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CHAPTER 157 

Assessment of Fluid Status and Body 
Composition and Control of Fluid Balance 
With Intermittent Hemodialysis in the 
Critically Ill Patient
Israel Campos and Peter Kotanko

OBJECTIVES
This chapter will:
1. Discuss body composition in health and disease.
2. Describe the current tools used in evaluation of body 

composition and fluid status.
3. Consider intermittent hemodialysis in the critically ill patient 

for control of fluid balance and prevention of intradialytic 
hypotension.

blood chemistry, and worsened clinical outcomes.2 Criti-
cally ill patients in particular are prone to malnutrition and 
consecutive unfavorable alterations in body composition. 
Malnutrition is observed frequently in patients regardless of 
type of illness.3 An increased intake of energy and protein in 
critically ill patients is associated with improved outcomes 
at different body mass index (BMI) in a non-linear fashion; 
better outcomes are shown in patients with BMI less than 25 
or more than 35.4 In critically ill patients, hypermetabolism 
is caused by an activation of the sympathetic nervous system 
and the pituitary-adrenal axis, resulting in high plasma 
levels of catecholamines, adrenocorticotropic hormone, 
growth hormone, and cortisol. These metabolic adapta-
tions contribute to protein-calorie malnutrition (defined 
as a negative balance of 100 g nitrogen and 10,000 kcal 
within a few days). Assessment of nutritional status and 
body composition in the critically ill patient is of major 
importance and guides adequate and sometimes aggressive 
nutritional support.

Fluid overload is very common in the intensive care unit 
(ICU). Impaired fluid balance is related with poor outcomes, 
such as an increased mortality risk.5 In a retrospective 
analysis a positive fluid balance of more than 4 L was 
present after 12 hours of ICU admission in septic shock 
patients and increased further up to +11 L after 4 days.6 A 
linear correlation has been described between cumulative 
fluid balance and risk of mortality.7

EVALUATION OF FLUID STATUS AND  
BODY COMPOSITION

The assessment of fluid status, body composition, and 
nutritional status is, in most instances, performed in a subjec-
tive manner by experienced healthcare workers. The fluid 
status can be judged clinically (with well-known pitfalls) 
from the presence or absence of edema, the skin turgor, 
jugular venous pressure, predialysis blood pressure, and 
changes in blood pressure and heart rate during dialysis. 
Imaging techniques such as chest radiography, abdominal 
ultrasonography to delineate the diameter of the inferior 
vena cava (IVC), lung ultrasound to assess the presence of 
“lung comets” (these are related to Kerley B-lines),8 and 
echocardiography may yield additional important informa-
tion. Bioimpedance techniques are capable of providing 
an integrative view of body composition and fluid status.

Anthropometric models have been developed to estimate 
body composition (see Tables 157.1 and 157.2 for a summary 
of anthropometric algorithms; see www.medal.org). The 

BODY COMPOSITION IN HEALTH  
AND DISEASE

Body composition can be viewed from five perspectives: 
atomic, molecular, cellular, tissue, and whole body levels.1 
At the atomic level, six elements form 98% of the body mass: 
61% oxygen, 23% carbon, 10% hydrogen, 2.6% nitrogen, 
and 1.4% calcium; the remaining 2% of the mass consists 
of 44 other elements.

More than 100,000 distinct molecules constitute the 
molecular composition, ranging from simple molecules 
such as water to highly complex ones such as lipids and 
proteins. Water, which accounts for about 60% of a 70-kg 
“reference male” and about 50% of a “reference female,” 
is the major chemical component of the body and essential 
for the interior milieu. The total body water (TBW) is dis-
tributed between two major compartments, the intracellular 
volume (ICV) and the extracellular volume (ECV); the latter 
can be divided into the interstitial compartment, which 
constitutes the extracellular environment of the cells, and 
the vascular space. Body fat depends heavily on nutrition 
and training status, ranging from less than 10% to more 
than 50%. Protein and minerals account for 15% and 5% 
of body composition, respectively. The 1018 cells forming 
the cellular body composition domain can be divided into 
connective tissue cells (fat cells, blood cells, and bone cells), 
epithelial cells, neural cells, and muscle cells. In terms of 
tissue composition, bone, adipose tissue, and muscle make 
up 75% of body weight. The lean body mass is the mass 
of the body minus the fat mass (storage lipid).

In healthy adults, body composition is maintained over 
the short term within narrow limits. Gender, age, race, 
nutrition, physical activity, and hormonal status are the 
main determinants of body composition. Illness may have 
a significant effect on body composition; malnutrition is a 
major complication. Malnutrition, which develops when 
nutritional intake falls short of nutritional requirements, 
leads to organ dysfunction, reduced body cell mass, abnormal 
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Lung ultrasound has gained interest in the ICU as a 
means to detect fluid overload signs. The presence of 
extravascular fluid in the lung detected by ultrasound 
is associated with increased mortality in ICU patients.10 
Interstitial-alveolar fluid is correlated with the presence 
of vertical ultrasound signatures arising from the pleura 

anthropometric models are straightforward to apply but 
are not well validated in the dialysis population.

Ultrasonography is used frequently as a bedside tool 
to assess fluid status, and several indices related to IVC 
measures have been proposed (Table 157.3). The indexed 
vena cava diameter (VCDI) is calculated as follows:

VCDI
maximal IVC diameter IVCmax

body surface area in m
= ( )

( )2

The IVC collapsibility index (IVCCI) is computed as follows:

IVCCI
IVCmax IVCmin

IVCmax
(%) = −





× 100

These indices can be determined9 easily and are a feasible 
option for rapid assessment of intravascular volume status 
in an outpatient dialysis setting by operators with limited 
formal training in ultrasonography, but there is a poor 
relationship between dry weight goals and IVC collapsibility.

TABLE 157.1

Anthropometric Algorithms

DOMAIN MODEL

TBW (males > 16 years) in L [Hume 
and Weyers]

(0.194786 × [height in cm]) + (0.296785 × [weight in kg]) − 14.012934

TBW (females > 16 years) in L 
[Hume and Weyers]

(0.344547 × [height in cm]) + (0.183809 × [weight in kg]) − 35.270121

TBW (males) in L [Watson] (− 0.09516 × [age in years]) + (0.1074 × [height in cm]) + (0.3362 × [weight in kg]) + 2.447
TBW (females) in L [Watson] (0.1069 × [height in cm]) + (0.2466 × [weight in kg]) − 2.097
LBM (males > 16 years) in kg 
[Hume and Weyers]

(0.32810 × [body weight in kg]) + (0.33929 × [height in cm]) − 29.5336

LBM (adult males) in kg [Boer] (0.407 × [body weight in kg]) + (26.7 × [height in m]) − 19.2
LBM (females > 30 years) in kg 
[Hume and Weyers]

(0.29569 × [body weight in kg]) + (0.41813 × [height in cm]) − 43.2933

LBM (adult females) in kg [Boer] (0.252 × [body weight in kg]) + (47.3 × [height in m]) − 48.3
LBM (males) in kg [James] (1.10 × [body weight in kg]) − (128 × ([body weight in kg]2)/(body height in cm2)

LBM (females) in kg [James] ( . [ ])
[ ]
[

1 07 148
2

× − ×body weight in kg
body weight in kg
body weeight in cm]2







Corrected arm muscle area in cm2 
[Heymsfield]

( ) ( [Midarm circumference in cm triceps skinfold thicknes− ×π ss in cm

gender factor for bone area

])

( )

2

4 ×






−
π

Gender factor = 10 in males and 6.5 in females
Total body muscle mass in kg 
[Heymsfield]

(height in cm) × (0.0264 + [0.0029 × (CAMA)])

CAMA, Corrected arm muscle area; LBM, lean body mass; TBW, total body water.
Data from The Medical Algorithms Company. Available at www.medal.org.

TABLE 157.2

Anthropometric Models to Estimate Extracellular Volume and Intracellular Volume

GENDER PARAMETERa EXTRACELLULAR VOLUME (L) INTRACELLULAR VOLUME (L)

Male Height in m 9.78 × height 7.92 × height
Weight in kg 0.245 × weight 0.198 × weight
BSA in m2 9.22 × BSA 7.45 × BSA
LBM in kg 0.303 × LBM 0.244 × LBM

Female Height in m 8.44 × height 7.04 × height
Weight in kg 0.220 × weight 0.186 × weight
BSA in m2 8.18 × BSA 6.84 × BSA
LBM in kg 0.302 × LBM 0.248 × LBM

Both LBM in kg 0.3027 × LBM 0.2456 × LBM

BSA, Body surface area; LBM, lean body mass.
aLBM is computed with Boer’s equation (see Table 158.1). Data from The Medical Algorithms Company. Available at www.medal.org.

TABLE 157.3

Cutoffs for Indexed Vena Cava Diameter and Inferior 
Vena Cava Collapsibility Index

VOLUME STATUS VCDI CUTOFF (mm/m2) IVCCI CUTOFF (%)

Hypovolemia <8 >75
Euvolemia ≥8 and ≤11.5 ≥40 and ≤75
Hypervolemia >11.5 <40

IVCCI, Inferior vena cava collabsibility index; VCDI, indexed vena cava 
diameter.
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ICU patients with renal failure.33–35 Some researchers have 
proposed analyzing the impedance vector in the R—Xc plane 
to assess body composition and nutritional state accord-
ing to tolerance ellipses defined in healthy subjects.36–38 
However, because patients undergoing hemodialysis have 
abnormal distribution of body fluid content, thus affecting 
resistance, the error of estimation may be significant with 
this approach. Therefore segmental BIA of the arm or leg 
has been suggested as an alternative approach.19,39 Kaysen 
et al.19 developed a model to estimate total body muscle 
mass on the basis of BIA-derived ICV (Table 157.4), which 
was as precise as methods based on total40 K counting, a 
measure of body cell mass.

INTERMITTENT HEMODIALYSIS IN THE 
CRITICALLY ILL PATIENT: CONTROL OF 
FLUID BALANCE AND PREVENTION OF 
INTRADIALYTIC HYPOTENSION

Removal of uremic toxins and excessive fluid are the main 
goals of renal replacement therapy. In contrast to continuous 
techniques such as continuous venovenous hemofiltration, 
removal of fluid with intermittent hemodialysis frequently is 
limited by hemodynamic instability, which manifests itself 
in most circumstances as intradialytic hypotension (IDH). 

detected by lung ultrasonography; these are called “lung 
comets” and are related to the Kerley B-lines known from 
conventional chest x-ray.11 In hemodialysis patients the 
number of lung comets correlates with fluid overload and 
weight loss after ultrafiltration.12 Lung ultrasound may be a 
promising novel noninvasive and feasible method to detect 
extravascular lung water in ICU patients.13 Recently, a novel 
noninvasive ultrasonographic method to examine volume 
status has been introduced. This method is based on the 
measurement of corrected flow time (FTc) in carotid artery. 
The authors observed that FTc decreased between start 
and end of hemodialysis as a consequence of dialytic fluid 
removal.14 Echocardiography is useful in determining volume 
status measures in addition to cardiac indices.

Biochemical markers, most prominently natriuretic 
peptides, have been advocated as noninvasive means to 
determine fluid status, but the levels of brain natriuretic 
peptide (BNP) correlate poorly with volume status.15 
However, N-terminal pro-BNP appears to be more accurate 
as an additional tool for assessing fluid status and is cor-
related with nutritional status parameters in hemodialysis 
patients.16,17

Bioimpedance analysis (BIA) is used increasingly in 
patients undergoing dialysis and in critically ill patients18 
to determine TBW, ECV, ICV, and other aspects of body 
composition. Body composition analysis by means of BIA 
has been compared with magnetic resonance imaging (MRI) 
analyses, and appropriate regression models have been 
developed to enable estimation of fat and muscle content.19,20 
Basically, impedance (Z) expresses the opposition to current 
flow that a system offers to injected alternating electric 
current; Z has two components (both expressed in ohms), 
resistance (R) and reactance (Xc). Resistance and reactance 
change with alternating current frequency and an increase 
in frequency results in a decrease in impedance. Accord-
ing to current concepts, the fluid volume component is 
reflected largely in the resistance, and reactance represents 
the cell membrane, which is related to nutrition. In biologic 
systems, lower-frequency currents travel preferentially 
in the extracellular space, whereas currents with higher 
frequencies pass through extracellular and intracellular  
compartments.

With injection of multiple-frequency currents (standard 
range 5 kHz to 1000 kHz), ECV and ICV can be estimated in a 
procedure called multifrequency bioimpedance spectroscopy 
(MFBIS). Single-frequency bioimpedance analysis (SF-BIA) 
with an injection current frequency of 50 kHz has been 
used for many years.21 SF-BIA is simpler and easier to 
use than MFBIS. However, the inability to make accurate 
distinction between ECV and ICV is its major limitation. 
Different BIA approaches, such as wrist-to-ankle (“whole 
body method”) and segmental methods,2,9,22–27 have been 
used to measure ECV, ICV, and TBW in patients undergoing 
dialysis. These studies aimed to measure fluid status and 
estimate dry weight by employing ratios of ECV to ICV, 
ECV to TBW, and ECV to body weight.28–32

Nutritional status relates strongly to morbidity and mortal-
ity in patients undergoing dialysis. BIA-based measurement 
of muscle mass and of subcutaneous and total adipose tissues 
can be made routinely. Body cell mass (BCM) estimated 
by BIA is correlated with BCM determined by dual energy 
x-ray absorptiometry (DEXA), as is TBW estimated by BIA 
and determined by D2O dilution.32 Based on a regression 
equation developed for critically ill patients, an accurate 
BCM assessment can be obtained from BIA parameters and 
anthropometric variables; BCM could be less affected by 
massive fluid shifts than other BIA parameters especially 
in acute kidney injury patients. Therefore assessment of 
BCM should be preferred in severe fluid disturbances in 

TABLE 157.4

Body Composition Analysis Based on Bioimpedance

TISSUE MODEL

Fat-free mass in kg 
[Deurenberg] 0 671 104

2

.
( )× × height in m

resistance in ohms
+ (3.1 × Gender value) + 3.9
Gender value = 0 if female, 1 if male

Total body water 
(hemodialysis 
patients) in kg 
[Chertow]

(−0.07493713 × age) − (1.01767992 × 
points for gender) + (0.12703384 × 
height) − (0.04012056 × weight) + 
(0.57894981 × points for diabetes) 
− (0.00067247 × weight × weight) 
− (0.03486146 × age × points for 
gender) + (0.11262857 × points for 
gender × weight) + (0.00104135 × 
age × weight) + (0.00186104 × 
height × weight)

Height in cm; weight in kg; age in 
years

Gender point = 0 if female, 1 if male
Diabetes point = 1 if diabetic, 0 if not

Total body muscle 
mass in kg 
[Kaysen]

9.52 + 0.331 × ICV (by BIS; in mL) + 
2.77 (male; 0 if female) + 0.180 × 
weight (kg) − 0.133 × age (in years)

Fat-free mass (in kg) 
[Chumlea]:

 Males
− + × +10 68

0 65 2

.
. ( )

( )
height in cm

resistance in ohms
0.26 × weight (in kg) + 0.02 × 
resistance (in ohm)

 Females − + ×
9 53

0 69 2

.
. ( )

( )
height in cm

resistance in ohms
+ 0.17 × weight (in kg) + 0.02 × 
resistance (in ohm)

BIS, Bioimpedance spectroscopy; ICV, intracellular volume.
Data from The Medical Algorithms Company. Available at www.medal 
.org.
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5 L. Receiver-operating characteristics analysis revealed 
that the sensitivity of BVM was moderate in median fluid 
overload ranges between 1 and 3 L and highest for fluid 
overload more than 3 L.43

A novel tool used to monitor hemodynamic parameters 
in ICU is the transpulmonary thermodilution method; this 
seems to be accurate and less invasive and has been proposed 
for use in intermittent hemodialysis to detect risk factors 
for intradialytic hypotension.44 Another study including 
32 ICU patients with transpulmonary thermodilution mea-
surements by PiCCO-device and sustained low-efficiency 
dialysis as renal replacement therapy reported a significant 
increment in cardiac index, central venous pressure, global 
end-diastolic volume index, and cardiac power index as a 
result of disconnection with re-transfusion at the end of HD 
treatment.45 However, these data should be considered with 
caution because there is evidence of the lack of precision in 
some parameters detected by this method when evaluated 
during hemodialysis treatment.46

Maggiore et al.36 first reported the beneficial effects of 
cooling dialysate on systematic hypotensive episodes during 
dialysis. A systematic review of the current literature on this 
issue concluded that reducing dialysate fluid temperature 
reduces IDH frequency by a factor of 7.1 and that postdi-
alysis mean arterial pressure was 11.3 mm Hg higher with 
cool-temperature dialysis.47 There may be an advantage 
in maintaining or reducing the core temperature with an 
automated feedback device (BTM, Fresenius Medical Care, 
Homburg, Germany) rather than making arbitrary reductions 
of dialysate temperature. Investigators in major random-
ized European trials concluded that active control of body 
temperature with an automated feedback device can improve 
significantly intradialytic tolerance in hypotension-prone 
patients, reporting a 50% reduction in rate of hypotensive 
episodes.48 A recent meta-analysis included 26 trials consist-
ing of a total of 484 patients; the results showed that in 
patients receiving chronic hemodialysis, reduced dialysate 
temperature may reduce the rate of intradialytic hypotension 
and increase intradialytic mean arterial pressure.49

Midodrine, an α1-adrenergic receptor agonist, adminis-
tered 30 minutes (5 mg orally) before the dialysis session 
improves intradialytic blood pressure. However, this agent 
should be used cautiously in patients who have congestive 
heart failure or who are taking beta blockers, digoxin, or a 
non-dihydropyridine calcium channel blocker.

Symptomatic IDH should be treated promptly through 
reduction of ultrafiltration rate and changing the patient 
to the Trendelenburg position; resistant IDH should be 
treated with 200 to 500 mL saline and possibly oxygen 
in the presence of hypoxemia. If severe IDH persists, an 
extended investigation including physical examination, elec-
trocardiogram, emergency echocardiography, and laboratory 
studies is warranted. Arrhythmia, myocardial infarction, 
pericardial tamponade, hemorrhage, hemolysis, pulmonary 
embolism, and air embolism should be considered in the 
differential diagnosis. Kidney Disease Outcomes Quality 
Initiative (KDOQI) guidelines on the evaluation and treat-
ment of IDH are available.50

Key Points

1. Knowledge of body composition is paramount in 
the care of critically ill patients.

2. Fluid status and nutritional condition can be 
delineated by clinical, anthropometric, biochemical, 
imaging, and bioimpedance means.

IDH and orthostatic hypotension after hemodialysis are 
independent predictors of mortality in patients undergoing 
chronic hemodialysis.40

IDH is the most common intradialytic problem, with 
an incidence of 5% to 40% of treatments depending on 
the definition of this complication, which varies from an 
asymptomatic percentage fall in systolic blood pressure 
to symptomatic hypotension requiring active treatment. 
Females, elderly patients with isolated systolic hyperten-
sion, patients with diabetes, and patients with autonomic 
neuropathy and low cardiac output at the start of dialysis41 
are at increased risk. In healthy subjects, blood pressure is 
maintained after removal of as much as 30% of the blood 
volume. In the dialysis population, however, the combination 
of autonomic and cardiac dysfunction, decreased venous 
return, and increased body temperature impairs the body’s 
ability to cope with the hemodynamic stress caused by 
ultrafiltration.

Major factors determining the hemodynamic response are 
the ultrafiltration rate, the plasma refilling rate, and their 
instantaneous difference. The plasma refilling rate is the 
unit per time difference between filtration and absorption 
of plasma water in the capillary bed plus the lymphatic 
flow. Fluid dynamics in the capillary are governed by 
Starling forces, with the plasma oncotic pressure as a main 
absorptive factor.

The threat of IDH can be reduced by reduction of the 
ultrafiltration rate (through reduction of the interdialytic 
weight gain and thus the ultrafiltration volume and/or 
prolongation of ultrafiltration time) and by support of the 
body’s ability to deal with the hemodynamic challenges 
caused by ultrafiltration—through improving vasoconstric-
tion, treating congestive heart failure, or raising the serum 
albumin concentration.

Diastolic dysfunction results from impaired myocardial 
relaxation and reduced distensibility of the left ventricle. 
Systolic dysfunction in most cases is due to myocardial 
ischemia from coronary artery disease. Autonomic neuropa-
thy is common in patients with diabetes. Therapy with drugs 
that interfere with vasoconstriction and other hemodynamic 
responses to ultrafiltration should be avoided immediately 
before or during hemodialysis.

Raising the dialysate sodium concentration to 150 mmol/L 
at the beginning of treatment is effective in reducing the 
chance of episodes of hypotension and maintaining blood 
pressure in chronic dialysis patients, but the price paid 
consists of increases in interdialytic weight gain and blood 
pressure as well as aggravation of the problems of overhydra-
tion. Besides that, this strategy may not be useful in critically 
ill patients; a retrospective cohort study in ICU patients 
with renal failure showed no benefit of sodium profiling.42

Reduction of interdialytic weight gain by reducing the 
sodium intake to less than 2300 mg (equivalent to 6 g sodium 
chloride) per day is an important preventive measure for 
IDH. Iatrogenic salt loading results from high dialysate 
sodium concentration or from application of intravenous 
saline solutions during dialysis.

Monitoring of relative changes in blood volume with a 
blood volume monitor (BVM) helps estimate plasma refill-
ing rate in relation to ultrafiltration rate. A drop in blood 
volume greater than 15% during a hemodialysis session 
sharply raises the risk of IDH. On the other hand, IDH is 
unusual with a drop in blood volume smaller than 5%. An 
unchanged blood volume despite ongoing ultrafiltration 
suggests fluid overload. In a recent study predialysis fluid 
overload (by bioimpedance spectroscopy) and BVM data 
were collected in 55 chronic hemodialysis patients in 317 
treatments. Average relative blood volume curves were well 
separated in different fluid overload groups between 0 and 
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3. Body composition can be assessed reliably by 
bioimpedance techniques.

4. Reducing interdialytic weight gain is the corner-
stone in the prevention of intradialytic hypotension 
(IDH). Cool dialysate has proven beneficial in 
IDH-prone patients.
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