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CHAPTER 170 

Adequacy of Continuous Renal Replacement 
Therapy: Prescription and Delivery
William R. Clark, Martine Leblanc, Zaccaria Ricci, Dayong Gao, and Claudio Ronco

OBJECTIVES
This chapter will:
1. Help the reader understand the concept of clearance and 

the manner in which it is applied to estimate dose of renal 
replacement therapy.

2. Describe the differences in the use of urea kinetic modeling 
(UKM) for end-stage renal disease and acute kidney injury.

3. Help the reader understand the important studies that 
have employed urea kinetic approaches to quantify the 
dose of continuous renal replacement therapy (CRRT).

4. Discuss the major studies that have assessed the relationship 
between CRRT dose and patient outcome.

5. Explain the rationale for applying a continuous-equivalent 
UKM.

Measurement of delivered dialysis therapy is performed 
routinely in the management of patients with end-stage renal 
disease (ESRD), and urea-based quantification tools validated 
in prospective clinical trials are available to clinicians.1 
On the other hand, the quantification of renal replacement 
delivery in acute kidney injury (AKI) is less established.2–4 
Although the advent of continuous renal replacement therapy 
(CRRT) involved a focus on its hemodynamic benefits relative 
to conventional hemodialysis (HD),5,6 early kinetic studies 
employing adaptations of chronic dialysis approaches also 
demonstrated clear advantages for CRRT with respect to 
urea clearance and azotemia control.7–9 Additional kinetic 
comparisons also have indicated CRRT has advantages over 
HD for the removal of solutes over a broad molecular weight 
range.10–12 Although the greater solute clearance capabilities 
afforded by CRRT relative to intermittent therapies generally 
are recognized by clinicians, neither urea nor any other 
solute is employed specifically for CRRT dose assessments 
in clinical practice. Instead, the landmark trial performed 
by Ronco et al. has established effluent-based dosing as the 
standard of care for CRRT.13,14 Nevertheless, this parameter 
does not provide an accurate estimation of actual solute 
clearance and has created confusion among many clinicians, 
especially those familiar with urea-based dose measurements 
in the chronic dialysis setting. To address this problem, 
we reappraise dose prescription and delivery for CRRT 
and propose an adaptation of a chronic dialysis parameter 
(standard Kt/V) as a benchmark to supplement effluent-based 
dosing. (In this expression, which represents a normalized 
dose of dialysis, K is urea clearance, t is treatment time, 
and V is urea volume of distribution.) Before this, the key 
differences in the application of renal replacement therapy 
(RRT) quantification to the ESRD and AKI populations are 
discussed, and a comprehensive review of the literature 
regarding the application of these methodologies to CRRT 
is provided.

USE OF CLEARANCE TO QUANTIFY DOSE IN 
RENAL REPLACEMENT THERAPY

Overview of Clearance
The concept of solute clearance, integral to therapy dose 
in chronic dialysis, is defined as the ratio of mass removal 
rate (N) to blood concentration (CB)15:

 K N CB=  

(Equation 1)

When this equation is applied, a steady-state assumption 
typically is made, implying that net solute generation is bal-
anced by net removal. For continuous depuration processes 
(e.g., endogenous kidney function), the indexing of mass 
removal rate to blood concentration allows for patients with 
widely varying kidney function to be compared with the 
same standard. Although not readily evident by inspection of 
Eq. 1, the relationship between solute removal and clearance 
is therapy specific. This issue has been evaluated critically 
by several investigators, including Clark and Henderson.16 
Assuming constant urea clearance, these investigators have 
demonstrated that although conventional HD’s relatively 
high efficiency results in a high urea mass removal rate 
early in a treatment, this rate decreases substantially as 
the transmembrane concentration gradient for removal is 
dissipated as a result of falling blood concentrations (Fig. 
170.1A). As such, cumulative solute removal begins to reach 
a plateau later in treatment, leading to a “self-defeating” 
situation for removal of small solutes eliminated efficiently.17 
Fig. 170.1B demonstrates the same relationship between 
urea mass removal rate and instantaneous clearance for a 
CRRT filter operated at steady state (i.e., constant clearance 
and urea generation rate with a constant blood urea nitrogen 
(BUN) as a result). In this case, mass removal rate also 
remains constant, leading to a linear increase in cumulative 
solute removal over time. This comparison demonstrates the 
powerful effect of long treatment duration in CRRT, even 
though instantaneous clearance rates are relatively low.

Unified clearance expressions have been proposed to 
quantify solute removal by ESRD therapies ranging from 
conventional (thrice-weekly) HD to continuous therapies. 
These approaches include equivalent renal clearance,18 solute 
removal index,19 and standard urea clearance.20 In different 
ways, these methodologies attempt to incorporate intermit-
tent effects on treatment efficiency and actual solute removal. 
As suggested above, the differences in solute removal rates 
early versus late during an intermittent treatment (despite 
constant clearance) do not allow direct comparison of Kt/V 
values derived, for example, from a 2-hour treatment and a 
4-hour treatment. Likewise, direct comparison of the dose 
provided by intermittent and continuous therapies is not 
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is clearly invalid in the non–steady-state condition of AKI. 
Nevertheless, PCR still provides an estimate of the degree 
of hypercatabolism and net negative nitrogen balance, 
both of which are characteristic of the critically ill AKI 
population.22–24 Another fundamental component of UKM, 
urea distribution volume (V), frequently is deranged in the 
AKI population,25,26 and assumptions for this population 
based on values typical for ESRD patients may dramatically 
underestimate the degree of volume expansion. In turn, 
removal of water-soluble compounds (e.g., urea) may be 
reduced substantially relative to expected values.27

USE OF UREA KINETICS TO ESTIMATE 
CONTINUOUS RENAL REPLACEMENT 
THERAPY DOSE

The first formal assessment of urea kinetics for CRRT was 
performed by Clark et al. in a series of critically ill AKI 
patients treated with predilution CVVH.23 Estimates of V 
along with urea generation rate, PCR, and nitrogen balance 
were provided (Table 170.1). In a separate report from the 
same group, normalized PCR was found to increase steadily 
during the course of CRRT from an initial mean value of 

straightforward. Standard Kt/V is a “continuous-equivalent” 
methodology in which effective clearances provided by 
various intermittent schedules are referenced to a weekly 
continuous Kt/V provided by chronic peritoneal dialysis 
(PD).20 In this approach, pretreatment (peak) and steady-state 
BUN values for intermittent therapies and PD, respectively, 
are incorporated. Although the original application of 
standard Kt/V was in chronic dialysis, it is also suited to 
CRRT, as discussed subsequently.

Finally, dialysis quantification parameters other than 
clearance are also important to consider. Although clearance 
is a representation of treatment efficiency at a specific time 
or over a relatively limited time period, intensity can be 
defined as the product of clearance and cumulative treatment 
time. This parameter can be employed to demonstrate that 
despite relatively low solute clearance rates, cumulative 
solute removal with CRRT is typically much greater in 
comparison to more efficient therapies delivered intermit-
tently. Finally, efficacy measures the effective removal of a 
specific solute resulting from a given treatment in a given 
patient. Efficacy can be defined numerically as the ratio of 
intensity to volume of distribution for a specific solute—as 
such, urea Kt/V is an efficacy parameter. A recent consensus 
publication regarding nomenclature used for acute RRT 
therapies reinforces these concepts.21

QUANTIFICATION OF RENAL REPLACEMENT 
THERAPY DOSE IN ACUTE KIDNEY INJURY 
VERSUS END-STAGE RENAL DISEASE: 
IMPORTANT DISTINCTIONS

A fundamental assumption of urea kinetic modeling (UKM) 
when applied to ESRD is the existence of a quasi-steady 
state. This assumption is clearly not applicable in critically 
ill AKI patients, whose clinical status changes on a daily or 
even hourly basis. As such, application of UKM to the AKI 
population must be done with caution for several reasons. 
First, in ESRD patients at steady state, dietary protein 
intake can be estimated from another UKM parameter, 
protein catabolic rate (PCR).1 However, this relationship 
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FIGURE 170.1 Relationship between mass removal rate and clearance for a high-efficiency dialysis modality (intermittent hemofiltration: 
HF) used for end-stage renal disease (A) and continuous renal replacement therapy used for acute kidney injury (B). (Modified from 
Clark WR, Henderson LW: Renal vs continuous vs intermittent therapies for removal of uremic toxins. Kidney Int 2001;59 [Suppl. 
78]:S298-S303.)

TABLE 170.1 

Urea Kinetic Parameters for Critically Ill Acute  
Kidney Injury Patients Treated With Continuous 
Venovenous Hemofiltration

PARAMETER MEAN±SD

Whole blood urea clearance (mL/min) 15.2±0.9
Steady-state serum urea nitrogen (mg/dL) 79.0±17.0
Urea generation rate (mg urea N/min) 11.7±3.1
Urea distribution volume (L/kg) 0.55±0.11
Normalized protein catabolic rate (mg/kg/d) 1.82±0.95
Net nitrogen deficit (g/d) 8.1±4.5

Modified with permission from Clark WR, Murphy MH, Alaka KJ, 
Mueller BA, Pastan SO, Macias WL. Urea kinetics in continuous 
hemofiltration. ASAIO J. 1992;38:664–667.
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between effluent-based dose and outcome.29–31 These trials, 
which employed a broad spectrum of CRRT modalities, 
produced inconsistent results. Furthermore, none incorpo-
rated detailed urea kinetic analyses. Among randomized 
CRRT dose/outcome studies, the ATN trial was the first  
conducted on a multicenter basis.32 Between the two dose 
arms, a total of almost 6000 CRRT treatments were provided 
in the study, representing 56% of all renal replacement 
treatments. Because the CRRT doses of 35 mL/kg/hr and 
20 mL/kg/hr were delivered with predilution continuous 
venovenous hemodiafiltration (CVVHDF) at a mean blood 
flow rate 140 to 150 mL/min, the urea clearance-based 
dose was approximately 29 mL/kg/hr and 17 mL/kg/hr, 
respectively, on a delivered basis. The average effluent 
volumes per day in the intensive and less intensive groups 
were approximately 50 L and 30 L, respectively, with  
dialysate (diffusion) and replacement fluid (convection) 
given in equal volumes. The primary end point, all- 
cause mortality 60 days after initiation of renal replace-
ment therapy, did not differ between the intensive and 
less intensive groups. The design of the trial, in which 
RRT assignment was based on hemodynamic status,  
does not allow the effect of CRRT on outcome to be iso-
lated because most patients were treated with more than  
modality.33

The design of the RENAL trial, the second multi-
center AKI dose/outcome trial, differed substantially 
from that of ATN.34 In RENAL, all patients initially were 
treated with CRRT, and only a small percentage had any 
exposure to HD while in the ICU. For all practical pur-
poses, therefore, RENAL was exclusively a CRRT dose/
outcome trial. The treatment modality was postdilution 
CVVHDF, prescribed at doses of 25 or 40 mL/kg/hr. Mean  
delivered effluent doses were reported to be 33.4 and 
22 mL/kg/hr in the higher-intensity and lower-intensity 
groups, respectively. These values correspond to 84% and 
88% delivery of the prescribed dose. Similar to ATN, no 
significant difference in all-cause mortality 90 days after 
initiation of CRRT was observed between the two dose 
groups.

1.55±0.14 g/kg/d on day 1 to 1.95±0.15 g/dk/d on day 6.8 
The latter findings, corroborated by other investigators,22–24 
confirmed the pronounced hypercatabolism and nitrogen 
deficits characteristic of this population. These investigators 
extended their analysis by applying formal UKM to estimate 
delivered dose for the same group of CRRT patients in 
comparison with a separate group treated with conventional 
HD.9 Although the mean delivered Kt/V per day was the 
same in both groups (0.59±0.23 vs. 0.59±0.20 in the CRRT 
and HD groups, respectively), the mean steady-state BUN 
in the CRRT group was significantly lower than the mean 
peak BUN in the HD group (79±17 vs. 101±12, respectively; 
p < .05).

Leblanc et al. also characterized CRRT efficacy with urea 
Kt/V as a dose parameter7 in a series of 25 patients. Based 
on an assumed V of 55% of body weight, delivered Kt/V 
calculations were made for different continuous therapies 
and compared with that provided by conventional HD. Daily 
mean delivered Kt/V values for the CRRT modalities ranged 
from 0.88 to 2.03, depending on the specific combination 
of dialysate flow and ultrafiltration rates prescribed. For 
example, continuous venovenous hemodialysis (CVVHD) 
applied with a dialysate flow rate of 1 L/hr and mean 
ultrafiltration rate of 1.1 L/hr resulted in a mean deliv-
ered Kt/V of 1.14±0.25 per day or Kt/V of 8.0 per week. 
(Based on the mean values for the parameters provided, 
the corresponding effluent-based dose can be estimated to 
be approximately 26 mL/kg/hr.) On the other hand, delivered 
Kt/V per conventional HD treatment (urea clearance, 175 mL/
min) was 1.07 on a mean basis. In reference to the specific 
CVVHD protocol described above, a simple summation of 
daily Kt/V values would suggest approximate equivalence 
between it and daily HD. However, as suggested previously, 
such a comparison does not account for the inherent inef-
ficiency of intermittent therapies, so this comparison is  
not valid.

Other approaches developed originally for chronic 
dialysis also have been applied to the spectrum of renal 
replacement therapies used in AKI.11,28 Claure et al. have 
reported CRRT dose parameters, including EKR and urea 
Kt/V, in a series of 52 patients.28 They estimated both blood-
side and effluent-side parameters on an instantaneous basis 
from simultaneous urea nitrogen concentration determina-
tions, accounting for treatment downtime. Urea clearance 
estimated from EKR and effluent-side UKM correlated well 
with clearance estimated by the reference method of effluent 
collection (i.e., direct quantification).

CONTINUOUS RENAL REPLACEMENT 
THERAPY DOSE AND OUTCOME STUDIES

Ronco et al. used normalized effluent rate as a novel dosing 
parameter to demonstrate survival in patients prescribed 
doses of 35 or 45 mL/kg/hr of postdilution continuous 
venovenous hemofiltration (CVVH) was significantly higher  
than in those prescribed a dose of 20 mL/kg/hr13 (Fig. 
170.2). The rationale for this dosing approach was the 
well-described direct relationship that exists between 
effluent rate and urea clearance in this modality as long 
as filter function is preserved. In other words, in the context 
of postdilution hemofiltration, there is a 1:1 relationship 
between doses based on effluent rate and urea clearance as 
long as filter function is preserved (i.e., filtration fraction 
and hemoconcentration are managed appropriately).

Subsequent to the Ronco et al. trial, several additional single-
center randomized clinical trials assessed the relationship  
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FIGURE 170.2 Relationship between survival and effluent dose in 
acute kidney injury patients treated with postdilution continuous 
venovenous hemofiltration. (Reprinted with permission from Ronco 
C, Bellomo R, Homel P, et al. Effects of different doses in continuous 
veno-venous haemofiltration on outcomes of acute renal failure: 
a prospective randomised trial. Lancet. 2000;356[9223]:26–30.)
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MODALITY CONSIDERATIONS FOR 
CONTINUOUS RENAL REPLACEMENT 
THERAPY DOSE

Although a 1:1 relationship exists between effluent rate 
and urea clearance when postdilution CVVH is performed 
properly, this is not necessarily the case for other CRRT 
modalities.38 For predilution CVVH, Clark et al. evaluated the 
interrelationship between blood flow rate and replacement 
fluid rate in the achievement of urea clearances equivalent 
to 35 mL/kg/hr.39 For this modality, predilution precludes 
the possibility of a 1:1 relationship between effluent rate 
and urea clearance, and therapy prescription should aim 
to achieve desired depuration with acceptable volumes 
of replacement fluid. At low blood flow rates (<150 mL/
min), the relatively high replacement fluid rates required to 
provide effluent doses frequently desired in clinical practice 
(25 mL/kg/hr or more) result in a substantial reduction 
of blood urea concentration resulting from predilution. 
This dilution effect reduces urea clearance by the filter 
in a potential “vicious cycle,” which can be interrupted 
only by an increase in blood flow rate. In most patients, 
a blood flow rate of at least 200 mL/min is needed for 
efficient operation of predilution CVVH. (The same is true for 
postdilution CVVH to avoid excessive hemoconcentration.) 
When traditional CRRT blood flow rates in the range of 
125 to 150 mL/min are used, Troyanov et al. have dem-
onstrated the decrease in solute clearances for predilution 
(relative to postdilution) CVVH can be as high as 30%  
to 40%.40

With consideration of other CRRT modalities, the pre-
scription parameters most significantly influencing small 
solute clearance in CVVHD are filter surface area and dialy-
sate flow rate.41,42 For optimal functioning of CVVHD with 
respect to urea clearance, saturation of the effluent dialysate 
is necessary, implying equivalence between the incoming 
blood and effluent urea nitrogen concentrations. For effluent 
doses of 20 mL/kg/hr and beyond, filters having membrane 
surface areas of at least 1.0 m2 are required to achieve this 
saturation. Finally, CVVHDF involves consideration of all 
of the above factors, especially when prescribed in the 
predilution mode.43

RECONCILING EFFLUENT-BASED AND 
CLEARANCE-BASED DOSE

Effluent-based dosing is the foundation for prescription and 
delivery of CRRT because of the strength of the underlying 
evidence base. However, as emphasized in this review, 
substantial differences between effluent dose and actual 
solute clearance may exist under many CRRT operating con-
ditions. Providing clinicians with an additional parameter 
that clarifies these differences is especially timely in light  
of the most recent consensus conference of the Acute Dialy-
sis Quality Initiative (ADQI). The conference highlighted 
the need for adapting continuous therapies to conform to 
the era of personalized medicine, specifically calling for the 
application of “precision CRRT” in clinical practice.44 In the 
opinion of the authors, supplementation of evidence-based 
effluent dosing with a CRRT-specific standard Kt/V is one 
step in this direction.

At the initiation of CRRT, a hypothetical patient of target 
weight 80 kg (W) can be used to define standard Kt/V  

PRESCRIBED VERSUS DELIVERED 
CONTINUOUS RENAL REPLACEMENT 
THERAPY DOSE

Based on the series of randomized controlled trials (espe-
cially ATN and RENAL), the Kidney Disease: Improving 
Global Outcomes (KDIGO) AKI Clinical Practice Guideline 
recommends delivery of an effluent dose of 20 to 25 mL/kg/
hr in CRRT.14 However, this consensus statement includes 
a caveat that the prescribed dose should be higher than the 
delivered dose target in most instances. Indeed, available 
data suggest shortfalls in the delivery of the prescribed 
CRRT dose are common even in the setting of clinical 
trials and may be substantial in clinical practice. For the 
sake of clarity, the actual failure of the delivered effluent 
dose to match the prescribed effluent dose should be dif-
ferentiated from dimiunitions in the effective dose (i.e., 
solute clearance). Predilution is primarily responsible for 
the latter, and some trials employing CRRT in this mode 
have made reference to this phenomenon. In the series of 
randomized CRRT dose/outcome trials, greater than 80% of 
the prescribed dose was delivered on average.13,29–34 However, 
in some trials, interventions not typically made in general 
clinical practice occurred to preserve dose delivery. For 
example, when shortfalls in treatment delivery occurred 
on a particular day in the Ronco trial, compensatory dose 
increases could be made the following day.13 Furthermore, 
filter changes occurred routinely every 24 hours according 
to institutional practice.

Other trials performed outside the relatively controlled 
environment of a randomized controlled trial have been 
less sanguine. In an early study, Venkataraman et al. retro-
spectively evaluated 115 CRRT patients treated during 1999 
and 2000.35 The mean treatment duration was only 16.1±3.5 
(mean±SD) hours per day, leading to a mean effluent flow 
rate (averaged over 24 hours) of 1.4±0.3 L/hr. The mean 
prescribed and delivered CRRT doses were 24.5±6.7 and 
16.6±5.4 mL/Kg/hr, respectively (p < .000001), equating to 
delivery of only 68% of the prescribed dose. Clotting of 
the extracorporeal circuit was the most common cause of 
downtime.

In the DO-RE-MI trial, approximately 80% of patients 
received only CRRT in the trial, and significant variability 
in delivered dose was observed among patients and even 
within the same patient on different days.36 (In the CRRT 
group, data from 81 patients having at least one treatment 
interruption of 18 hours or more notably were not included 
in the analysis.) Intensive CRRT was defined by a prescribed 
dose of at least 35 mL/kg/hr, but only 22% of patients fell 
in this category. Although the median prescribed dose was 
34.3 mL/kg/hr, the median delivered dose was approximately 
20% less (27.1 mL/kg/hr), with circuit clotting contributing 
to 74% of downtime incidents.

Claure et al. performed a thorough analysis of prescribed 
versus delivered CRRT dose in 52 patients treated with 
predilution CVVHDF.37 Despite the use of citrate anticoagula-
tion in all patients, filter clotting was the single leading 
cause of therapy downtime, although causes unrelated to the 
extracorporeal circuit were more common overall. Delivered 
(urea-based) dose, estimated from standard CRRT clearance 
equations (accounting for predilution), was only 73% of 
the prescribed effluent dose. Thus treatment downtime 
and predilution combined to produce a 27% decline in 
the urea clearance actually delivered on average, relative 
to the theoretical clearance based only on the prescribed 
effluent volume.
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varying levels of treatment downtime (in hours per day). 
These dosage adjustments are consistent with the concept 
of “dynamic CRRT,” in which the treatment is adapted to 
the constantly changing clinical status of a critically ill 
AKI patient.47 This concept also allows for the standard 
Kt/V target to be modified in a given patient, depending 
on the clinical course (e.g, a hypercatabolic, septic patient 
in need of higher dose to control azotemia).

Standard Kt/V was proposed first by Gotch to allow for 
comparisons of continuous and intermittent therapies in 
chronic dialysis; it incorporates two fundamental tenets.20 
First, despite having lower instantaneous clearance rates, 
continuous therapies in general provide more effective small 
solute removal than intermittent therapies (on a mL/min 
of clearance basis). Second, Kt/V values from individual 
treatments in an intermittent schedule cannot be added 
together simply for comparison with a therapy provided 
continuously during the same period. On the other hand, 
because of the continuous nature of CRRT, simple addition 
of daily Kt/V values can produce a representative weekly 
standard Kt/V. The current calculation of a standard daily 
Kt/V of 1.0, corresponding to a delivered CRRT dose of 
25 mL/kg/hr, is aligned precisely with the original standard 
Kt/V description, which used another continuous therapy 
(PD) as the reference.20 However, it is worthwhile emphasiz-
ing the recommended target for delivered weekly Kt/V in 
AKI patients treated with PD is only 3.5,48 demonstrating 
the substantial difference in small solute removal capability 
between this modality and CRRT.

Although effluent-based and solute clearance-based 
dosing are important considerations in the overall adequacy 
of CRRT provided to a given patient, many other factors are 
important. Indeed, fluid management, electrolyte/acid-base 
control, nutrition, and drug dosing are but a few of the 
other challenges that require thoughtful consideration by 
the clinical team.49 Only by addressing the entire spectrum 
of the patient’s clinical needs can sustained improvements 
be achieved for this population.50

in relation to effluent-based dosing. The following assump-
tions apply:
1. Urea volume of distribution at CRRT initiation = 0.65 × 

W = 52 L (corresponding to 10% fluid accumulation at 
that point)

2. Average V during the course of CRRT = 48 L (assuming 
100% correction of fluid overload)45,46

3. 24-hour operation of CRRT with delivered CRRT dose 
of 25 mL/kg/hr

Based on these values, standard (daily) Kt/V can be calcu-
lated, with the assumption that a 1:1 relationship between 
effluent volume and urea clearance exists over a 24-hour 
period.

Kt V mL kg hr kg
hrs L mL L

= ×
× =⋅

( ) ( )
( ) .( )

25 80
24 1 1000 48 1 0

As discussed previously, the major factors causing diver-
gence between the effluent-based dose and this daily Kt/V 
parameter are fluid overload, impaired filter performance, 
treatment downtime during the course of a particular day, 
and predilution. Estimates for urea distribution volume in 
AKI have varied significantly in previous trials and the above 
Kt/V calculation, developed for a typical CRRT popula-
tion, attempts to bracket the range that has been reported 
in the literature. Based on a study using stable isotopes 
to estimate distribution volume, Ikizler et al. reported 
values substantially above those based on conventional 
total body water estimates.26 For purposes of dosing RRT, 
they recommended a 20% increase in V relative to these 
conventional estimates; the 65% initial estimate in the above 
standard Kt/V calculation is very much in line with this 
recommendation.

Likewise, clinicians should be vigilant for potential signs 
of impaired filter performance, leading to reduced solute 
clearance. Effluent urea nitrogen concentrations that are less 
than expected and increasing circuit pressures suggest this 
possibility. Finally, in Fig. 170.3, estimates are provided 
for the degree to which delivered Kt/V may be reduced for 

2

1.5

1.0

0.5

0

D
el

iv
er

ed
 s

td
 k

t/V

0 5 10 15 20 25 30 35 40 45 50

Prescribed (ml/kg/h)

0 2 4 6
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accepted as the gold standard in AKI clinical 
practice.

3. However, the studies comprising the CRRT dose/
outcome evidence base employed different modali-
ties in which similar effluent doses potentially 
were associated with variable solute clearances.

4. Standard Kt/V is proposed as a way to help clini-
cians reconcile the discrepancy between effluent-
based and clearance-based dosing of CRRT.
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SUMMARY

A comprehensive review of RRT quantification in AKI has 
been presented, with a focus on urea kinetics. Previous work 
in applying UKM to AKI has provided a good foundation 
for the development of a unified parameter, the standard 
Kt/V, for use in conjunction with effluent-based dosing in 
CRRT. This parameter is certainly not designed to sup-
plant effluent-based dosing but, instead, to complement it. 
Future advances in clinical practice and technology, such as 
incorporation of effluent urea nitrogen measurements either 
through clinical protocols28 or CRRT machines equipped 
with online sensors,51 can improve upon this approach. In 
the meantime, hopefully this new parameter can solidify 
clinicians’ understanding of CRRT dosing and improve 
the care of critically ill AKI patients treated with this  
modality.

Key Points

1. Extrapolation of end-stage renal disease–based 
dialysis quantification techniques to acute kidney 
injury (AKI) requires an understanding of the 
clinical differences between the two patient 
populations.

2. Based on level 1 evidence, effluent-based continu-
ous renal replacement therapy (CRRT) dosing is 
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