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Peritoneal Dialysis in the
Intensive Care Unit

CHAPTER 178

Peritoneal Dialysis System

Claudio Ronco

OBJECTIVES

This chapter will:

1. Describe the anatomic characteristics of the peritoneal
dialysis system.

2. Discuss peritoneal microcirculation.

3. Explain the mesothelial membrane.

4. Discuss the dialysate compartment and the influence of
different dialysate flow/dwell times on efficacy of
treatment.

Several factors affect the delivery of therapy in peritoneal
dialysis. They are the amount of fluid used, the frequency
of exchanges, the dwell time, and the type of solution
employed. However, the final efficacy of the therapy
depends on the anatomic and functional components of
the dialytic system, such as the peritoneal circulation (blood
compartment), the mesothelium (peritoneal membrane), and
the dialysate compartment. Once these components are
described clearly, different parameters of each technique
become the foundations for an adequate therapy prescription
and a crucial factor in treatment delivery.

PERITONEAL DIALYSIS SYSTEM

Since the beginning of dialytic therapy, diffusion and
convection have been combined in an attempt to replace
renal function." The knowledge about diffusion came from
industrial chemistry, and dialyzers were designed to be
ideal countercurrent exchangers.” Only later was convection
used in clinical practice, showing potential advantages.”*
Although ultrafiltration was employed first to treat over-
hydrated patients,” convective was used subsequently to
enhance solute removal.°’ In peritoneal dialysis, such
mechanisms of solute removal are employed with the same
objectives as hemodialysis.
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The peritoneal dialysis system has three major compo-
nents: the peritoneal microcirculation, the peritoneal mem-
brane, and the dialysate compartment, which includes the
composition of the solution and the modalities of delivery.
All of these components may have an important effect on
the final performance of the technique (Fig. 178.1)."

DIALYSATE COMPARTMENT

The dialysate compartment is represented by the peritoneal
cavity and the amount of fluid infused in one exchange.
Basically, the compartment can be divided into a bulk
region and a boundary layer of fluid, close to the peritoneal
membrane. Furthermore, several variables should be taken
into account, such as the time of infusion and drainage,
the dwell time, the flow of dialysate, its temperature and
composition, and the possible use of tidal techniques.

In Figure 178.2, urea clearance is plotted against dialysate
flow rate. The curve identifies three specific regions. The
first region consists of the dialysate flow rates typical for
continuous ambulatory peritoneal dialysis (CAPD) (3-5
exchanges/day). In this region, the correlation is very
steep, and clearance displays significant changes even in
the presence of minimal changes in the dialysate flow.
However, minimal variations in dialysate flow rate may
require changing from four to five exchanges per day. This
region is therefore dialysate flow-dependent or flow-limited,
because the volume of dialysate per day is the factor that
chiefly limits the clearance value. In this region, it would
be theoretically simple to increase the dialysate flow by a
few milliliters per day to achieve much higher clearances
and, consequently, significant increases in Kt/V. However,
although theoretically possible, this process would not be
feasible in practice because it would mean carrying out 6
to 10 exchanges per day. The only possible way to increase
the dialysate flow without raising the number of exchanges
is to increase the volume of solution per exchange. To
achieve the same fractional clearance in patients weighing
60 and 90 kg, the clinician must schedule four exchanges
per day, with 2-L and 3-L bags, respectively. The impact



of possible intraperitoneal pressure rise must be checked
carefully to avoid middle- to long-term complications such
as hernias, respiratory problems, and decreased ultrafiltra-
tion. In conclusion, a typical CAPD technique is basically
dialysate flow-limited.

The second part of the curve is the typical region of
automated or intermittent peritoneal dialysis. The dialysate
flows may vary significantly owing to a variation of the
dwell time from 30 min to 0 and in the number of exchanges
per day. Based on a 30-minute dwell time with 20 minutes
for influx and outflow, 12 two-for-one exchanges can be
performed overnight for an overall duration of 10 hours.
The clearance will be 19 mL/min or 11.4 L/day. When the
dwell time is reduced to 0 and the dialysate flow is therefore
increased, the clearance rises to 22 to 30 mL/min with a
total clearance per day of 18 L/day. This would result in
a rise in the weekly Kt/V in a 60-kg patient from 2.21 to
3.50. However, this treatment, which could be defined as
high-flux automated peritoneal dialysis (HFAPD), would
require 60 L of dialysis solution, and the cost would become
excessive. A good compromise could be the use of a tidal
volume of solution, which may increase the dialysate volume
artificially and enable better utilization of the surface area
available for the exchanges.

The third part of the curve is the region where the plateau
is reached, and further increases in dialysate flow rates do not
result in parallel increases in clearance. This region has been
explored experimentally, especially using continuous flow
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FIGURE 178.1 The peritoneal dialysis system: capillary, interstitium,
mesothelium, and peritoneal cavity with the dialysate compartment.
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peritoneal dialysis (CFPD) performed with double-lumen
peritoneal catheters'' and theoretical mathematical models
based on mass transfer-area coefficient (MTC) calculation.
The value of the mass transfer coefficient is a function of the
product of the overall permeability of the peritoneum and
the available surface area of the membrane. This parameter
is based on the calculation made for each single subject of
the maximal clearance theoretically achievable at infinite
blood and dialysate flow rates (i.e., at a constantly maximal
gradient for diffusion).

The regions of the curve just discussed describe the
relationship between dialysate flow and solute transport.
Other factors, such as dialysate temperature, intraperitoneal
volume, and dialysate osmolality, are further factors affecting
solute transport, either by increasing the diffusion process
or by adding some convective transport because of increased
ultrafiltration rates.

Peritoneal Dialysis Membrane

The peritoneal dialysis membrane is a living structure
that can be considered more a functional barrier than a
precisely defined anatomic structure. On the basis of the
flow/clearance curve described previously, the following
question may arise: Why is the value of the mass transfer
coefficient (MTC) so low in peritoneal dialysis compared
with other dialysis treatments, and is the membrane involved
in such limitations?

The three-pore model of peritoneal transport has been
proposed by Rippe et al.”® to explain the peculiar behavior
of the peritoneal membrane in relation to macromolecules,
micromolecules, and water transport. According to this
model, human peritoneum appears to behave as a mem-
brane with a series of differently sized pores as follows:
large pores (25 nm; macromolecule transport), small pores
(5 nm; micromolecule transport), and ultra-small pores
(water transport). The anatomic structure of these ultra-
small pores corresponds to the “water channels” created
by a specific protein “aquaporin” acting as a carrier for
water molecules. This model locates the main resistance
to transport at the level of the capillary wall, regarding all
other anatomic structures as a negligible site of resistance.
Later the interstitium was added as an additional site of
resistance.

A controversial opinion is offered by the so-called “dis-
tributed model” offered by Dedrick et al."* In this model,
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FIGURE 178.2 Dialysate flow rate/urea clearance domain 5
map in peritoneal dialysis. A progressive increase in
clearance is displayed with a parallel increase in 10
dialysate flow. The phenomenon reaches a plateau at
which no further clearance increases can be observed.
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the main resistance to transport apparently is located in
the interstitial tissue. This anatomic entity consists of a
double-density material containing water and glycosami-
noglycans in different proportions. The interstitial matrix
seems to act as the main site of resistance to solute and
water transport from the bloodstream to the peritoneal
cavity. The solute diffusivity in free water is greater than
that in the tissue by more than one order of magnitude.
Accordingly, not only the structure of the interstitium but
also the thickness of the glycosaminoglycan layer may play
an important role in restricting the diffusive transport of
solutes. There is a certain discrepancy between the two
models, and overall transport process probably is governed
by a more complex and integrated series of events, each with
a remarkable but not absolute importance. The pressures
applied to the system that contribute to the generation of
the transmembrane pressure are shown in detail in Figure
178.3. It is evident that the osmotic pressure generated by
the glucose contained in the dialysate is by far the most
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FIGURE 178.3 Depiction of the different pressures contributing to
the generation of the transmembrane pressure: b, blood; d, dialysate;
i, interstitium; O, osmotic; P, hydrostatic; m, oncotic.
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important. Nevertheless, as shown in Figure 178.4, because
the peritoneal membrane is not a perfect barrier for the
employed osmotic agent (glucose), the transmembrane
pressure gradient is continuously varying in relation to
the velocity of reabsorption of glucose from dialysate into
the blood compartment. Furthermore, capillaries, which are
located at different distance from the mesothelial barrier,
may be exposed to different concentrations of readsorbed
glucose with different levels of cell damage (Fig. 178.5).

Peritoneal Microcirculation

Despite several lines of evidence suggesting that peritoneal
blood flow should be high enough to avoid any limitation
in solute clearances and ultrafiltration, the real impact of
effective blood flow on the efficiency of the peritoneal
dialysis system is still controversial.'” Experimental work
has in fact suggested that peritoneal ultrafiltration and
solute clearances may be blood flow-limited at least in
some condition.'’

Mesenteric blood flow averages 10% of cardiac output,
but the peritoneal capillary blood flow seems to vary between
50 and 100 mL/min. The “effective” amount of flow involved
in peritoneal exchanges is unknown, however, and could
be much lower. Gas clearance studies have suggested that
peritoneal blood flow may be as high as 68 to 82 mL/min,"”
whereas other studies have suggested a much lower value
for “effective” blood flow."* Gas clearance studies were
based on the assumption that peritoneal gas clearance is
equivalent to effective blood flow, and this assumption
may not necessarily represent the actual condition. Ronco
et al."” have obtained an indirect measure of “effective”
blood flow of between 25 and 45 mL/min.

In conclusion, controversy exists about whether the blood
supply to the peritoneum and subperitoneal tissues limits
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FIGURE 178.4 Graphic representation of perfect and imperfect osmotic membranes. After a time, the imperfect membrane allows a backdif-
fusion of the osmotic agent, and equilibrium is reached. The initial osmotic effect is achieved only because of the different diffusion

velocities between glucose molecules and water molecules.
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FIGURE 178.5 Graphic representation of a three-dimensional distribu-
tion of peritoneal microcirculation. Capillaries may have various
distances from the mesothelial barrier, and this is the difference
between the two.

the transport of solutes between the peritoneal cavity and
the blood. Using a distributed model approach, Waniewski
et al.”’ predicted the following marked changes in the mass
transfer-area coefficient (MTAC, mL/min) for small solutes
when the tissue blood perfusion rate (QQ,) was changed from
0.5 mL/min/g tissue to 0.1: MTAC,,, decreases from 23 to
14, MTAC eatinine decreases from 17 to 11, and MTAC,jucose
decreases from 13 to 8. Unfortunately, there are no direct
measurements of QQ, during peritoneal dialysis to test these
calculations. In a study in rats, Kim et al.*"** found no
blood flow limitations in the transfer of urea across the
peritoneum of the abdominal wall, cecum, and stomach
after suddenly decreasing the blood perfusion 60% to
72% from its baseline in the underlying tissue. In these
studies, the blood perfusion relative to control value was
measured with laser Doppler flowmetry, which does not
provide an absolute measurement of Q, that could be used
to test Waniewski’s assertion.

As an alternative view, Ronco et al."®'" have proposed
that peritoneal blood flow may be a limiting factor in rapid
peritoneal dialysis exchanges. The results obtained in a study
in which a fragment of human peritoneum was perfused in a
closed vascular loop displayed a linear correlation between
the inlet blood flow and the rate of ultrafiltration, with a
stable value of the filtration fraction. The linear correlation
between small solute clearance and blood flow, even at high
blood flows, seems to suggest that small solute clearance
in peritoneal dialysis probably can be limited more by the
low effective blood flow than by the low permeability of
the peritoneal membrane. For larger solutes such as inulin,
the low diffusion coefficients of the molecule may repre-
sent the most important limitation to transport. All these
observations led to the formulation of the nearest capillary
hypothesis.”

Because the peritoneal microvasculature is a network
of capillaries with a three-dimensional distribution and
different distances from the mesothelium (see Fig. 178.5),
the diffusion distances of solutes as well as the glucose
backdiffusion distances may be different in different popula-
tions of capillaries. In this condition, the capillaries situated
closer to the mesothelium would experience greater osmotic
effects than those located farther away, presenting a filtration
fraction in closer capillaries to be much higher. The final
effect would be represented by an average value of clearance
and ultrafiltration to which proximal and distant capillaries
are contributing differently. Clearance and ultrafiltration
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FIGURE 178.6 Graphic representations of the possible anatomic bases
of hyperpermeability (A) and hypopermeability (B) according to
the “nearest capillary” hypothesis (see text).

could be limited definitely by the low blood flow, at least
in the capillaries closest to the peritoneal mesothelium.
In distant capillaries, blood flow could be great enough
to avoid significant limitations, but the effective blood
flow in the capillaries closest to mesothelium may be too
low. The vascular reserve, represented by the capillaries
located farther from the mesothelium, would participate
only partially in the peritoneal exchanges because of
interference by the interstitial tissue. In such a condition,
the central role of the interstitium becomes evident, as well
as its hydration state. Anatomic observations demonstrate
that interstitial tissue surrounding peritoneal capillaries
may vary in thickness from 15 to 300 um. The different
locations of the capillary network in this tissue and the
varying distances from the mesothelium therefore may help
explain the different transport rates observed in different
portions of the human peritoneum.”

The nearest capillary hypothesis also may help explain
the pathologic conditions of hyperpermeability and hypoper-
meability of the peritoneal membrane. Hyperpermeability
could occur from reduction in the interstitial spaces and
a consequent crowding of the capillaries in a position
close to the mesothelium (Fig. 178.6A). Hypopermeability
could occur in the case of interstitial hyperhydration or in
pathologic processes that affect the capillaries proximal to
the mesothelium (Fig. 178.6B).



CONCLUSION

This chapter discussed the major factors influencing the
efficiency of peritoneal dialysis, focusing on the anatomic
and functional components of the peritoneal dialysis
system. Other factors, such as patient and staff compliance,
significantly influence treatment efficacy. Nevertheless,
understanding the dialytic process in peritoneal dialysis
starts with an understanding of the different components
of the system and their specific function.

Key Points

1. Peritoneal dialysis relies on a semipermeable
membrane (the peritoneum), which is a living
structure and so presents significant variations in
performance.

2. The peritoneal dialysis system comprises the
microcirculation of the peritoneal area, the meso-
thelium, and the peritoneal cavity with the infused
solution.

3. The microcirculation can become a crucial factor
when rapid exchanges are used, and blood flow

may become a limiting factor under certain
circumstances.

. The mesothelium has different levels of permeabil-

ity in different subjects. Furthermore, it is not a
perfect osmotic barrier.

The dialysate compartment is the component
with a broader spectrum of possibilities in
terms of variations of volume, flows, and other
manipulations.
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