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CHAPTER 159 

Hybrid Dialysis Techniques in the Intensive 
Care Unit
Devika Nair, Mark R. Marshall, and Thomas A. Golper

OBJECTIVES
This chapter will:
1. Define and give the rationale for hybrid renal replacement 

therapy.
2. Discuss the technical requirements of hybrid renal replace-

ment therapy.
3. Explain the versatility and flexibility of hybrid renal replace-

ment therapy prescription and provision.
4. Describe the effects of hybrid renal replacement therapy 

on control of small and larger solutes and on cardiovascular 
stability.

5. Review comparative outcome data.

Hybrid therapy (HT) is a newly described modality of 
acute renal replacement therapy (ARRT) with the following 
features: (1) outpatient nephrology intermittent hemodialysis 
(IHD) machinery is used to deliver treatments, as opposed 
to dedicated intensive care unit (ICU) continuous renal 
replacement therapy (CRRT) machinery, (2) treatment 
sessions may be deliberately intermittent rather than neces-
sarily being continuous, (3) treatment sessions are of longer 
duration than outpatient nephrology IHD treatments, and 
(4) the rate of solute and fluid removal is slower than with 
outpatient nephrology IHD treatments but faster than with 
conventional CRRT.

The technical elements of HT are not novel. In the 
extreme, it can be argued that Kolff actually performed 
the first HT treatments more than 50 years ago.1 However, 

the clinical context of HT is novel as a conceptual and 
logistic compromise between the modern applications of 
IHD and CRRT. With this rationale, HT first was presented 
10 to 15 years ago as a way of combining the advantageous 
features of IHD and CRRT while minimizing their respective 
disadvantages.2–5 The major advantages of IHD are that it is 
inexpensive and has the convenience of scheduled down-
time that allows the patient to be available for out-of-unit 
radiologic and surgical procedures. The major advantages 
of CRRT are that it allows fluid removal with minimal 
hemodynamic instability and provides consistent solute 
control. In general, HT has lived up to this rationale, and 
reported experience has shown this modality to be effective 
among a wide range of patients, popular with nurses, and 
inexpensive.6

HT is used increasingly. For example, 7% of patients 
in the Acute Renal Failure Trial Network (ATN) Study 
receive HT as primary treatment, and 25% of practitioners 
participating in this study routinely prescribe this modality.7 
These proportions are reported to be similar in Europe on 
the basis of data from around the same time.8 There is a 
lot of unpublished or inaccessible experience about HT 
in the world literature. For instance, important work has 
been reported in the Chinese nephrology literature, which 
is not listed by Medline.9

In this topic review, such regimens collectively are referred 
to as HT, although other terms used in the literature are 
sustained low-efficiency (daily) dialysis (SLED or SLEDD), 
sustained low-efficiency (daily) diafiltration (SLEDD-f or 
SLED-f), extended (daily) dialysis (ED or EDD), prolonged 
(daily) intermittent renal replacement therapy (PIRRT or 
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to move dialysate and blood (max QB 300 mL/min) through 
the extracorporeal circuit at a ratio of 1 : 1 to 1 : 2. This ratio 
is determined by the staff conducting treatment, who choose 
between lines that have different lumen widths for the 
segments in the roller pump that provide QB and QD. Fresh 
dialysate is pumped from the top of the dialysate storage 
tank, and spent dialysate is returned to the bottom. Despite 
the lack of a physical barrier between these fluids, there 
is little mixing within the tank. Separation is maintained 
by small but important differences in fluid density and 
temperature between fresh and spent dialysate. One HT 
session using the GENIUS machine can last up to 15 hours 
with a QD of 100 mL/min.

The GENIUS machine has several advantages over single-
pass machines. Treatments can be performed in the ICU 
without the need for a water supply. It is very easy to set 
operating parameters via independent and simple controls, 
allowing unlimited combinations of QB, QD, and session 
duration. An argument has been made that dialysate sterility 
in this machine is superior to that in single-pass machines, 
although this contention has not been proven and is not 
likely. Disadvantages of the GENIUS machine are its weight 
(approx 165 kg) and its fixed clearance, which is due to 
the fixed aliquot of dialysate per treatment. Nevertheless, 
this machine is regarded by some opinion leaders as the 
best HT machine on the market.22

Generally around the world, HT is performed using single-
pass machines, whereby solutions for blood purification 
in HT are generated online from purified tap water and 
dialysate concentrate. Few of these machines are suited 
ideally for HT (Table 159.2), and most have some limita-
tions around the lowest QD and the longest HT session 
length that can be provided. With regard to QD, these 
limits do not impose any critical clinical limitation. A QD 
of 300 mL/min is perfectly satisfactory in most clinical 
circumstances, and there are often means to reduce effective 
QD without drastically modifying machine hardware. For 
instance, one group of researchers has used the Gambro 
AK200S Ultra machine (Gambro AB, Stockholm, Sweden) 
in hemofiltration mode; the replacement fluid is used as 
countercurrent dialysate within the dialyzer at 100 mL/min, 
the operational QD on the machine interface set to zero (E. 
Fiaccadori, personal communication, September 7, 2005; 
P. Van Malderen, personal communication, September 9, 
2005). Another group has developed a simple shunt to be 
used with the Fresenius 4008H machine (Fresenius Medical 
Care), which allows a proportion of the dialysate to bypass 
the hemodialyzer.23, 24 There are probably easier and simpler 
ways to reduce the effective QD from 300 mL/min to the 
equivalent of 100 mL/min, such as reducing hemodialyzer 
size and using co-current dialysate flow.

With regard to treatment session length, many machines 
in North America can perform treatments for 24 hours or 
even continuously (e.g., Fresenius 2008K, Fresenius Medical 
Care North America, Lexington, MA), but most in Europe 
and the Asia Pacific region can perform treatments for only 
10 hours (e.g., Fresenius 4008S, Fresenius Medical Care). 
This difference is due to different regulatory environments 
between the continents. This trend is changing, and some of 
the newer European machines from major vendors have an 
option for 24-hour or continuous treatment (e.g., Fresenius 
5008S, Fresenius Medical Care).

Many vendors are selling or developing machines that 
switch easily and instantaneously between IHD and HT 
modes (so-called universal platforms). Fresenius Medical 
Care undoubtedly has taken the lead in this regard, having 
developed the two or three leading machines in terms of ease 
of operation—the Fresenius 2008K (US), 4008S ARrT Plus 

PDIRRT), slow continuous dialysis (SCD), and “go slow 
dialysis.” There is agreement among opinion leaders that 
the nomenclature must be standardized. However, this is 
proving difficult, owing to lack of a common perspective 
between nephrologists and intensivists. Hybrid therapy 
is “low efficiency” and “prolonged” to nephrologists, but 
“high efficiency” and “foreshortened” to intensivists. In 
the authors’ opinion, nomenclature is likely to remain a 
local affair and to depend on which of the disciplines has 
responsibility for the therapy in an institution. It would 
seem that the only two terms that would be acceptable to 
both disciplines are hybrid therapy and prolonged (daily) 
intermittent renal replacement therapy.

TECHNICAL ISSUES

An overall summary of HT programs from published 
literature is shown in Table 159.1.9–19 A few key technical 
issues are discussed here; issues related more to prescription 
are discussed in Section 15.

Machinery
A fundamental feature of HT is the use of outpatient 
nephrology IHD machinery. Maintenance IHD programs 
are very common throughout the world, and hospitals that 
have such programs are in possession of all the technical 
elements necessary to an HT program. In some hospitals, 
there has been a clear mandate to adapt and share existing 
machinery between maintenance IHD and HT programs, 
thereby reducing the cost of program implementation and 
maintenance. In fact, one of the main motivating factors 
for nocturnal HT was the need to use the machinery in 
outpatient IHD facilities during the day.16 In other hospitals 
(particularly where ICU provides ARRT), machinery for HT 
is owned and maintained by the ICU as a separate ongoing 
concern, although it remains the same as (or technically 
very similar to) that used by nephrology services.17,18

Almost any IHD machine can be used for HT. However, 
blood and dialysate flow rates (QB and QD, respectively) and 
treatment session duration are typically different from that 
of conventional IHD (see Table 159.1), and machines must 
be capable of being changed to any of these variations in 
a convenient fashion. The ideal HT machine therefore is 
versatile over a wide range of operating conditions and 
easy to use. Specifically, the following features should be 
considered in the choice of a machine for HT:
•	 Flexibility	of	QD from as low as 100 mL/min up to the 

dialysis flow rates used for conventional IHD
•	 Flexibility	of	treatment	session	length	from	as	short	as	

those used for conventional IHD up to continuous 
duration

•	 Clear	 interface	between	machine	and	staff	conducting	
treatment

•	 Easy	transition	between	IHD	and	HT	modes
In the first descriptions of HT, dialysate for treatments 

was produced in batches and used in now-outdated batch 
dialysis machinery.2,3 In the modern practice of HT, only one 
such batch machine remains in common use, the GENIUS 
therapy system (Fresenius Medical Care, Bad Homburg, 
Germany).15,20,21 This machine is sold only in Europe at 
present. For this machine, dialysate is generated in the 
outpatient nephrology dialysis unit through the use of a 
separate machine called a “preparator” and stored in a 75- or 
90-L tank within the machine. A single roller pump is used 
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and a similar situation exists in some European countries. 
In these countries, online replacement fluid preparation is 
not used in patients, and hemodiafiltration during HT is 
performed using pharmacy-made or commercially purchased 
fluids or, more commonly, normal saline.10

Hemodialyzers
Hemodialyzers used for HT can be the same as those used 
for conventional IHD and intermittent hemodiafiltration 
(IHDF). Hemodialyzer membranes can be low-flux or 
high-flux. High-flux membranes contain large pores that 
theoretically allow for greater permeability of larger putative 
uremic toxins. There are no comparisons of low-flux and 
high-flux membranes in HT; the only available data pertain to 
comparisons involving conventional IHDF or high-flux IHD 
versus low-flux IHD. In studies of ARRT in the ICU popula-
tion, the more permeable membranes demonstrate no clinical 
or laboratory advantages over the less porous ones.30–32 This 
negative result may be biased by residual confounding in 
these studies from unrecognized back-transport of potentially 
harmful waterborne molecules (see previous discussion). 
Alternatively, the negative results may be true, resulting 
from the low mass removal of larger solutes (in absolute 
terms) afforded by these modalities. For instance, low-flux 
IHD clears about 3 mL/min of β2-microglobulin from blood 
water during the course of treatment, high-flux IHD clears 
only about 35 mL/min, and even IHDF clears only about 
50 to 150 mL/min, depending on the hemofiltration (QF) 
rate.33 Given the short duration over which these modalities 
are applied, a meaningful clinical effect seems unlikely. In 
contrast, the longer duration for HT makes a clinical effect 
seem more plausible, although it remains to be proven.

The effect of membrane biocompatibility on outcomes 
(when present) is consistently beneficial, although the data 
overall are conflicting.34,35 Notwithstanding, such membranes 
now can be obtained cheaply, and because cost has been 
eliminated as a deciding factor, it is recommended that all 
patients be treated with these membranes.

Online hemodiafiltration is being used increasingly 
during HT.10,17,18 The rationale for this technique is 
predicated on a survival benefit conferred by combined 
convection and diffusion that is not conferred by dif-
fusion alone. This assumption has some support in the 
literature but is not proven. Hemofiltration rates reported 

(Asia Pacific), and 5008S (Europe). All of these machines 
allow selection of CRRT or HT from their startup screens 
and enable easy changes of operating parameters.

Water Quality
Fluids for blood purification in HT usually are generated 
online from purified tap water and dialysate concentrate. 
In contrast are those used in CRRT, which are pharmacy-
made or commercially purchased and delivered to the 
point of service, for batch and single-pass machinery. A 
growing concern is the possibility of exposure to bacterial 
contaminants—and specifically endotoxin—from these 
fluids. Such exposure may arise during direct infusion of 
online replacement fluid and also from backfiltration via 
dialysate into the patient. It therefore generally is accepted 
that water quality for online fluids should conform to the 
same standards that are used in the outpatient nephrology 
IHD setting.

The critical question, however, is whether water purity for 
ARRT actually should be higher than this standard. In the 
absence of any definitive clinical trial data, many opinion 
leaders opt for dialysate sterilization using ultrafilters in 
the dialysate pathway, especially if high-flux membranes 
are being used. These ultrafilters remove bacteria and 
endotoxin by virtue of a pore size of about 0.22 µm and 
specific adsorptive properties.25 This decision is based on 
observational evidence or surrogate end points. A counter-
argument has been made that bacterial contaminants are 
removed sufficiently by the dialyzer during backfiltration by 
most common membranes and that dialysate sterilization is 
unnecessary.26, 27 Clearly, a definitive trial is needed urgently 
to determine optimal clinical practice.

There is less debate about water quality for online replace-
ment fluid for hemodiafiltration. This fluid is a fraction of 
dialysate that is infused directly into the extracorporeal 
circuit either before or after the diafilter. The ionic com-
position of replacement fluid does not differ from that of 
dialysate. Such fluid should be sterile (no growth, endotoxin 
concentration < 0.03 endotoxin units). This is achieved 
by passing water and/or dialysate through two (Fresenius) 
or three (Gambro) ultrafilters before being infused. This 
process has been shown to yield a fluid that is at least as 
sterile as commercially available fluids.28,29 The U.S. Food 
and Drug Administration has not approved such a process, 

TABLE 159.2

Machines From Major Vendors Used for Hybrid Dialysis Therapy

MACHINE LOWER LIMIT OF BLOOD FLOW (mL/min) UPPER LIMIT OF TREATMENT TIME EASY TRANSITION TO HT MODE?

Fresenius 2008H 300a Nil N/A
Fresenius 2008H + P/N 190178 100 Nil Yes
Fresenius 2008K 100 Nil Yes
Fresenius 4008S 300 10b N/A
Fresenius 4008S 200 10b Yes
ARrT Plus
Fresenius 5008S 100 Nil Yes
Gambro AK95/100/200 300 10 N/A
Gambro 350 10 N/A
Integra
Toray TR-123 300 10 N/A

HT, Hybrid dialysis therapy; N/A, specific HT mode not available.
aCan set QD 100 mL/min by manually recalibrating dialysate temperature sensors, a procedure that takes ~45 minutes (details in ref 45).
bTreatments can be restarted at the end of 10 hr by re-entering new treatment parameters, to effectively carry the treatment on beyond the patient’s time 
limit without having to disinfect or drain the machine and setting up again with new lines.
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hemodialyzer urea clearances, minimal postdialysis blood 
urea nitrogen (BUN) rebound, conformity between observed 
intradialytic time-concentration BUN profiles and those pre-
dicted from a standard single-pool urea kinetic model, and 
monoexponential dialysate urea nitrogen time-concentration 
profile (Fig. 159.2). These findings all indicate minimal 
urea dysequilibrium.36,43

Small solute clearance actually is reduced by hemo-
dialyzer clotting. In fact, the online clearance or ratio of 
dialysate/filtrate (effluent) urea nitrogen to BUN (i.e., EUN/
BUN) has been used to permit an elective change of a 
failing filter before it clots. This strategy is based on the 
observation that there is a decline in EUN/BUN over the 
treatment course, probably because of a combination of 
concentration repolarization and diafilter clotting. Although 
this issue has not been validated prospectively, it is the 
firm recommendation from other authors that a EUN/BUN 
less than 60% mandates diafilter replacement (R. Mehta, 
personal communication, July 15, 1999).

There are fewer data on larger solute clearance during HT. 
As discussed previously, interest in these particular solutes 
arises from the potential for removal of middle-molecule 
inflammatory mediators. Notwithstanding, the greatest 
removal of such molecules can be achieved with hemodi-
afiltration, although some removal also occurs with HT based 
on high-flux dialysis without filtration. The literature as a 
whole suggests that clearance of larger solutes is between 
50% and 66% of that of small solutes using high-flux HT 
or hemodiafiltration, and very low with low-flux HT.17,21,44,45 
Support for beneficial immunomodulation by HT can be 
found in one study reporting restoration of function for 
stimulated but exhausted circulating monocytes,46 and in 
two studies showing improvement in the ratio of antiinflam-
matory to proinflammatory mediators.9,47

COMPARATIVE CLINICAL OUTCOMES

Although the Kidney Disease Improving Global Outcomes 
guidelines for acute kidney injury (AKI) recommend CRRT 
for patients with hemodynamic instability or intracranial 
hypertension, studies have shown that the choice of dialysis 
modality in the ICU setting continues to be based on a 
number of clinician and patient-specific factors.51 It has 
previously been thought that CRRT is superior to IHD, based 
on the theoretical advantages of increased hemodynamic 
stability allowing for greater volume removal, better solute 
clearance, and increased rates of renal recovery.52–55 These 
advantages have yet to be demonstrated in randomized 
controlled trials (RCTs). Here, we summarize evidence 
regarding critical outcomes and clinical endpoints in studies 
comparing IHD, hybrid therapies and CRRT where doses 
ranged from 20–35 mL/kg/h.

ICU LENGTH OF STAY

Two studies compared ICU length of stay between 
patients receiving CRRT or IHD and found no significant 
differences.56,57

HEMODYNAMICS

Regarding hemodynamics alone, some studies have shown 
that CRRT is superior to PIRRT, although it does not appear 

during convective HT vary from 17 to 100 mL/min. Higher 
convection leads to increased clearance of middle-sized 
and larger uremic solutes, which can amount to more 
than 50% of the small solute clearance. Moreover, other 
features of online hemodiafiltration, such as thermal energy 
transfer, also may affect clinical outcomes. Several groups 
of investigators have demonstrated the logistic feasibility 
of convective HT.10,17,18,24 However, further studies still are 
needed to compare outcomes of this modality and diffusive 
HT. These studies should explore not only the relation-
ship between removal of middle-sized and larger uremic 
solutes and clinical outcomes but also the role of thermal 
energy transfer and other features of convective ARRT in  
general.

Hemodialyzer size is probably not critical. Two groups 
have reported experience with moving from a larger to 
smaller hemodialyzers for HT, for the purposes of reduc-
ing extracorporeal circuit clotting.14,19 Neither group has 
reported any deterioration in solute control or clearance. 
The relationship between hemodialyzer urea mass-transfer 
area coefficient (KOA), QD, and QB is not predictable during 
HT because of a mismatch between dialysate and blood 
flows resulting from incomplete fiber bundle penetration 
at low flows that creates a shunt within the dialyzer.36 
Further studies on this important area are needed before 
a recommendation can be made.

CLINICAL OUTCOMES

Solute Control
The major surrogate end point in ARRT is optimal control 
of solute and fluid balance, but the true clinical end points 
are patient mortality and recovery of renal function. As with 
all ARRT, outcomes studies in HT have related practice 
patterns mostly to the former rather than the latter outcomes. 
All reports of HT have shown consistently that electrolyte 
concentrations can be maintained within normal limits.

There are no agreed standards for solute control in ARRT. 
In terms of small solutes, however, strong suggestions have 
been made in various reports that clinical outcomes are 
optimized during CRRT with a urea clearance of 35 mL/
kg/hr or more and during IHD with Kt/V of 0.92 at a fre-
quency of 6.2 per week.37,38 Although not experimentally 
verified, these different expressions for small solute clear-
ance can be unified using the corrected equivalent renal 
urea clearance (EKRc), which reexpresses the preceding 
doses as a continuous clearance that provides the same 
time-averaged concentration of BUN for the same mass of 
urea removed, corrected for a urea redistribution volume 
of 40 L.39,40 Expressed in this way, the values for EKRc that 
correspond to the two suggestions above are 35.9 mL/min 
for CRRT and 20.7 mL/min for IHD (assuming V = 0.65 × 
body weight).41 Readers are referred to the chapters in this 
book on ARRT quantification for a more detailed explanation 
of these concepts and calculations.

The small solute clearance achieved in the first 100 
patients in the HT program at Middlemore Hospital, New 
Zealand, is illustrated in Fig. 159.1. Small solute kinetics 
from other published HT experiences are shown in Table 
159.3.9–19,39,40,42 In general, metabolic control in most case 
series is comparable to that observed during CRRT, with 
one quasi-randomized controlled trial also reporting similar 
conclusions.14

Multicompartmental effects resulting from urea dys-
equilibrium do not occur to a significant degree during 
HT, as indicated by the parity between whole-body and 
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20 30 40 50 60FIGURE 159.1 Small solute clearance achieved in the first 100 
patients in the hybrid therapy program at Middlemore Hospital, 
New Zealand. 

TABLE 159.3

Reported Rates of Small Solute Clearance Delivered by Hybrid Dialysis Therapy

SCHLAEPER ET AL.19

STUDY

FINKEL AND 
FORINGER12

LONNEMANN 
ET AL.15

MARSHALL 
ET AL.16

MARSHALL 
ET AL.17

NAKA 
ET AL.18

KUMAR 
ET AL.13,14

FIACCADORI 
ET AL.11 LI ET AL.9

BERBECE 
ET AL.10

BUN (mg/dL):
 treatment  

Before
21a 17a 82 71.6 54.9 53.8 24 75 69.5 26.6

 treatment  
After

N/A N/A 38 31 20.4 37.0 N/R 37 12.5 10.4

Serum creatinine 
(mg/dL):

 treatment  
Before

1.7a 1.5a 3.93 3.4 3.85 3.1 2.5 N/R 8.74 1.07a

 treatment  
After

N/A N/A 1.96 1.6 1.81 2.43 N/R N/R 1.87 N/R

spKt/V per 
treatment

2.4 (daily) 24 (daily) 1.25b 1.45 1.43 0.56b 1.14 1.17b 1.60c 1.39

EKRc per treatment 
(mL/min)

54d N/R 31.68e 31.9d 35.7 15.5e 25.1f 28.9e 39.6e 29d

Urea nitrogen 
removed (g/day)

N/R N/R 33.1 28.6 N/R N/R N/R N/R N/R N/R

BUN, Blood urea nitrogen; EKRc, corrected equivalent renal urea clearance; N/A, not applicable; N/R, not reported; spKt/V, single-pool Kt/V.
aSteady state solute concentrations.
bspKt/V calculated using reported data either (a) from direct dialysate quantification using reported pre- and posttreatment BUN and urea nitrogen mass 
removal, or (b) iteratively by formal single pool urea kinetic modeling using reported pre- and posttreatment BUN combined with hemodialyzer 
clearance calculated using manufacturer reported KoA.
cspKt/V calculated using reported data from pre- and post-treatment BUN by method of Basile et al.42

dEKRc calculated from reported continuous urea clearances or EKR by correcting for V = 40L with correction for urea non-steady state by method of 
Casino and Marshall.40

eEKRc calculated from Kt/V values using nomogram method of Casino and Lopez assuming daily treatments.39

fEKR as originally reported unable to be corrected to V = 40L.
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to convey a survival advantage.54,58,59 Other observations are 
conflicting. Many analyses have failed to demonstrate that 
CRRT results in a better hemodynamic profile. Patients in the 
Cleveland Clinic RCT had a significant decrease in mean arte-
rial pressure (MAP) on IHD, and those randomized to CRRT 
had a decreased vasopressor requirement despite greater net 
volume removal.60 In the large, prospective, international 
BEST study, patients first treated with CRRT required more 
frequent vasopressor support.61 In the Hemodiafe study, 
IHD patients experienced no worsened hemodynamics, 
attributed to slow ultrafiltration and the use of cool and/or 
hypernatremic dialysate.56 Several RCTs comparing IHD to 
CRRT have not demonstrated hemodynamic differences.56,62,63 
Meta-analyses concur.64,65 Some of the advantages observed in 
CRRT may be attributed to its inherent cooling. Additionally, 
several studies excluded severe hemodynamic instability 
prior to initial randomization, which may have attenuated 
any differences that would have otherwise been observed.

RENAL RECOVERY

Hemodynamics protect renal function. Autoregulation is 
lost during AKI, and hypotension decreases glomerular 
perfusion and further delays renal recovery. As IHD has been 
associated with increased episodes of hypotension, it was 
hypothesized that CRRT would result in better preservation 
of renal function. In BEST, unadjusted dialysis independence 
at hospital discharge was higher in those patients who first 
received CRRT.61 Although an improvement in renal recovery 
was analyzed as a secondary endpoint in most RCTs and 
studies may not have had an adequate power to detect a 
statistically-significant difference, no RCT has been able to 
show a difference.56,57,60,63 Two large retrospective cohort 
studies suggest the possibility of better renal recovery among 
patients who receive CRRT.66,67 A Swedish study showed 
less dialysis dependency at 90 days in those patients who 
initially received CRRT.66 In a Canadian study, patients who 
received IHD as an initial dialysis modality had a higher 
risk of dialysis dependence at 90 days as compared to CRRT, 
an association strengthened by the presence of preexisting 
kidney disease.67 Although some of the observational studies 
suggested that patients who received IHD suffered from a 
higher rate of dialysis dependence, meta-analyses conclude 
otherwise.49,64,65,68
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FIGURE 159.2 Graphic description of BUN profiles 
during hybrid renal replacement therapy under 
the condition of single pool urea kinetics, with 
hollow squares representing observed BUN profile 
and hollow circles representing the modeled BUN 
profile. Points of data are presented in graph as 
mean +/−standard error and in tabulated form as 
mean (n = 9; correlation coefficient = 0.99). 

MORTALITY

Much of the literature comparing CRRT to intermittent 
therapies demonstrates no survival benefit. Some obser-
vational studies have suggested that CRRT is associated 
with increased mortality as compared to IHD,69 but when 
adjusted for severity of illness, mortality is similar.59,70,71 In 
BEST, unadjusted hospital survival was lower in patients 
who first received CRRT,61 but the San Diego study found 
the opposite.72 The latter study saw a high crossover rate 
and significant differences in gender, liver failure, number of 
failed organ systems, and APACHE scores despite randomiza-
tion. Several RCTs demonstrated no mortality differences 
using a variety of definitions.56,60,62,73 Meta-analyses reveal no 
difference in mortality between the two modalities.48,49,64,65,74

Patient selection is a large bias in observational studies 
comparing modalities (confounding by indication). For 
example, triage to CRRT was associated with an increased 
relative risk of in-hospital death.75 In another study, patients 
who received CRRT tended to be younger, female, and 
had increased rates of sepsis.76 These characteristics were 
adjusted for in the final analysis, which also confirmed 
higher costs for CRRT patients. In a RCT unique for its large 
sample size and stratification there was no difference in 
mortality on multivariate analyses, even when adjustments 
were made for age, sepsis, and presence of heart failure.57 In 
a large multi-centered study, no significant association was 
demonstrated between ARRT dose and mortality when a 
median CRRT dose of 27.1 mL/kg/hour was compared to a 
median IHD dose of 7 sessions per week. However, survivors 
in the more intensive ARRT group had a shorter ICU stay 
and a decreased duration of mechanical ventilation.77 The 
aforementioned data do not include patients with acute 
brain injury or concurrent liver failure, two conditions in 
which CRRT has been shown to be preferred.78,79 Also, 
critically ill patients with life-threatening hyperkalemia or 
toxic ingestions benefit from IHD for rapid solute removal.

INTRODUCING HYBRID THERAPIES (HTS)

Compared to CRRTs, hybrid therapies (HTs) are associ-
ated with decreased costs, less need for anticoagulation, 
and lower MAPs, but have similar solute clearance, net 



3. The prescription and provision of hybrid therapy 
is very flexible and can be varied when desired 
to suit the requirements of the institution and 
patient.

4. Hybrid renal replacement therapy provides high 
small solute clearance and significant larger solute 
clearance.

5. This modality allows ultrafiltration with a minimum 
of cardiovascular instability and is well tolerated 
by patients with severe illness.
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CONCLUSION

CRRT requires specialized nursing, increases costs, often 
requires anticoagulation, and results in patient immobi-
lization. Hybrid therapies are of lower complexity and 
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continuous anticoagulation. As overall outcomes tend to be 
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