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CHAPTER 155 

Correction of Water, Electrolyte, and 
Acid-Base Derangements by Hemodialysis 
and Derived Techniques
Blaithin A. McMahon, Tessa Novick, and Patrick T. Murray

OBJECTIVES
This chapter will:
1. Discuss the clinical implications of using different dialysate 

sodium concentrations when performing intermittent 
hemodialysis.

2. Describe how to safely manage patients with different 
degrees of hyponatremia and hypernatremia using intermit
tent hemodialysis.

3. Review the factors that influence potassium removal during 
intermittent hemodialysis.

4. Explain the effects of different dialysate calcium con
centrations on patients’ electrolyte abnormalities and 
hemodynamics.

5. Show how to adjust dialysate bicarbonate concentration 
to manage acidbase abnormalities and to understand its 
effects on serum calcium and potassium concentrations.

Acute kidney injury (AKI) frequently develops in the most 
critically ill patients in the intensive care unit (ICU), often 
as a component of multi-organ system failure. The constel-
lations of electrolyte and acid-base abnormalities seen in 
these patients vary according to the clinical situation but 
are often highly complex. The introduction of hemodialysis 
can have profound effects on these metabolic perturbations, 
and the clinician must understand these mechanisms to 
optimize clinical outcomes of dialytic intervention and 
avoid further complications.

This chapter explores the use of intermittent hemodialysis 
(IHD) to correct electrolyte and acid-base abnormalities. 
A great deal of the literature concerning this topic comes 
from the end-stage renal disease (ESRD) population and 
must be extrapolated with caution; patients with ESRD have 
chronically developed compensatory physiologic responses 
to the uremic milieu, generally have better vascular access 
than patients with AKI, and are as a rule more hemodynami-
cally stable than patients in the ICU. However, the data 
collected from studies on ESRD do provide valuable insight 
into the utility of IHD to correct acid-base and electrolyte 
abnormalities in patients with renal failure in the ICU. 
Patients with ESRD who are undergoing maintenance 
hemodialysis frequently are cared for in the ICU, and the 
presence of existing arteriovenous access (fistula or graft) 
is a major incentive to optimize and continue the use of 
intermittent dialysis in such patients whenever possible, 
even in the presence of low-dose vasoactive drug support, 
as opposed to placement of temporary dialysis access to 
switch to continuous renal replacement therapy (CRRT). 
Finally, IHD may be preferred over CRRT as the modality 
of choice in some cases, because it allows the clinician to 
remove small solutes such as potassium more rapidly and 
efficiently in acute life-threatening conditions.1

SODIUM ABNORMALITIES

Dysnatremias (hypo- and hypernatremia) are common in 
patients admitted to the ICU with prevalence approaching 
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patients with ESRD. The correct approach to acute dialysis 
of a patient with significant hyponatremia or hypernatremia 
depends on the severity and chronicity of the dysnatremia, 
and dialysis should never be initiated in such a patient 
without careful consideration of both factors. Hyponatremia, 
a common complication in the critically ill patient, is 
usually asymptomatic but can cause central nervous system 
manifestations, generally at serum sodium concentrations 
below 125 mEq/L. The correction of hyponatremia can be 
complicated by osmotic demyelination if the serum sodium 
concentration is raised rapidly in the setting of chronic 
hyponatremia (with associated cerebral accommodation to 
hypotonicity). Even in the symptomatically hyponatremic 
patient, it generally is believed that a targeted extent of 
correction should not exceed 8 to 10 mmol/L in the first 24 
hours but may have a lower rate of correction (4-6 mmol/L in 
24 hours) in select clinical situations, such as malnutrition, 
alcohol liver disease, and hypokalemia. Similarly, patients 
with severe, symptomatic hyponatremia should be treated 
with 3% saline given as 100-mL bolus(es) to raise the plasma 
sodium concentration rapidly by 4 to 6 mmol/L,11 to achieve 
clinical improvement, followed by slower correction. In 
the setting of asymptomatic hyponatremia, there is no 
indication for acute correction, and the targeted rate of 
correction should not exceed 8 to 10 mmol/L/day.11 During 
a typical average-efficiency, 4-hour hemodialysis session, 
the expected postdialysis serum sodium concentration is 
typically at the midpoint between the predialysis serum 
sodium concentration and the dialysate sodium concentra-
tion. Because the change in serum sodium generated with 
this IHD may be too rapid, it may become necessary to use 
a lower dialysate sodium concentration, shorter dialysis 
time, or a slower blood flow rate to dialyze the patient 
safely. Accordingly, more frequent dialysis may be neces-
sary to achieve adequate clearance for azotemia control 
or hyperkalemia while safely correcting hyponatremia. 
If overcorrection occurs with hemodialysis, intravenous 
dextrose or free water administration may be required to 
restore the serum sodium to the desired target level.

A similar approach is necessary in the hypernatremic 
patient undergoing dialysis. In patients with elevated serum 
sodium levels that have developed suddenly (over the course 
of hours), rapid correction (1 mmol/L/hr) is recommended 
and is associated with minimal side effects. However, in 
the patient with hypernatremia of prolonged or unknown 
duration, an accumulation of organic solutes in the brain 
cells requires several days to dissipate. The maximal rate 
of correction in chronic hypernatremia should not exceed 
0.5 mmol/L/hr, with a targeted drop in serum sodium 
concentration of up to 10 mmol/L/day.12 As described 
previously, the use of a dialysate sodium concentration 
below the serum sodium concentration can be complicated 
by hemodynamic instability, as fluid shifts from the extra-
cellular to the intracellular compartment and the plasma 
volume contracts. Therefore the use of a dialysate sodium 
concentration similar to that found in the serum, and slow 
correction of the hypernatremia with hypotonic intravenous 
fluids generally is recommended.

However, there are several published case reports describ-
ing the rapid correction of hypernatremia with hemodialysis. 
In one report, three patients with severe hypernatremia and 
volume overload were treated with low dialysate sodium 
concentrations (110 mEq/L), causing reductions in serum 
sodium of 19 to 34 mEq/L over the course of 3.5 to 4 hours.13 
Other reports have described the use of IHD, one with a 
dialysate sodium of 138 mEq/L in a hypovolemic hyperna-
tremic patient who required daily 2-hour treatments,14 and 
the other in burn patients with hypernatremic AKI.15 Despite 

20% to 30%.2 Even mild degrees of hyponatremia and 
hypernatremia confer markedly increased risk for mortality 
and increased length of stay.2 Sodium is the principal deter-
minant of plasma and dialysate osmolality, and the use of 
IHD can affect dramatically a patient’s osmotic homeostasis. 
As water flows from an area of lower osmolality to one 
of higher osmolality, the associated fluid shifts can affect 
hemodynamic stability adversely (when water moves from 
intravascular to tissue compartments), cerebral fluid and 
osmolyte homeostasis (when fluid shifts in either direc-
tion), or both. Sodium crosses hemodialysis membranes 
by means of diffusion or convection. Diffusion depends 
on the concentration gradient and the molecular weight 
of the solute, but not all ionized sodium is diffusible. The 
presence of negatively charged plasma proteins results 
in some cation retention to maintain electrical neutrality 
(the Donnan effect). However, the ionized sodium in the 
dialysate is completely available for diffusion, because there 
are no anionic proteins there. Because of this discrepancy, a 
diffusive gradient of zero can be achieved only by choosing 
an ionized sodium concentration in the dialysate of about 5 
to 10 mEq/L less than the ionized sodium concentration in 
plasma water.3,4 Other factors that may change the amount 
of sodium available for diffusion are dialysate temperature 
and pH, and the addition of other ions, such as carbonate, 
bicarbonate, and phosphate. In contrast, convective transport 
(ultrafiltration) of sodium occurs when plasma water is 
driven across the membrane by either a hydrostatic or an 
osmotic force.

The choice of dialysate sodium concentration depends on 
the goals to be achieved and has changed over the years.5,6 
In the past, a lower dialysate sodium concentration, typi-
cally less than 135 mEq/L, was used to limit interdialytic 
hypertension and thirst.7 This approach, however, can be 
complicated by headaches, muscle cramps, nausea, and 
vomiting4 and may play a role in the dialysis dysequilibrium 
syndrome.8 The use of a dialysate sodium concentration 
below the serum sodium concentration results in fluid shifts 
from the extracellular compartment to the intracellular 
compartment, because diffusion lowers serum sodium and 
plasma osmolality.7 Ultimately, the total water loss from 
the extracellular space exceeds the total water loss from 
the body. In contrast, the use of a dialysate with a higher 
sodium concentration than the serum sodium concentration 
causes water removal from intracellular and extracellular 
compartments and minimizes the effect of plasma volume 
loss.6,7

The mechanism by which higher dialysate sodium con-
centration maintains a greater proportion of plasma volume 
while accomplishing ultrafiltration is especially important in 
the context of AKI. Many patients with AKI are hypervolemic 
but are also hypotensive from cardiogenic or septic shock, 
and the ability to produce significant ultrafiltration while 
minimizing hemodynamic impact is an important tool in 
such cases. The improvement in hypertension control9,10 and 
reduced thirst associated with lower dialysate sodium are 
optimal in the outpatient setting.7 However, in the critically 
ill patient, thirst is less relevant, and hypotension may be 
detrimental. For this reason, the use of a dialysate sodium 
concentration of 140 to 145 mEq/L often is advised for 
acute dialysis,6 and the same principle underlies the use 
of sodium modeling to prevent or manage intradialytic 
hypotension.

Hemodialysis of a patient with an abnormally low or 
elevated serum sodium concentration deserves special 
consideration. Dialysis is not used typically to treat these 
conditions but is often necessary in patients with AKI in 
whom dysnatremias have developed, or in critically ill 
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concentration. The extent of potassium removal and the 
drop in its serum concentration are generally less impressive 
over the next 2 hours and plateau after 3 hours. The rate of 
potassium removal diminishes as the concentration gradient 
between serum and plasma equalibrates.

Potassium does not freely diffuse between the intracellular 
and extracellular compartments, and the amount removed 
from each compartment during hemodialysis depends on a 
number of factors. Several studies have shown that potas-
sium elimination in dialysis occurs with little change in 
serum potassium during the fourth and subsequent hours of 
conventional hemodialysis (Fig. 155.2).18,19,21 One study of 
nine patients undergoing dialysis for 5 hours with a dialysate 
potassium concentration of 1.5 mmol/L demonstrated that 
two thirds of extracellular potassium was removed during the 
first hour, and 15% was removed during the last 2 hours.21 
It has been estimated that 28% to 47% of the potassium 
dialyzed in a standard 4-hour treatment comes from the 
extracellular compartment.17,22 These findings demonstrate 
the variability in the rates of potassium transport across 
the dialyzer and cell membranes. Thus potassium removal 
is difficult to predict and cannot be described adequately 
with a “single-pool” model.

Variability in potassium removal often is coupled with a 
significant “rebound” of serum potassium in the hours after 
dialysis, a phenomenon that has been well documented.23 
An average of 35% of the serum potassium concentration 
reduction achieved during dialysis is reversed within the first 
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FIGURE 155.1 Changes in plasma potassium (mmol/L) during and up 
to 6 hours after hemodialysis. *, Significantly lower than predialysis 
value (p < .001); †, significantly higher than end-dialysis value (p 
< .001). (From Blumberg A, Roser HW, Zehnder C, Müller-Brand 
J. Plasma potassium in patients with terminal renal failure during 
and after haemodialysis: Relationship with dialytic potassium 
removal and total body potassium. Nephrol Dial Transplant. 
1997;12:1629–1634.)
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FIGURE 155.2 Plasma potassium concentrations (top) and potassium 
mass removed (MK) (bottom) during standardized high-flux hemo-
dialysis with potassium-free (K0), potassium 1 mmol/L (K1), and 
potassium 2 mmol/L (K2) dialysates. Potassium concentrations 
and MK values were measured at 60-minute intervals. (From Zehnder 
C, Gutzwiller J-P, Huber A, et al. Low-potassium and glucose-free 
dialysis maintains urea but enhances potassium removal. Nephrol 
Dial Transplant. 2001;16:78–84.)

the lack of neurologic complications seen in these selected 
patients, large changes in serum sodium concentrations 
are best avoided over the time span of IHD. Correction of 
severe hypernatremia with renal replacement therapy (RRT) 
is probably more safely achieved with less efficient, more 
titratable techniques, such as sustained low-efficiency daily 
dialysis (SLEDD) or continuous RRT.

POTASSIUM ABNORMALITIES

Hyperkalemia is a common and potentially fatal complica-
tion in critically ill patients with AKI. Regardless of the cause 
of the hyperkalemia, hemodialysis generally is recognized 
as the most rapid means of lowering the serum potassium 
concentration.16 This is particularly important because the 
patient with AKI has not developed some of the protective 
measures of the patient with ESRD, such as chronically 
upregulated colonic potassium secretion, and often is 
subjected to conditions causing decreased cellular uptake 
of potassium, such as metabolic acidosis and catecholamines. 
The role of catecholamines is particularly complicated, 
because α-adrenergic receptor stimulation is known to 
cause potassium efflux from cells, whereas β-adrenergic 
receptor stimulation mediates cellular uptake of potassium.17

The rate of potassium removal with hemodialysis and 
the associated changes of serum potassium concentration 
have been the subject of many studies. The principal factors 
affecting these issues in the ESRD population include the 
pre-dialysis serum potassium concentration, the surface 
area of the dialyzer, the blood flow rate, the duration of 
treatment, type of dialysis access, and the dialysate potas-
sium concentration.17 An additional factor to consider in 
the less-stable patient is the level of potassium generation, 
because intracellular potassium is released into the serum. 
A variety of studies have evaluated patterns of potassium 
removal during hemodialysis (Fig. 155.1).18–20 Mass removal 
of potassium is greatest in the first 60 minutes, which 
correlates with the greatest decrease in serum potassium 
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higher glucose bath is associated with less potassium 
removal but a similar decline in serum potassium con-
centration.22 The higher dialysate glucose concentration 
results in higher serum glucose and insulin levels, which 
in turn cause the transport of potassium into the cells, 
lowering the serum potassium concentration. However, the 
corresponding decrease in serum potassium concentration 
results in a diminished potassium gradient between the 
serum and dialysate, impairing diffusive dialytic potassium 
clearance. Similarly, some of the methods used to lower 
serum potassium acutely in the patient with AKI act by 
shifting potassium into cells, decreasing the efficacy of 
dialytic potassium removal, and cause greater rebound levels 
in the following hours. For example, a study examining 
the effects of nebulized albuterol on potassium removal 
in seven patients with ESRD showed that the albuterol 
caused a substantial decrease in the magnitude of potassium 
removal by dialysis.32

Theoretically, intracellular potassium shifts induced by 
insulin or glucose therapy and, perhaps, sodium bicarbonate 
similarly could degrade the efficacy of dialytic potassium 
removal. In fact, acute administration of sodium bicar-
bonate can have paradoxical effects on serum potassium 
levels; the associated acute increase in osmolality actually 
shifts potassium out of tissue and raises serum potassium 
transiently. However, ultimately, alkalinization results in 
intracellular potassium shift, and this in turn may impair 
dialytic potassium removal.24 One study that examined 
the effects of different dialysis bicarbonate concentrations, 
ranging from 27 to 39 mmol/L, during the hemodialysis of 
eight patients with ESRD found that the serum potassium 
diminished significantly more with the higher bicarbon-
ate bath, with a difference seen in the first 15 minutes of 
treatment. However, the cumulative potassium removal was 
not significantly different among the different treatments, 
suggesting a large effect of intracellular potassium shift.33 
Similarly, for patients with hypokalemia, lower dialysate 
bicarbonate concentration (25 mmol/L) and higher potassium 
should be used.

ABNORMALITIES OF DIVALENT IONS

Calcium abnormalities are very common in the critically ill 
population. The diagnosis of hypocalcemia is complicated 
by limitations in the interpretation, which are principally 
the result of the effects of hypoalbuminemia and disorders 
of acid-base balance on the total calcium concentration. For 
this reason, we rely on measurements of ionized calcium 
to assess an individual’s true serum calcium levels.34

Hypocalcemia is associated with AKI because of 
phosphate retention, impaired formation of 1,25- 
dihydroxycholecalciferol, and parathyroid hormone resis-
tance.35 Severe hypocalcemia, defined as iCa<1 mmol/L, 
independently predicts mortality in patients with AKI 
needing renal replacement therapy.36–38 Therefore the effect 
of dialytic therapy on calcium homeostasis is critical in 
the ICU.

The diffusion of calcium during hemodialysis depends 
on the gradient between serum and dialysate calcium con-
centrations. Ultrafiltration (UF) is a critical component as 
well, especially in modalities using larger UF volumes with 
replacement fluid (hemofiltration and hemodiafiltration), 
because the calcium losses by convective transport can 
exceed the gain of calcium by diffusion.30 Calcium mass 
balance studies have shown that in the normocalcemic 
patient undergoing long-term dialysis, a dialysate calcium 

hour after dialysis, and a further 35% is reversed within 6 
hours.18,19,23,24 Although the extent of rebound is not entirely 
predictable, a close correlation between the predialysis and 
6-hour postdialysis serum potassium concentrations has been 
described and accounts for one of the factors responsible for 
the high incidence of sudden cardiac death in the 12 hours 
after dialysis.24,25 This finding should be considered in the 
patient who has severe hyperkalemia; a greater rebound 
should be expected after the treatment.23–25 Unlike the patient 
with ESRD, the patient with AKI treated with conventional 
hemodialysis may require repeated courses of dialysis more 
often than thrice weekly to control refractory hyperkalemia.

The amount of potassium removed by a single hemodi-
alysis session varies depending on the dialysate potassium 
concentration. Most studies have used dialysate baths with 
potassium concentrations ranging from 0 to 3 mmol/L.18,19,22,26 
Zehnder et al.20 measured potassium removal in 12 patients 
with ESRD who underwent high-flux hemodialysis with a 
polysulfone filter using a blood flow rate of 300 mL/min and 
a dialysate flow rate of 500 mL/min over a 4-hour session. 
In these patients, potassium removal was 117.1 mmol ± 
10.3 mmol with the zero-potassium bath and 63.3 ± 5.2 mmol 
with the 2 mmol/L dialysate. The greater potassium removal 
with low-potassium dialysate is tempered by the concern 
for intradialytic or early postdialytic hypokalemia and its 
complications.26 There is conflicting evidence in the ESRD 
population regarding the association between lower dialysate 
potassium levels, ventricular arrhythmias, and mortality, 
and recommended dialysate potassium concentration varies 
according to monthly predialysis potassium level.26,27 For 
this reason, zero-potassium bath concentrations should be 
avoided. The study by Basile et al. confirmed that the rate of 
potassium removal during dialysis is largely a function of the 
predialysis plasma potassium concentration, the higher the 
initial plasma concentration, the greater the gradient between 
plasma and dialysate, and therefore the greater the potas-
sium removal.27 However, there are no data on the impact of 
dialysate potassium in patients with AKI. Another factor that 
must be considered is the blood flow rate, which is typically 
lower with the use of temporary catheters in the setting of 
AKI. In a crossover prospective study reported by Gutzwiller 
et al., 13 patients with ESRD underwent dialysis using blood 
flow rates of 200, 250, and 300 mL/min. Potassium removal 
was significantly higher with the use of higher blood flow 
rates.28 This finding provides further evidence that methods 
that improve solute clearance, such as higher blood flow 
rates and limiting of recirculation, should be expected to 
improve the efficacy of potassium removal. Furthermore, 
observations of SLEDD have shown significant declines in 
potassium levels over longer periods,29 but these findings 
require further study and comparison with results in IHD.

Furthermore, several clinical situations can affect the 
transport of potassium between the intracellular and extracel-
lular compartments and the extent of potassium removal.30 
A higher dialysate sodium concentration results in a higher 
serum sodium concentration, which causes a significant 
rise in serum potassium. Twelve patients were enrolled in 
a crossover trial to receive hemodialysis using a dialysate 
sodium concentration of 143 mmol/L or 138 mmol/L; the 
treatments using the higher sodium bath were associated 
with a greater rebound in potassium, which was statisti-
cally significant at 1 hour after dialysis.31 The underlying 
mechanism is thought to be a solvent drag caused by the 
increased tonicity of the extracellular fluid, which inhibits 
the transfer of potassium into cells.

The presence of glucose in dialysate also influences 
potassium removal. Studies comparing dialysate glucose 
concentrations of 0 and 200 mg/dL have shown that the 
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fluids to lower calcium levels. In these cases, calcium removal 
can be achieved with low dialysate calcium concentrations 
(such as 1 to 2 mEq/L), but in general, calcium-free hemo-
dialysis should be avoided. In one retrospective analysis 
of 33 patients undergoing calcium-free hemodialysis for 
management of severe hypercalcemia, adverse cardiovascular 
effects occurred in 43% of patients, and its use should 
be restricted to patients with severe clinical symptoms or 
advanced renal impairment.46

Hyperphosphatemia in critically ill patients with AKI 
is not uncommon. When tissue breakdown results in AKI 
and severe hyperphosphatemia, such as in tumor lysis 
syndrome or rhabdomyolysis, hypocalcemia may be life 
threatening, and acute dialysis (intermittent or continuous) 
is required to safely raise serum calcium concentration 
while lowering serum phosphate concentration. Similar to 
the rebound seen in potassium levels after hemodialysis, 
there is a postdialysis hyperphosphatemia due to release 
of phosphate from bones. When serum phosphate levels 
were drawn from six patients with ESRD every 30 minutes 
during their treatments, a nadir was reached at 30 to 150 
minutes, but phosphate levels 4 hours after dialysis did not 
differ significantly from the predialysis levels.47,48

In patients with ESRD, who generally are able to achieve 
higher blood flow rates with superior hemodialysis access, 
only approximately 900 mg of phosphorus is removed with 
each treatment.49 Improved clearance has been demonstrated 
with 8-hour nocturnal hemodialysis, suggesting that 
longer periods of treatment with higher solute clearance 
may be useful in patients with greatly elevated phosphate 
concentrations.50 A similar improvement was noted in a 
series of SLEDD therapies performed over 12 hours. In 
this study of 145 treatments, there was a drop in average 
serum phosphate concentration from 5.9 ± 2.1 mg/dL 
before treatment to 3.4 ± 1.0 mg/dL 1 hour after treatment 
was completed.29 There is no significant difference in the 
prevalence of hypophosphatemia in patients undergoing 
different durations of extended daily hemodialysis of 10 
versus 6 hours.51

Continuous RRT also effectively lowers serum phos-
phorus levels, typically requiring supplementation within 
1 to 2 days of initiation.52 This modality may be preferred 
for control of severe hyperphosphatemia in patients with 
tumor lysis syndrome or other tissue breakdown and 
may be combined with an initial hemodialysis therapy to 
lower the serum potassium concentration rapidly if severe 
hyperkalemia is also present.

AKI in malnourished patients, or patients who are severely 
catabolic with prolonged ICU stays, can be accompanied by 
hypophosphatemia. In these cases, it is especially important 
to provide oral or intravenous phosphorous supplementation 
before initiating hemodialysis to prevent worsening of the 
hypophosphatemia with resultant multi-organ dysfunction. 
Methods of using phosphate-enriched hemodialysate for 
patients with normal phosphate levels who have acute over-
dose of dialyzable intoxicants requiring prolonged dialysis 
(e.g., lithium, ethylene glycol, methanol) also have been 
described; the dialysate can be prepared by adding sodium 
phosphate salts to liquid concentrates of a bicarbonate-based 
dialysate generating system.50

Magnesium has significant effects on the stability of 
excitable membranes and hemodynamic stability. Although 
hypomagnesemia increases risk for cardiac arrhythmias, 
higher levels of magnesium may be detrimental because 
the substance acts as a vasodilator and can contribute to 
hypotension in the unstable patient.39,53 The kidneys are 
the dominant site of magnesium excretion, which typically 
measures 100 mg a day, so AKI often is accompanied by 

concentration of 2.5 mEq/L is associated with a negative 
calcium balance during treatment and a concentration of 
3.5 mEq/L is associated with a gain of calcium balance.30 
Given these findings, the standard dialysate calcium con-
centration for chronic hemodialysis in many institutions 
has been reduced to 2.5 mEq/L to decrease the potential 
long-term impact of dialysate-derived calcium on vascular 
calcification in atherosclerotic patients and to avoid hyper-
calcemic suppression of parathyroid hormone as a potential 
contributor to adynamic bone disease.30,39–41 However, that 
approach is not recommended in the setting of AKI, particu-
larly in the hemodynamically compromised patient. Serum 
ionized calcium concentration during dialysis has been 
shown to correlate directly with myocardial contractility 
and vascular reactivity.42 Similarly, small studies compar-
ing dialysate calcium concentrations of 2.5 mEq/L and 
3.5 mEq/L have found significantly lower blood pressures 
in patients dialyzed with the lower calcium concentration, 
with more clinically relevant differences in patients who 
have a greater degree of heart dysfunction.43,44 (Fig. 155.3). 
Dialysate calcium concentrations of 2.5 mEq/L also have 
been associated with an increased QT dispersion, increasing 
risk for ventricular arrhythmias.30,33 On the basis of these 
studies, a dialysate calcium concentration of 3.0 mEq/L or 
greater generally is recommended for the patient with AKI. 
This is especially true in the patient with combined hypocal-
cemia and metabolic acidosis; the alkalinizing effect of acute 
dialysis initiation in such a patient may precipitate tetany by 
lowering serum ionized calcium concentration. Accordingly, 
the use of a lower-concentration bicarbonate bath (25 mEq/L) 
also is recommended for initial dialytic therapy of severely 
hypocalcemic patients with AKI, even if they have con-
comitant metabolic acidosis, to decrease the potential for 
precipitating this complication. Challenges in treating these 
patients can persist despite modifications in bicarbonate bath 
concentrations. A retrospective study examining 44 patients 
who received IHD with a dialysate calcium concentration of 
3.5 mEq/L found that there was no change in the proportion 
of patients with calcium abnormalities, which remained 
near 50% of the sample, although hypercalcemia made up 
36.1% of these abnormalities after treatment.45

Hypercalcemia is encountered less commonly in the 
ICU but can occur in a patient with AKI, especially in 
the setting of a malignancy. Hemodialysis is indicated in  
the presence of severe symptoms refractory to medical 
therapy or when the presence of renal or cardiac failure 
prevents the administration of large volumes of intravenous 
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of metabolic and respiratory acidoses. It has been argued 
that alkali therapy can be used to maintain a more physi-
ologic pH in the patient with severe acidosis to prevent or 
reverse the detrimental consequences of severe acidemia.63 
Routine use of bicarbonate for treatment of severe acidemia 
and lactic acidosis in the critically ill is a controversial 
subject, and current opinion does not favor routine use of 
bicarbonates.64–66

Reasons for the absence of clear advantage from bicar-
bonate administration include increased plasma PaCO2, 
hyperosmolality, hypernatremia, volume overload, and pH 
overcorrection resulting in metabolic alkalosis. Additional 
risks of sodium bicarbonate administration include reduc-
tion of ionized calcium, which, in turn, decreases cardiac 
output, and cellular swelling and dysfunction resulting from 
acceleration of cellular influx of sodium and calcium in 
response to worsening intracellular acidosis.64,67 However, 
much of the risk surrounding bicarbonate administration is 
centered around intravenous bicarbonate use, and not with 
bicarbonate buffering seen during hemodialysis, a setting in 
which risks of hypernatremia, hyperosmolality, and volume 
overload are regulated.

Hemodialysis is often necessary in patients with severe 
acidemia who have a respiratory acidosis that cannot be 
metabolically compensated for by the injured kidneys. In 
these cases, the use of a higher bicarbonate concentration 
on hemodialysis is recommended to maintain a more physi-
ologic pH and provide more comprehensive renal support.

The advent of hybrid therapies, such as SLEDD and 
sustained low-efficiency daily diafiltration (SLEDDF), has 
changed the management of critically ill patients in many 
centers. Specific information related to handling of the acid-
base balance using these therapies still is being acquired, 
but previous studies have shown a general increase in serum 
bicarbonate after treatment. In a study of 37 patients who 
underwent SLEDD using a dialysate flow rate of 100 mL/
min, a blood flow rate of 200 mL/min, and a dialysate 
bicarbonate concentration of 35 mmol/L over 12 hours, the 
average serum bicarbonate level after treatment was 24.4 
± 3.2 mmol/L.29 A study of 56 treatments using sustained 
low-efficiency daily diafiltration in 24 critically ill patients 
with similar flow rates over a span of 8 hours using a 
dialysate bicarbonate concentration of 26 mmol/L resulted 
in an average serum bicarbonate level of 23.3 ± 2.7 mmol/L 
after treatment.68

CONCLUSION

IHD continues to play an important role in the management 
of critically ill patients with AKI. Many of the electrolyte 
and acid-base disturbances present in these individuals 
can be corrected with proper management and an under-
standing of the capabilities and limitations of hemodialysis 
and other renal replacement techniques. Some critical 
electrolyte abnormalities are best corrected rapidly with 
acute hemodialysis, particularly severe hyperkalemia. Other 
abnormalities, however, such as symptomatic hyponatremia 
with severe renal failure, are probably better managed with 
slower, more titratable techniques such as CRRT. A combina-
tion approach using IHD followed by CRRT to prevent 
rebound elevation of serum potassium and phosphorus 
with recurrent acidosis is probably optimal for patients with 
tissue necrosis or some intoxications, such as with lithium. 
Despite the growing range of renal replacement modality 
options, IHD remains an essential option for RRT in the ICU  
setting.

hypermagnesemia. Hypomagnesemia is associated positively 
with intradialytic hypotension.54,55 Dialysates with lower 
magnesium concentrations are available, but the use of 
zero-magnesium dialysate often is complicated by severe 
muscle cramps. Interestingly, one study showed that when a 
dialysate solution contains low magnesium (0.5 mEq/L) and 
a calcium concentration of 2.5 mEq/L, hypocalcemia and 
hypomagnesemia can be induced, causing a greater degree 
of intradialytic hypotension.56 The changes in calcium and 
magnesium are more dramatic when convective clearance 
becomes dominant, such as with the higher ultrafiltration 
volumes used in hemofiltration and hemodiafiltration.

ACID-BASE ABNORMALITIES

Hemodialysis plays an important role in management of 
acid-base abnormalities associated with AKI. Normally, 
a decrease in renal function causes an accumulation of 
acids and a corresponding decline in serum bicarbonate 
levels, resulting in metabolic acidosis.57 In the critically ill 
patient, however, the acid-base abnormalities can be highly 
complex and less predictable. In the context of metabolic 
acidosis, hemodialysis provides a buffer source that moves 
by diffusion into the blood to replace the bicarbonate titrated 
by the excess acid. Historically, this buffer source has been 
bicarbonate or acetate, but acetate no longer is used routinely 
as an alkali source in patients with AKI.58 Although sodium 
acetate undergoes oxidation to become bicarbonate in the 
blood, the delivery of acetate has been shown to exceed 
the body’s capacity to metabolize it. Acetate acts as a direct 
peripheral vasodilator and myocardial depressant, and its 
accumulation can have severe clinical ramifications in the 
critical care setting. Several factors play a role in contributing 
to this complication, including those related to the influx 
of acetate from the dialysate to the patient, such as shorter 
treatment time, higher efficiency dialyzers, and higher blood 
flow rates, and those related to the acetate metabolism, such 
as a reduction in muscle mass, malnutrition, increased age, 
hepatic dysfunction, and female gender.59,60

Bicarbonate solutions are prepared separately from the 
remainder of the dialysate because of the low solubility of 
sodium bicarbonate and its incompatibility in combined 
solution with calcium. The two components (bicarbonate 
and calcium-containing) then are combined in a given 
proportion by the dialysis machine, offering a wide range 
of final bicarbonate concentrations depending on the 
clinical situation. In the majority of patients with kidney 
failure, the dialysate bicarbonate concentration is kept at 
32 to 38 mmol/L to maintain a more physiologic pH.39,46 
The correction of acid-base disturbances with IHD occurs 
through the mechanism of diffusion, which is well suited 
for clearing the small solutes that factor into the calculation 
of pH and the strong ion difference (SID). The performance 
of hemodialysis is one of many factors in determining a 
patient’s serum bicarbonate concentration and depends on 
the dialysate composition, type of RRT, the duration of the 
treatment, the membrane used, blood and dialysate flow 
rates, and the extent of ultrafiltration.58,61 The mechanism of 
convection plays a larger role with other forms of intermit-
tent RRT, such as hemofiltration and hemodiafiltration. The 
same solutes that determine pH and SID easily cross the 
membrane with the ultrafiltration. As a result, maintenance 
of the serum bicarbonate concentration depends on the 
contents of the replacement fluid.62 The administration 
of bicarbonate through hemodialysis is part of a larger 
discussion regarding the role of bicarbonate in the treatment 
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Key Points

1. A higher dialysate sodium concentration, 140 to 
145 mEq/L, typically is used in the setting of acute 
kidney injury to improve hemodynamic stability.

2. A primary goal of intermittent hemodialysis should 
be to limit dramatic changes in the serum sodium 
concentration, especially in the setting of chronic 
hyponatremia.

3. Potassium removal by hemodialysis and its sub-
sequent rebound are subject to several factors, 
including the sodium and glucose content of the 
dialysate.

4. The bicarbonate concentration of dialysate can be 
manipulated at the time of hemodialysis to control 
the delivery of alkali to the patient with acid-base 
abnormalities.

5. The choice of calcium and magnesium concentra-
tions used in dialysate can have clinical implica-
tions for the hemodynamically unstable patient.
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