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CHAPTER 174 

Clinical Effects of Continuous Renal 
Replacement Therapies
Zaccaria Ricci, Stefano Romagnoli, and Claudio Ronco

OBJECTIVES
This chapter will:
1. Describe different renal replacement strategies and their 

clinical effects on critically ill patients.
2. Review the benefits and side effects of continuous renal 

replacement therapies.
3. Compare the clinical effects of continuous therapies with 

those of intermittent and hybrid techniques.

Different renal replacement therapy (RRT) modalities 
and prescriptions will result in various clinical effects 
in individual critically ill patients. These effects can be 
acknowledged either as desirable clinical outcomes of 
the dialytic treatment or as undesirable side effects that 
should be avoided. With extracorporeal RRT, an obvious 
antagonism between (s)low-efficiency continuous therapies 
and high-efficiency intermittent treatments has been growing 
since Kramer et al. first introduced the idea of continuous 
hemofiltration 20 years ago.1

The kidneys remove water, various solutes, and non-
volatile acids, thereby maintaining homeostasis; they also 
metabolize inflammatory mediators and excrete administered 

drugs or their metabolites. The first point to be addressed, 
then, in examining clinical effects of RRT and their impact 
on the altered homeostasis of critically ill patients is to 
evaluate whether the optimal treatment should closely mimic 
the 24 hours lasting functions of the kidneys or if renal 
support can be managed safely on an intermittent basis, 
as with other therapies administered as repeated boluses.

FLUID REMOVAL

Continuous RRT (CRRT) slowly and continuously removes 
fluid, approximating ongoing urinary output, whereas 
intermittent hemodialysis must extract up to 2 days’ worth 
of administered fluid plus excess body water, which may 
be present in the anuric patient as a result of a pathologic 
process, in one relatively brief session. The intravascular 
volume depletion associated with intermittent hemodialysis 
(IHD) is due to the high rate of fluid removal required and the 
transcellular and interstitial fluid shifts caused by the rapid 
dialytic loss of solute.2 The major consequence of rapid fluid 
removal is hemodynamic instability. Critically ill patients 
need continuous volume infusions: blood and fresh frozen 
plasma, vasopressors and other continuous infusions, and 
parenteral and enteral nutrition, which must be delivered 
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of fluid and solute, electrolytes, and other molecules. In the 
process, the cumulative clearance of urea and creatinine 
by a continuous method is significantly superior to that 
achieved by intermittent hemodialysis applied up to four 
times per week, even in septic patients. Indeed, intermittent 
hemodialysis sessions six times per week would be required 
to achieve the same uremic control10 (Fig. 174.1).

The clinical impact of these physiologic aspects of solute 
control have not been elucidated fully. Nevertheless, several 
facts have been established in patients with end-stage 
renal failure. In the National Cooperative Dialysis Study, 
rates for indices of morbidity, including cardiovascular 
events and hospitalization rate, were higher in the group 
of patients whose target average urea was 100 mg/dL 
(36 mmol/L) than in the patients whose target urea was 
50 mg/dL (18 mmol/L).11 An effect of uremia relevant 
to intensive care is immunosuppression, with impaired 
phagocytosis and defective lymphocyte and monocyte 
function. Uncertainty regarding the relative contributions 
of uremia, malnutrition, and bioincompatible membranes 
is evident from previous studies.12 Work must be done 
specifically in patients with acute kidney injury (AKI). It 
is possible that dose prescription for solute control has to 
be tailored on a patient-to-patient basis. The trial by Ronco 
et al. showed an adequate dialytic dose (metabolic control) 
at a continuous venovenous postdilution hemofiltration of 
35 mL/kg per hour compared with a hemofiltration rate of 
20 mL/kg per hour in 425 critically ill patients with AKI.13 
However, recently, studies in the Japanese population have 
shown that CRRT dose even lower than recommended by 
the KDIGO default dose (20–25 mL/kg/hr)14 can achieve 
adequate control of serum urea concentrations.15

Nonvolatile acids, normally excreted by the glomerulus 
and renal tubules, cross hemofilters by diffusion and convec-
tion. Once again, the main concern with IHD is the physi-
ologic effects of rapid clearance, particularly in critically 
ill, catabolic patients with accelerated acid production. 
Acid accumulation may interfere with normal myocardial 
electrical conduction and contractility. Rapid delivery of 
bicarbonate during dialysis may exacerbate intracellular aci-
dosis, although this point is still controversial. Bicarbonate 
is the standard buffer used with intermittent hemodialysis; 
a number of buffers have been used with CRRT—most 
commonly, lactate and sodium bicarbonate. Acetate, of 

without restriction or interruption even in hypercatabolic 
patients. In the clinical setting of anuria, providing such infu-
sions carries a constant risk for fluid overload and high daily 
ultrafiltration requirements. Examples of patients in whom 
sudden intravascular volume shifts may be catastrophic are 
the patient with acute respiratory distress syndrome (ARDS), 
the septic patient who is becoming refractory to vasopres-
sors, and the patient with cerebral edema. Furthermore, all 
critically ill patients tolerate hypotension poorly, with a 
definite risk of cardiac arrest, particularly if they are already 
inotrope dependent. Indeed, the damaged kidneys, which 
have temporarily lost pressure-flow autoregulation, also 
may be threatened with fresh ischemic lesions occurring 
with each hemodialysis session,3 leading to a delay in renal 
recovery. Patients should be assessed actively for the final 
target of fluid removal and must be reassessed carefully 
and frequently, whichever method is used to achieve this. 
Setting the rate of removal requires consideration of the 
severity of complications of fluid overload, anticipated fluid 
intake, expected rate of vascular refilling, and cardiovascular 
tolerance to transient reduction in intravascular volume 
resulting from ultrafiltration. Although many tools can be 
used to predict the response to fluid administration (such 
as pulse pressure variations or passive leg raising), there are 
no good indicators to predict tolerance to fluid removal. A 
fluid removal trial (reverse fluid challenge) is therefore often 
the only option while assessing cardiovascular tolerance 
with the available hemodynamic tools.

The importance of fluid balance management is enhanced 
in the specific category of patients with decompensated heart 
failure. In fact, it is just these patients who may well respond 
positively to continuous ultrafiltration with a rise in cardiac 
index, while avoiding a fall in arterial pressure, owing 
to a beneficial change in preload optimizing myocardial 
contractility on the Starling curve.2 In many instances, 
congestive heart failure not responding to conventional 
therapy now can be treated successfully in this way.4

In critically ill children, the correction of water overload 
is considered a priority. It has been shown that restor-
ing adequate water content in small children is the main 
independent variable for outcome prediction.5,6 This concept 
is much more important in critically ill neonates, in whom 
a relatively larger volume of fluid must be administered to 
deliver an adequate amount of drug infusion, parenteral 
or enteral nutrition, and blood derivatives.7 Several retro-
spective and observational studies also have confirmed the 
importance of fluid overload as an independent variable 
affecting adult critically ill patients’ mortality.8,9 It is possible 
that starting ultrafiltration when a lower degree of fluid 
accumulation has been reached and targeting a negative fluid 
balance in the first treatment hours may improve outcome. 
However, provided no prospective data, it is impossible 
to recommend a priori at what level of fluid gain RRT 
should be started or the net ultrafiltration rate that should 
be prescribed. These factors should be tailored according 
to individual patient requirements.

SOLUTE REMOVAL, ACID-BASE CONTROL, 
AND ELECTROLYTE BALANCE

An attribute of IHD often quoted by proponents is that it 
is highly efficient at clearing small solutes such as urea 
and electrolytes. In fact, this is a false argument and a 
disadvantage. The primary rationale for using continuous 
therapy is to maintain a more physiologic, constant removal 
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FIGURE 174.1 Example of changes in mean blood urea nitrogen (BUN) 
concentration during continuous renal replacement therapy (CRRT), 
intermittent hemodialysis (IHD), and extended daily dialysis (EDD) 
during 2 days of therapy. 
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“average” extracorporeal blood purification, conducted with 
high dialytic dose, is not beneficial in the septic patient.21 
Whether this lack of effect is due to inadequate mediators 
control or to a wrong pathophysiologic concept (septic 
patients do not change their clinical course by simply 
modulating circulating mediators) is currently unknown. 
Some research is being conducted to better discriminate 
patients who may be responding to high-dose CRRT from 
those who do not.22

SIDE EFFECTS OF CONTINUOUS RENAL 
REPLACEMENT THERAPY

Although considerable attention has focused on the per-
ceived benefits of CRRT, less emphasis has been placed 
on the possibility that this modality may carry increased 
risk. As a continuous extracorporeal therapy, CRRT often 
requires continuous anticoagulation, which can increase 
bleeding risk. Conversely, clotting of the extracorporeal 
circuit also occurs frequently with CRRT, which potentially 
may contribute to blood loss, thereby exacerbating anemia 
in critically ill patients. The increased solute transfer associ-
ated with the use of CRRT may enhance removal of amino 
acids, vitamins, catecholamines, and other solutes with a 
beneficial function in critically ill patients.

Continuous therapies must be continuous to work. How 
many treatments really last more than 18 to 20 hours per 
day? Down time because of filter-circuit-catheter clotting, 
circuit change, frequent replacement, or substitution of 
solution bags, and patient mobility (surgery, diagnostics) 
should be monitored carefully; any of these factors may have 
significant impact on dialysis dose.23 Also of concern are 
recent reports that technical problems with the delivery of 
CRRT, including machine malfunction, medication errors, 
and compounding errors, may contribute to increased patient 
morbidity and mortality. Detection of safety problems and 
adverse events is particularly difficult when the rates of 
expected morbidity and mortality are already high in the 
population undergoing a procedure, as is the case with 
CRRT in critically ill patients with AKI.

Currently, few available studies in the nephrology litera-
ture provide substantive information on the safety or adverse 
effects of CRRT or intermittent hemodialysis in the critically 
ill population. After the introduction of new technology 
and devices into medical practice, a natural tendency is to 
assume that the novel therapeutic approach is providing 
benefit. This is especially the case when a therapy is applied 
to a critically ill patient 24 hours a day and becomes part 
of the typical equipment of an intensive care unit (ICU) 
bed. The level of attention from ICU caregivers probably 
is superior when a dedicated dialysis nurse administers 
conventional hemodialysis for few hours during a day shift. 
Nonetheless, a new generation of dedicated CRRT machines 
has been released recently with strict safety features and 
the possibility of a broad range of prescriptions. In any 
case, the ideal therapy still does not exist, and specific 
ICU staff training is mandatory before the routine use of 
such modern monitors. There will never be a solution to 
the unwise use of a perfect system.24

A specific subchapter of side effects should be related 
to renal recovery. Recent reports have suggested a benefit 
for CRRT with respect to recovery of renal function.25,26 
Compared with CRRT, initiation of IHD in critically ill 
adults with AKI is associated with a higher likelihood of 
chronic dialysis. Other studies already have presented such 
information27,28: chronic renal insufficiency at either death or 

course, should not be used because of its vasodilating, 
hypoxia-inducing, and cytokine- and complement-activating 
properties.16 No clinical difference has been observed in 
the relative merits of lactate versus bicarbonate buffering, 
apart from the need to avoid lactate buffering in patients 
with fulminant hepatic failure.17 The essential point is that 
both can be delivered with continuous therapy.

One specific comment concerns the difference between 
continuous venovenous hemofiltration (CVVH) and all other 
techniques, including dialysis and the use of diuretics. In 
all pharmacologic and dialytic techniques, the removal of 
sodium and water cannot be dissociated, and the mecha-
nisms are correlated strictly. In particular, the diuretic effect 
is based on a remarkable natriuresis, whereas ultrafiltration 
during dialysis may result in hypo- or hypertonia, depending 
on the interference with diffusion and removal of other 
molecules such as urea and other electrolytes. In such 
circumstances, water removal is linked to other solutes in 
proportions that are dependent on the technique used. In 
CVVH, the mechanism of ultrafiltration produces a fluid 
that is very similar to plasma water except for a minimal 
interference resulting from Donnan effects. In such a tech-
nique, ultrafiltration is basically iso-osmotic and isonatremic, 
and water and sodium removal cannot be dissociated, with 
sodium elimination linked to the sodium plasma water 
concentration. During hemofiltration in general, the ultra-
filtrate composition is definitely similar to plasma water, 
but the sodium balance can be affected significantly by the 
sodium concentration in the replacement solution. Hence, 
sodium removal can be dissociated from water removal 
in CVVH, thereby allowing definitive manipulation of the 
sodium pool in the body. This effect cannot be achieved 
with any other technique. The advantage is that not only 
plasma concentrations but also the electrolyte content in 
the extracellular and possibly intracellular volume can be 
normalized.18

The increased solute clearance achieved by CRRT 
may cause unwanted losses of amino acids, vitamins, 
catecholamines, antibiotics, and other compounds.19 Severe 
hypophosphatemia (<1.0 mg/dL; <0.32 mmol/L) occurs in 
about half of ICU patients, and CRRT can contribute to 
this deficiency, especially when high intensity treatment is 
prescribed.19 Hypophosphatemia is associated with respira-
tory and cardiac depression, immune dysfunction. This 
condition should be prevented or adequately treated with 
supplementation, especially in CRRT patients.19 Phosphate-
containing CRRT replacement fluids are now available that 
protect against hypophosphatemia. Hypomagnesemia also 
can occur during CRRT, because the replacement fluid also 
lacks magnesium.

One of the most active areas of research in intensive care 
in recent years has involved the modulation of the septic 
response with the aim of reducing the persistently high 
mortality in this group of patients. One avenue has been 
to investigate the potential benefit of CRRT in the sepsis 
syndrome. Although skepticism counters the idea that any 
improvement is due to nonspecific changes such as fluid 
removal or lowering the core temperature in febrile patients, 
some evidence suggests that cytokines and complement, 
among other mediators, are cleared from the blood by 
convection or adsorption, or both, onto high-flux synthetic 
hemofilter membranes. Whether this removal translates to 
significant reversal of end-organ damage by inflammatory 
mediators and results in a reproducible reduction in 
mortality or morbidity is still being elucidated. However, 
there is little doubt that use of biocompatible membranes 
is important and that mediator removal, to be beneficial, 
must be continuous and convective, not intermittent and 
diffusive.20 However, recent data definitely showed that an 
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outcomes with CRRT are superior to those with intermit-
tent hemodialysis.27,30–33 None of these studies showed a 
superior outcome for CRRT compared with intermittent 
hemodialysis, and they do not support the belief that 
CRRT provides better outcomes than those obtained with 
intermittent hemodialysis.

A common key point that can be derived from these 
recent trials is that intermittent hemodialysis has become 
safer and more efficacious with contemporary dialytic 
techniques. Furthermore, liberal and extended use of 
CRRT may be less safe or efficacious than was considered 
or expected previously. The presumed ability of CRRT 
to provide more hemodynamic stability, more effective 
volume homeostasis, and better blood pressure support 
than intermittent hemodialysis has been the basis for the 
assumption that CRRT is a superior therapy. Over the past 
two decades, however, technical advances in the delivery of 
conventional hemodialysis have decreased dramatically the 
propensity of intermittent hemodialysis to cause intradialytic 
hypotension. These advances include the introduction  
of volume-controlled dialysis machines, the routine use 
of biocompatible synthetic dialysis membranes, the use 
of bicarbonate-based dialysate, and the delivery of higher 
doses of dialysis. Finally, a common issue arising from 
randomized trials comparing intermittent and continuous 
therapies is the possibility of switching one randomized 
treatment to the other. The change of modality is made 
in up to 20% of intermittent hemodialysis (IHD) patients 
because of hemodynamic instability and/or to significant 
fluid overload.34 For different reasons the CRRT group 
may require switching of modality in a similar proportion: 
repeated filter clotting, metabolic reasons, bleeding, or issues 
related to the use of anticoagulation, thrombocytopenia, or 
because of clinical improvement of study patients. This 
apparent violation of study randomization suggests that 
the two techniques may be seen as complementary rather 
than alternative. In other words, expert clinicians in routine 
clinical practice may combine the benefits of both modalities, 
tailoring RRT from patient to patient and from session to  
session.

POTENTIAL COMPROMISE:  
HYBRID TECHNIQUES

Hybrid techniques have been given a variety of names, 
such as slow-efficiency daily dialysis (SLEDD), prolonged 
intermittent daily RRT, extended daily dialysis (EDD), or 
simply extended dialysis,35–38 depending on variations in 
schedule and type of solute removal (convective or dif-
fusive). Theoretically, the purpose of such therapies would 
be consolidation of the advantages offered by either CRRT or 
intermittent hemodialysis, including efficient solute removal 
with minimum solute dysequilibrium, reduced ultrafiltration 
rate with hemodynamic stability, optimized delivered-to-
prescribed ratio, low anticoagulant needs, diminished cost 
of therapy delivery, efficiency of resource use, and improved 
patient mobility. Initial case series have shown the feasibility 
and high clearance rates that potentially are associated with 
such approaches. A single short-term, single-center trial 
comparing hybrid therapies with CRRT has shown satisfying 
results in terms of dose delivery and hemodynamic stability. 
The arrival of technology that can be used by nurses in 
the ICU to deliver SLEDD with convective components 
offers further options from a therapeutic point of view. 
It is now possible, using user-friendly ICU technology, to 
generate ultrapure replacement fluid and administer it as in 

hospital discharge was diagnosed in 17% of patients whose 
initial therapy was conventional hemodialysis versus only 
4% of patients whose initial therapy was CRRT (p = .01). 
Patients receiving a minimum exposure of 25 hours of CRRT 
and two treatments of 3 hours or more each of conventional 
hemodialysis, 92% of the patients undergoing CRRT had 
complete recovery of renal function, versus 59% of those 
receiving conventional hemodialysis (p < .01). Finally, a 
significantly higher percentage of patients crossing over from 
conventional hemodialysis to CRRT had complete recovery 
of renal function compared with those crossing over in the 
opposite direction (45% vs. 7%; p < .01). This evidence has 
not been confirmed prospectively nor retrospectively,29 but 
clinicians should be aware of this additive risk occurring 
with intermittent prescriptions.

Another important (potential) CRRT side effect is relative 
to the application of citrate anticoagulation (better detailed 
elsewhere).

Sodium citrate forms a complex with ionized calcium, 
removing this central component from coagulation path-
ways. Citrate is infused before the patient’s blood enters 
the CRRT circuit. Extracorporeal calcium concentrations 
below 0.35 mmol/L are usually sufficient for regional 
anticoagulation, requiring citrate doses of approximately 
4 to 6 mmol/L blood. A substantial amount of calcium 
citrate complexes quickly passes the filter membrane and is 
lost in the effluent volume. The remaining calcium citrate 
enters the systemic circulation and is metabolized in the 
liver, muscle, and kidney, producing three molecules of 
bicarbonate for each molecule of citrate. Additional calcium 
infusions compensate for extracorporeal losses in the circuit, 
maintaining the patient’s normal calcium levels. Caution 
with RCA should be exercised in patients with severe liver 
failure.19 To monitor magnesium is very important because 
citrate chelates magnesium. First, it is mandatory to know 
and understand clearly the Stewart approach for acid-base 
balance because it is the only possibility to understand acid-
base citrate management.19 Indeed, citrate anticoagulation 
implies a large delivery of sodium with trisodium citrate, and 
the risk is to face metabolic alkalosis if patient is not able 
to remove sodium or if acid-base balance is not equilibrated 
with sodium removal or chloride intake.19 Also, citrate is 
metabolized by the liver, it is transformed at the end in 
H2O and CO2, and the patient must be able to remove it, 
which may be difficult for chronic obstructive pulmonary 
disease (COPD) patients in spontaneous breathing or ARDS 
patients.19 On the other hand, if the patient suffers some 
type of liver failure, he or she may face metabolic acidosis 
because of citrate accumulation that is monitored easily by 
the total Ca to ionized Ca ratio (if ratio increases above 2.5, 
the patient has a high risk of citrate accumulation syndrome 
and treatment should be stopped immediately).19 For calcium 
supplementation at the end of the circuit, chloride calcium 
carries more chloride, and calcium gluconate is two to three 
time less concentrated than chloride calcium. Furthermore, 
chloride calcium causes a high risk of necrosis when infused 
peripherally.19 Finally, blood products transfusions (fresh 
frozen plasma or red cell packed) deliver a citrate load. 
In such cases it may be preferable to use extra shots of 
calcium instead of manipulating regional anticoagulation.19

TRIALS ON THE FINAL CLINICAL  
EFFECT: MORTALITY

Five recently published randomized clinical trials and 
one multicenter observational study have claimed that 
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at 25 mL/kg per hour effluent flow rate? Should it be SLEDD 
at blood and dialysate flow rates of 150 mL/minute for 8 
hours during the day? Should SLEDD be applied for 12 
hours overnight? Should a convective component be added 
to SLEDD to make it SLEDDf? Should CRRT and SLEDD 
be combined for the first 2 or 3 days when the patient is 
in the hyperacute phase, with SLEDD alone thereafter as 
recovery takes place? Indeed, from the point of view of the 
intensivist, the modes of RRT are beginning to resemble the 
modes of mechanical ventilation, with ventilator settings 
seamlessly being changed to fit the therapeutic goals and 
patient needs and phases of illness. Just as stereotypical 
approaches to ventilation are anachronistic, often resulting 
in an attempt to fit the patient into an inappropriate, fixed 
therapy, rather than tailoring the therapy to the patient, so 
should RRT be adjusted to fill the needs of the individual 
patient and his or her illness. Also, just as the possibility of 
showing that one mode of ventilation is better than another 
is apparently a lost cause, the same seems to hold true  
for RRT.

To summarize how to choose the most appropriate RRT 
modality at the start of treatment, the optimal RRT is the 
safest, the simplest, and the most efficient. Usually, this 
ideal treatment is the one the clinician knows best.

Key Points

1. Different renal replacement therapy prescriptions, 
modalities, and schedules can be administered to 
critically ill patients with acute kidney injury.

2. Clinical effects in critically ill patients depend on 
the selected renal replacement therapy protocol 
and on the severity and complexity of the clinical 
picture.

3. Modern, versatile machines and flexible prescrip-
tions allow the clinician to choose from among 
various renal replacement therapies ranging from 
highly intermittent high-efficiency therapies to 
slow continuous hemofiltration, depending on the 
patient’s hemodynamic stability, fluid balance 
needs, and acid-base and electrolyte status.
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“9 to 5” maximum staff availability period, or the nighttime  
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An interesting randomized trial assessed CVVH and EDD 
with filtration (EDDf) differences in achieving correction of 
several electrolyte abnormalities present before intervention.39 
Potential risk of hypophosphatemia in patients undergoing 
CVVH suggests the need for vigilance and frequent serum 
phosphate monitoring. In all patients, hypo- or hyperkale-
mia and magnesemia were avoided with the prescriptions 
used. Although the serum sodium was maintained within 
the normal range and levels were similar in both groups, 
significant differences in the chloride concentration were 
noted. The relative hyperchloremia in the EDDf patients 
almost certainly was due to the greater concentration of 
chloride in the fluids used for EDDf (111.8 mmol/L) than in 
the fluids used for CVVH (100.75 mmol/L). The investigators 
found that the two therapies affected metabolic acid-base 
variables differently. First, the concentration of lactate 
was lower with EDDf throughout the study period. This 
difference probably was explained by the use of lactate as 
buffer during CVVH versus bicarbonate during EDDf. Second, 
despite the increase in lactate with CVVH, median pH, 
bicarbonate, and base excess values were less acidotic with 
continuous treatment. These findings are consistent with 
the lower amount of buffer in EDDf fluids (26 mEq/L) than 
in CVVH fluids (45 mEq/L) and the relative hyperchloremia 
of these fluids. The effect of hyperchloremia also is likely 
to explain the difference in mean apparent strong ion dif-
ference (SID) between the two groups. A decrease in CO2 in 
response to this metabolic acidosis accounted for the lower 
effective SID values observed during EDDf. Conversely, the 
strong ion gap was similar for both treatments, in keeping 
with probably equivalent clearance of unmeasured acids. 
Although the clinical significance of these differences is 
uncertain, a higher bicarbonate concentration in EDDf fluids 
may be desirable.

As a matter of fact, 17 studies comparing CRRT and 
hybrid therapies were conducted from 2000 to 2014:40 
7 RCTs and 10 observational studies involving 533 and 
675 patients, respectively. A recent meta-analysis showed 
no difference in mortality rates between EDD and CRRT. 
However, EDD apparently was burdened by a lower mortality 
risk in observational studies, but it is possible that such 
survival benefit is dependent on allocation or selection bias. 
In RCTs and observational studies, there were no significant 
differences in recovery of kidney function, fluid removal, 
or days in the intensive care unit, and EDD showed similar 
biochemical efficacy to CRRT during treatment (serum urea, 
serum creatinine, and serum phosphate).

CONCLUSION

Comparing intermittent and continuous therapies can be 
misleading. Besides the difficulty of conducting a well-
designed, adequately powered, randomized trial (requiring 
at least 1200 patients), continuous and intermittent therapies 
represent a continuum in the management of AKI. Sicker 
patients, for example, potentially may derive greater benefit 
from CRRT, whereas less severely ill patients may do well 
with daily extended or intermittent treatments.

Should the therapy be 3 or 4 hours of intermittent 
hemodialysis with standard settings? Should it be CRRT 
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