha Merouani

OBJECTIVES
This chapter will:
1. Elucidate the rationale for continuous-flow peritoneal dialysis 

and its underlying physiology.
2. Review the historical perspective of continuous-flow 

peritoneal dialysis.
3. Discuss the techniques of this modality: single-pass versus 

recirculation, dual-lumen catheter versus two catheters, 
ultrafiltration control, and dose of dialysis.

4. Review the special considerations in and clinical experience 
of continuous-flow peritoneal dialysis in pediatric acute 
renal failure.

5. Describe the clinical experience with this modality in acute 
renal failure.

6. Discuss the advantages of and indications for continuous-
flow peritoneal dialysis.

7. Consider the future directions of this modality.

because the slow solute clearance it achieves renders it 
inadequate to deal with the modern hypercatabolic patient 
with ARF who has multiorgan system failure (MOSF). 
Urea clearance in acute PD is limited, even under optimal 
circumstances, to 10 to 15 mL/min.1 This limitation is not 
due to membrane surface area, permeability, or blood flow, 
which should be more than capable of delivering clearances 
of 40 to 80 mL/min.2 Solute clearance is limited by the 
fill-dwell-drain cycle of standard PD.

Fig. 187.1 depicts an idealized PD exchange: dialysis, or 
solute flux across the membrane, requires dialysate contact 
with the membrane, which makes the fill and drain segments 
extremely inefficient. Flux (J) is defined mathematically as 
the permeability coefficient of the membrane or mass-transfer 
area coefficient (MTAC) multiplied by the difference between 
the solute concentration in the blood (CB) and that in the 
dialysate (CD), or concentration gradient, as shown in the 
following equation:

J MTAC C CB D= −( )

In standard PD, the concentration gradient decreases continu-
ously as solute transport occurs during a dwell, steadily 
reducing the flux, or rate of transport (see Fig. 187.1).

CFPD works by constantly replenishing the dialysate, 
either with fresh, sterile dialysate in single-pass mode, or 

RATIONALE AND PHYSIOLOGY

Peritoneal dialysis (PD) has been used in the treatment of 
acute renal failure (ARF) for a generation, and its details 
described elsewhere. Use of PD in ARF has declined largely 
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Dialysate flow was varied between 20 and 300 mL/min. At 
flows of 200 to 300 mL/min, urea clearances ranging from 
46 to 125 mL/min were obtained.

Other researchers reported experiences over the next 15 
years using different setups and home-built dual catheters.5–10 
Most of these investigators reported urea clearances of 
around 30 mL/min. The 1980s were dominated by con-
tinuous ambulatory PD (CAPD) and continuing cycling 
PD (CCPD), and little work was done on CFPD until the 
mid-1990s, which coincided with the end of the honeymoon 
with CAPD. At that time, CFPD was rediscovered.11–15

TECHNIQUE

CFPD can be performed in single-pass mode using sterile 
dialysate or in recirculating mode with external purification. 
A peritoneal flow rate (QP) of at least 100 mL/min requires 
6 L of dialysate per hour, or 60 L per 10-hour treatment. 
This is a prohibitively large volume, both from the practical 
perspective of cost and because of the potential for clinically 
significant protein losses. An exception is in pediatric ARF, 
in which delivered volumes are much lower (see later). 
Recirculation of sterile dialysate with external regenera-
tion is the only practical approach to CFPD in the acute 
(or chronic) setting. Although sorbent-based systems can 
and have been used,16 we and most others have preferred 
hemodialysis technology to regenerate dialysate. Any 
hemodialysis machine can be adapted for CFPD.

As with all forms of renal replacement therapy, access 
is crucial. This is particularly true in CFPD, in which there 
is great potential for streaming of fresh dialysate directly to 
the draining catheter across a channel within the peritoneal 
fluid reservoir, generating internal recirculation and losing 
efficiency (Fig. 187.5).17 A dual-lumen catheter would have 
to ensure minimal streaming and maximal mixing of fresh 
dialysate with dwelling volume. Drainage from a pelvic 
catheter (à la Shinaberger) with return through a diffuser 
positioned near the diaphragm should provide this situation 
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FIGURE 187.1 An idealized peritoneal dialysis exchange: Solute flux 
is poor during inflow/outflow and falls off rapidly during dwell 
as concentration gradient dissipates. 
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FIGURE 187.2 Continuous-flow peritoneal dialysis (CFPD) operates 
at maximal concentration gradient, greatly improving solute flux. 
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FIGURE 187.3 The continuous-flow peritoneal dialysis (CFPD) two-
compartment model with solute transport across the peritoneal 
membrane governed by peritoneal mass-transfer area coefficient 
(MTAC) and the concentration gradient across the membrane. 
External clearance depends on rate of dialysate flow through the 
peritoneum (QP) and the dialysance (D) of the external circuit. CB, 
Solute concentration in the blood; CD, solute concentrate in the 
dialysate; CPi, solute concentration in peritoneal inflow; CPo, solute 
concentration in peritoneal outflow; QD, external dialysate flow 
rate; VTBW, volume of total body water. (Courtesy Frank Gotch.)

by externally purifying the dialysate with a hemodialysis 
(or sorbent) system in recirculation mode. In either case  
the net effect is to lower CD and to keep it low throughout 
the treatment. This greatly enhances clearance and allows the 
system to perform up to the level of its inherent permeability/
blood flow limitations (Fig. 187.2). CFPD has been modeled 
mathematically in vitro and in vivo.3 Clearance approaches 
the MTAC as intraperitoneal solute concentration approaches 
zero. Clearance varies with intraperitoneal volume, rate of 
dialysate flow through the peritoneum (QP), and efficiency 
of the external regenerating circuit, which in turn depends 
on external dialysate flow rate or QD (Fig. 187.3).

HISTORICAL PERSPECTIVE

Our work in CFPD is based largely on the pioneering observa-
tions of James A. Shinaberger et al.,4 who in 1965 reported 
on the first successful series of patients treated with this 
technique. They compared intermittent PD (IPD), then the 
standard of care, with CFPD in five patients. They used two 
catheters, one placed deep within the pelvis and the other 
near the diaphragm. A 2-L to 3-L intraperitoneal reservoir 
was drained via the pelvic catheter, recirculated through 
a primitive extracorporeal circuit consisting of a twin-coil 
dialyzer sitting in a 50-L vat of dialysate, and returned to the 
patient through the subdiaphragmatic catheter (Fig. 187.4). 
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(Fig. 187.6). We currently are testing a catheter designed 
for chronic CFPD that eventually could serve in the ICU 
setting (Fig. 187.7).18 In the interim, acute CFPD can be 
performed successfully through the use of two catheters 
placed percutaneously or surgically. Care should be taken to 
position the intraperitoneal ports as far away from each other 
as possible. A short, straight Tenckhoff catheter oriented 
toward the diaphragm and a swan-neck coiled catheter in 
the pelvis can be placed through the same incision.19

Once access is obtained, 1.5 to 3.0 L of sterile dialysate 
is infused, depending on patient size, body habitus, and 
ventilator parameters. If tolerated, larger volumes are 
preferred because they are associated with less chance of 
streaming, and more membrane surface area is in contact 
with dialysate. If cells or fibrin are present (e.g., if the 
patient has ascites), heparin, 2000 U/L, should be added 
to prevent clotting in the dialyzer. The catheters are con-
nected via standard saline-primed hemodialysis tubing to 
the machine, and purification of the dialysate is initiated 
through an artificial kidney at 200 to 300 mL/min. External 
clearance is optimal with a 1.5- to 2.0-m2 kidney and QD 
of 500 mL/min.20

Ultrafiltration remains a challenge in recirculating 
CFPD. With single-pass CFPD, Cruz et al.14 and Freida 
et al.21 achieved ultrafiltration rates of 16 mL/min and 
2 to 8 mL/min with 1.5% and 1.36% dextrose, respec-
tively. In recirculating mode, the external dialysis rapidly 
removes dextrose and its osmotic gradient. A true CFPD 
machine would deliver a constant glucose concentration, 
controlled by the external dialysate composition. Ideally 

Drain
pump

Circulating
pump

P

E

D

I
CO2

O2

FIGURE 187.4 Original setup for continuous-flow peritoneal dialysis, with two catheters and an external circuit consisting of a twin-coil 
dialyzer in a vat of dialysate. D, External dialysate; E, outflow catheter; I, inflow catheter; P, peritoneal dialysate. (Modified from Shinaberger 
JH, Shear L, Barry KG. Peritoneal-extracorporeal recirculation dialysis: a technique for improving efficiency of peritoneal dialysis. Invest 
Urol. 1965;2:555–565.)
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FIGURE 187.5 Intraperitoneal recirculation, or “streaming,” detracts 
from the efficiency of continuous-flow peritoneal dialysis. CB, Solute 
concentration in the blood; CD, solute concentrate in the dialysate; 
CPi, solute concentration in peritoneal inflow; CPo, solute concentra-
tion in peritoneal outflow; MTAC, mass-transfer area coefficient; 
QD, external dialysate flow rate; QP, rate of dialysate flow through 
the peritoneum; VTBW, volume of total body water. (Courtesy Frank 
Gotch.)
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CONTINUOUS-FLOW PERITONEAL DIALYSIS 
IN PEDIATRIC ACUTE RENAL FAILURE

Renal replacement therapy in children differs from that 
in adults because of the variation in size and weight of 
the patients as well as child-specific indications such as 
inborn errors of metabolism. It requires special expertise 
because of the lower incidence of pediatric ARF and the 
size-specific modes of treatment.24

Acute PD is used frequently in pediatric ARF and is 
regarded by many authorities as the preferred modality.25 
It is the preferred modality in newborns and young infants 
because of excellent peritoneal permeability of this modality 
as opposed to the difficulties with vascular access and the risk 
of bleeding or hypotension associated with an extracorporeal 
circulation. Peritoneal catheters, adapted to the size of the 
infant, can be placed at the bedside or in an operating room, to 
avoid compromising a child’s limited vasculature.26 Common 
indications for acute PD in the pediatric ICU are refractory 
volume overload, severe or symptomatic uremia, and major 
electrolyte or acid-base disturbance. This modality is well 
suited to patients who are hemodynamically unstable because 
it achieves gentle fluid removal and its performance is largely 
independent of blood pressure.27

Two major disadvantages of PD in the child are (1) 
relatively poor solute clearance and (2) marked variation 
in intraabdominal volume and pressure with possible 
impairment of ventilation. The latter problem often forces 
a reduction in dwell volume with further loss of clearance.28 
Both problems are addressed by CFPD.

Sagy and Silver29 treated six patients aged 18 ± 37 
months who had acute respiratory distress syndrome by 
means of single-pass CFPD using two tunneled Tenckhoff 
catheters placed surgically and 2.5% dextrose solution. The 
patients had been ventilated for an average of 8 days before 
treatment was initiated and were in strongly positive fluid 
balance. QP was 10 to 30 mL/kg/hr and adjusted as needed 
in increments of 10 mL/kg/hr up to a maximum of 50 mL/
kg/hr. Average duration of treatment was 126.7 ± 60.0 hours. 
These researchers achieved effective ultrafiltration in all 
patients (3.1–20 mL/kg/hr), resulting in an average of 30% 
± 12% weight reduction and a significant improvement in 
respiratory parameters. There were no episodes of peritonitis. 
Mechanical outflow problems were managed by reversing the 
direction of flow. Intravenous albumin was given to blunt 
the effect of protein losses. Two of the six patients died; 
the researchers believed this ratio to be an improvement 
over expected outcome with standard therapy.

Vande Walle et al.30 reported their experience treating 
28 children with CFPD for ARF in the post–cardiac surgery 
setting. They used two catheters and a minimal dwell 
volume. Creatinine and urea clearance values were more 
than twice those achieved with standard PD. Ultrafiltration 
also was higher.

We are planning a study of single-pass CFPD in neonatal 
and infant ARF. Because the typical exchange volume in a 
patient of this size is 200 to 400 mL, regeneration of dialysate 
does not make sense. Rather, a controlled continuous infu-
sion of 1.5% dextrose will be employed. Two pediatric 
peritoneal catheters will be placed surgically with one 
oriented cephalad and the other caudad. Intraperitoneal 
pressure will be monitored continuously with a transducer 
attached to the inflow port. Inflow will be controlled with 
an infusion pump, and outflow by gravity with bag height 
adjustment to maintain a constant intraperitoneal pressure. 
A QP of 0.5 L/hr should deliver excellent dialysis at the 
cost of a single 10-L bag of dialysate per day.

this could be varied to produce different rates of internal 
(transperitoneal) ultrafiltration. External ultrafiltration rate 
can then be matched roughly by assessing intraperitoneal 
pressure. Because standard dialysis machines are not 
equipped for this requirement, alternative approaches are 
required. One approach is simply to interrupt CFPD with 
a 2- to 6-hour exchange using 4.25% dextrose solution, 
or icodextrin. Another would be to combine CFPD with 
peripheral venovenous hemofiltration. Our experience 
with CFPD in ARF (see later in chapter) has been limited 
to patients with ascites.22 In this setting, ultrafiltration 
of ascites via the external circuit is straightforward. The 
subsequent concentration of protein within the residual 
ascites effectively “pulls” peripheral edema, and net fluid 
removal is accomplished.

Monitoring a CFPD treatment requires some attention. 
It is a low-resistance circuit, so “arterial” and “venous” 
pressures on the dialysis machine should be near zero. On a 
true CFPD machine, these sensors would be recalibrated to 
optimally detect pressures in the range of 0 to 20 cm H2O. 
Ultrafiltration is assessed from changes in patient weight. 
Clearance can be measured directly in single-pass CFPD 
by collecting the dialysate, measuring the urea nitrogen 
and/or creatinine concentration, dividing this number by 
the average BUN or creatinine concentration during the 
treatment, and multiplying the result by the total drained 
dialysate volume. In recirculation mode, we measure BUN 
before and after dialysis and apply the Daugirdas equation 
to estimate Kt/V.23 Urea clearance (Ku) can be calculated 
by substitution of an estimated body water volume (V) 
into the equation.
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FIGURE 187.6 Ideal port position to limit intraperitoneal streaming. 
(Courtesy Frank Gotch.)
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FIGURE 187.7 Dual-lumen catheter design with coiled intrapelvic 
drain port and subperitoneal diffuser. (Courtesy Claudio Ronco.)
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CLINICAL EXPERIENCE WITH 
CONTINUOUS-FLOW PERITONEAL  
DIALYSIS IN ACUTE RENAL FAILURE

We have had two experiences treating ARF with CFPD. 
ARF developed in both patients during hospitalization in 
the ICU, although one patient was stable enough to be 
transported to the inpatient dialysis unit for treatment. 
Both had considerable ascites, which facilitated catheter 
insertion and ultrafiltration. Both underwent percutaneous 
insertion of pigtail catheters in opposing lower abdominal 
quadrants by ICU physicians. We used the Fresenius 2008H 
dialysis machine (Fresenius Medical Care, Bad Homburg, 
Germany) in CRRT mode and an F80 artificial kidney 
(Fresenius Medical Care, Bad Homburg, Germany).

Patient 1 was a 66-year-old woman with ARF in the setting 
of a thyroid storm, multi-drug–resistant sepsis, anasarca, 
ascites, severe hypoalbuminemia, and marked hemodynamic 
instability. She was unable to tolerate an ultrafiltration of 
100 mL/hr via slow hemodialysis. She underwent two CFPD 
treatments with the following parameters: QP 200 mL/min, 
QD 100 to 300 mL/min, and ultrafiltration rate 50 to 200 mL/
hr. In the first treatment, 3.6 L were removed in 24 hours. 
The BUN value decreased from 54 to 22 mg/dL, for a urea 
reduction ratio of 59%. Applying the Daugirdas equation 
yielded a Kt/V of 1.11 and a urea clearance (V = 40 L) 
of 31 mL/min. The procedures were well tolerated, but 
peritonitis developed and the catheters were removed. The 
patient died about a month later, with no further attempts 
at renal replacement.22

Patient 2, a 65-year-old man with cirrhosis, had acute 
renal failure, likely from drug-induced allergic interstitial 
nephritis. He presented with oliguria, severe ascites, and 
peripheral edema, all of which were refractory to diuretics. 
He underwent 3 consecutive days of CFPD, for 5 to 8 hours 
a day via percutaneous pigtail catheters placed in the ICU 
(Figs. 187.8 and 187.9). QP was 250 to 300 mL/min, QD 
500 mL/min, and ultrafiltration flow rate 400 to 500 mL/hr. 
More than 10 kg of fluid was removed by ultrafiltration of the 
ascites during the treatment. The patient was hemodynami-
cally stable throughout. Urea clearance averaged 50 mL/
min (Table 187.1), and BUN and creatinine concentrations 
declined with each treatment (Fig. 187.10). The catheters 
were removed after 3 days. The patient’s renal function 
recovered, and he was transferred to another institution 
for liver transplantation.

In the dialysis of ascitic fluid, as in these two cases, 
clearance of the blood compartment is delayed by 30 to 60 
minutes, the time it takes to remove enough solute from 
the ascitic fluid to create a diffusion gradient across the 
peritoneal membrane (Figs. 187.11 and 187.12).

FIGURE 187.8 Patient 2 with dual pigtail catheters attached to dialysis 
machine for continuous-flow peritoneal dialysis in the inpatient 
dialysis unit. 

FIGURE 187.9 Continuous-flow peritoneal dialysis in progress in 
Patient 2 with a Fresenius 2008H dialysis machine (Fresenius 
Medical Care, Bad Homburg, Germany). 

TABLE 187.1 

Summary of Three Continuous-Flow Peritoneal Dialysis Treatments in Patient 2a

DATE ULTRAFILTRATE VOLUME (L) URR (%) Kt/V VOLUME (mL)b TREATMENT TIME (min) TOTAL UREA CLEARANCE (mL/min)

9 Nov 2 18 0.26 72,000 354 52.88
10 Nov 3.7 23 0.35 70,000 485 50.52
11 Nov 4.4 18 0.29 68,000 400 49.30

aKt/V was calculated from predialysis and postdialysis blood urea nitrogen concentrations using the Daugirdas 23 equation. Average urea clearance was 
50 mL/min. URR, urea reduction ratio.
bVolume = TBW volume estimated as weight in ks × 0.6.
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mentioned issues surrounding ultrafiltration. Other risks 
are exactly those of standard PD: peritonitis, mechanical 
drainage issues, transdiaphragmatic leakage, viscus perfora-
tion, and hyperglycemia.

CONCLUSION AND FUTURE DIRECTIONS

CFPD has great promise for treatment of ARF, especially 
in children with ARF, in whom the peritoneal route has 
significant advantages, and relatively low fluid requirements 
permit the single-pass mode to be used. The ability to offer 
clearances comparable to that for other forms of continuous 
renal replacement therapy, with the safety of peritoneal 
rather than blood access, makes a compelling argument 
to pursue this therapy. Ultrafiltration and access issues 
will be worked out “in the field,” and it is hoped that 
machine manufacturers will add modifications to permit 
CFPD. Sorbent-based dialysis systems also could be adapted 
easily, as could hemodiafiltration machines that manufacture 
sterile dialysate.31 Use of CFPD in the outpatient setting also 
is being investigated but is beyond the scope of this text.

ADVANTAGES AND INDICATIONS FOR 
CONTINUOUS-FLOW PERITONEAL DIALYSIS 
IN ACUTE RENAL FAILURE

CFPD combines the safety, simplicity, and hemodynamic 
stability of PD with the clearance of continuous venove-
nous hemofiltration or hemodialysis. CFPD should be the 
preferred renal replacement therapy in the unstable patient, 
particularly if blood access is problematic. Pediatric ARF is, 
we believe, an ideal indication. Other likely indications are 
ARF associated with ascites, acute pancreatitis, congestive 
heart failure with hemodynamic instability, and bleeding 
diathesis. In the patient with pancreatitis, single-pass 
CFPD should initiate treatment to effectively lavage the 
peritoneum.

Once ultrafiltration control is perfected, CFPD would 
be appropriate for any form of ARF in which peritoneal 
access is possible. Disadvantages are the requirement for 
two catheters or a double-lumen catheter, and the previously 
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FIGURE 187.10 Evolution of blood urea nitrogen 
(BUN) and creatinine (CRE) concentrations in 
Patient 2, who has acute renal failure, with 3 
consecutive days of treatment with continuous-flow 
peritoneal dialysis (CFPD). 
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takes up to 60 minutes, delaying the onset of significant transperi-
toneal solute clearance. 
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5. Continuous-flow peritoneal dialysis has been used 
successfully for treatment of acute renal failure in 
children and adults.
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Key Points

1. The technique of traditional peritoneal dialysis 
underuses the transport characteristics of the 
peritoneal membrane. Continuous-flow peritoneal 
dialysis overcomes these limitations by maximizing 
transperitoneal solute gradients throughout the 
treatment cycle.

2. Continuous-flow peritoneal dialysis has been used 
clinically since 1965 but was replaced by the much 
simpler continuous ambulatory peritoneal dialysis 
approach.

3. Continuous-flow peritoneal dialysis offers consider-
able advantages over standard peritoneal dialysis 
in the treatment of acute renal failure, particularly 
in pediatric patients.

4. This modality requires a dual-lumen catheter (or 
two catheters) capable of delivering the high flow 
rates of peritoneal dialysate. Treatment mode can 
be either single-pass or recirculating, with external 
regeneration of dialysate.
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