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CHAPTER 151 

Biocompatibility of the Dialysis System
Giordano Fumagall and Vincenzo Panichi

OBJECTIVES
This chapter will:
1.	 Present the fundamentals of biocompatibility of membranes 

and other factors contributing to the biocompatibility of 
dialysis.

2.	 Discuss the findings of meta-analyses concerned with the 
effect of biocompatibility on treatment outcomes.

Biocompatibility may be defined as “the ability of a biomate-
rial to perform its desired function with respect to a medical 
therapy, without eliciting any undesirable local or systemic 
effects in the recipient of that therapy, but generating the 
most appropriate beneficial response (…) and optimising 
the clinically relevant performance of that therapy”1.

In patients with severe AKI, renal replacement therapy 
(RRT) encompasses several modalities, including continuous 
RRT, prolonged intermittent RRT and intermittent hemodi-
alysis. All these treatments expose patients’ blood to non-
physiological materials, which include: dialyzer membrane 
and housing, tubing sets, dialysate and infusate. Contact with 
these materials may activate a variety of biological responses, 
involving humoral and cellular pathways, with clinical 
sequelae. Initially, biocompatibility studies mainly focused 
on the interaction between blood and dialysis membranes. 
To date, the concept of biocompatibility has greatly evolved 
and it may be regarded as the sum of interactions and 
biological responses elicited with blood exposure to all 
components of the hemodialysis system. This definition also 
includes the effects induced by manufacturing processes, 
sterilization modes, contaminants, leachables and particles. 
In this chapter we discuss the available evidence on the 
main issues related to the biocompatibility of the dialysis 

system and its clinical implications in the therapy and 
outcomes of patients with AKI.

DIALYSIS MEMBRANES AND DETERMINANTS 
OF BIOCOMPATIBILITY

The dialysis membrane is the largest surface of contact 
between blood and a nonphysiological material, therefore 
it is the main device where several biological responses 
are elicited. From a clinical perspective, it is appropriate to 
classify dialysis membranes according to permeability and 
biocompatibility characteristics. On the basis of chemical 
composition, membranes are grouped in those made of 
unmodified cellulose (Cuprophan), those in which the cel-
lulose structure is modified by replacing hydroxyl ions with 
hydrophobic substances and those based on synthetic poly-
mers. Among cellulose membranes, only cellulose diacetate 
(CDA) and cellulose triacetate (CTA) are still commercially 
available. Except for those made of ethylene vinyl alcohol 
(EVAL), most of the synthetic membranes are based on 
hydrophobic polymers: polysulfone (PS), polyethersulfone 
(PES), polyester polymer alloy (PEPA) polyacrylonitrile 
(PAN) and polymethylmethacrylate (PMMA). Hydrophobic 
polymers require to be rendered hydrophilic for improving 
solute transport, either by blending with hydrophilic agents 
(e.g. polyvinylpyrrolidone in PS and PES membranes), or by 
being produced as copolymer with hydrophilic compounds 
(e.g. sodium methallyl sulfonate in the PAN membrane 
AN69)2,3. Nowadays, synthetic membranes are the most 
frequently used in RRT and are considered more biocompat-
ible than those based on cellulose. However, reactivity to 
blood contact is exhibited by all membranes to some extent, 
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among different membranes. The AN69 has been found to 
be the most thrombogenic membrane, because of a high 
surface electronegativity, resulting from its sulfonate groups. 
Nevertheless, activation of coagulation can occur during 
dialysis with all membranes, since it may be triggered 
independently of the contact phase through expression of 
TF by leukocytes, release of active compounds by activated 
platelets, air microbubbles and blood flow turbulences9–11.

In the 1990s a new life threatening anaphylactoid reaction 
was described in patients dialyzed with the AN69 membrane, 
who were receiving angiotensin converting enzyme (ACE) 
inhibitors12. Negatively charged membranes also trigger the 
kallikrein-kinin system and activated kallikrein cleaves 
HMWK to release bradykinin. This vasoactive and pro-
inflammatory peptide is rapidly metabolized by the ACE 
and other peptidases. With simultaneous administration 
of ACE inhibitors, bradykinin is not degraded and high 
concentrations can be reached in the systemic circulation 
within the first minutes of hemodialysis session. Less 
severe anaphylactoid reactions were also described with 
PMMA membranes in patients treated with ACE inhibitors. 
Similarly, activation of the kallikrein-kinin system using 
PMMA filters was found to be related to their surface elec-
tronegativity, which is intermediate between the AN69 and 
other cellulosic and synthetic membranes13,14. Neutralizing 
the electronegativity of AN69 membranes, by coating the 
surface with a polyethyleneimine layer (AN69 ST), has 
been demonstrated to dramatically reduce kinin formation15.

Complement Activation
The complement system is a potent mechanism for the 
initiation and amplification of anaphylactic, oxidative and 
inflammatory responses. In the 1970s, Craddock and col-
leagues first proved that the transient leukopenia, observed 
with Cuprophan membranes, was due to pulmonary vascular 
leukostasis resulting from complement activation16. The 
complement cascade may be activated by three pathways: 
the classical pathway (CP), triggered by the C1q bond to 
antigen–antibody complexes; the mannan-binding lectin 
pathway (LP), triggered by the binding of lectin or ficolins 
to carbohydrates of pathogens; the alternative pathway 
(AP), directly triggered by foreign surfaces. The main 
event in complement activation is the cleavage of C3 into 
C3a and C3b, via two enzyme complexes, known as C3 
convertases: in the CP and LP, C2 and C4 form the C4b2a 
complex; in the AP, C3b creates the C3bBb complex added 
by factors B and D. Thereafter, the system converges on a 
common pathway where C5 is cleaved into C5a and C5b, 
via the classical or alternative C5 convertase. Finally, C5b 
recruits other components to form the terminal complement 
complex C5b-9, which causes cellular lysis, once inserted 
in cell membranes. Complement activation also releases 
the anaphylatoxins C3a and C5a, which bind to specific 
receptors on leukocytes, mast cells and endothelial cells. 
Anaphylatoxins may induce vasodilation, chemotaxis, mast 
cell degranulation and leukocyte activation. C5a and soluble 
C5b-9 activate platelets and up-regulate the expression of 
adhesion molecules, thereby promoting interactions between 
leukocytes and endothelial cells9,17. Finally, animal models 
on the pathogenesis of acute lung injury have implicated 
the role of anaphylatoxins and soluble C5b-918,19.

During hemodialysis, complement activation rapidly 
reaches its maximum within the first 30 minutes, thereafter 
it gradually returns to basal levels. The entity of activa-
tion closely depends upon the dialysis membrane type. 
Conventionally, it is believed that complement activation 
occurs via the AP, as a consequence of spontaneous 

because a universal biocompatibility does not exist: the 
absence of response in a single biological pathway does 
not automatically avoid activation of others.

Protein Adsorption
Blood exposure to artificial surfaces, such as dialysis mem-
branes, leads to the deposition of a plasma protein layer over 
the polymer and within the membrane pores. Protein adsorp-
tion is a complex phenomenon governed by hydrophobic 
and electrostatic interactions, hydrogen bonding and Van 
der Waals forces. Furthermore, it is influenced by several 
factors related to blood composition, chemical properties of 
proteins, physicochemical membrane characteristics (surface 
roughness, thickness, porosity, composition, hydrophobicity 
and charge) and operating conditions within the dialyzer 
(blood flow dynamics and temperature). It has been proposed 
that adsorption occurs in two ways. The first, known as 
Vroman effect, is a competitive deposition onto membrane 
surface of high molecular weight proteins, in which albumin, 
immunoglobulins, fibrinogen, factor XII (Hageman factor) and 
high molecular weight kininogen (HMWK) are sequentially 
adsorbed onto the membrane surface, one displacing the 
other. The second is a dynamic adsorption of low and 
medium molecular weight proteins within the membrane, 
which is dependent upon membrane characteristics and 
limited by its permselectivity4–6.

Adsorption of plasma proteins on dialysis membranes 
is of critical importance for their biocompatibility. Once 
adsorbed, proteins undergo conformational changes with 
possible autoactivation. Adsorbed proteins also modulate 
the membrane bio-reactivity, by triggering the humoral and 
cellular pathways. It has been shown indeed that protein 
layers with a low albumin/fibrinogen ratio may increase 
the thrombogenicity, by enhancing platelet adhesion to 
different membranes. Finally, protein adsorption may either 
modulate the biocompatibility of some synthetic membranes 
with great absorptive capability, by removing cytokines, 
anaphylatoxins and complement factor D, or impair both 
diffusive and convective transport, by forming a secondary 
resistance to mass transfer5–8.

Coagulation and Kallikrein-Kinin Systems
The coagulation system is activated during contact between 
blood and dialysis membrane. Coagulation is considered 
as a cascade of proteolytic reactions, ultimately resulting 
in fibrin clot and thrombus formation. Its triggering occurs 
either by surface mediated reactions (intrinsic pathway) or 
through expression of tissue factor (TF) by cells (extrinsic 
pathway). Thereafter, through activation of factor X, these 
systems converge on the common pathway to convert 
prothrombin to thrombin and produce insoluble fibrin9,10. 
The intrinsic pathway is thought to be prominently involved 
in triggering coagulation when blood is exposed to artificial 
surfaces, such as dialysis membranes. The contact phase 
proteins prekallikrein, HMWK, factor XI and factor XII are 
adsorbed onto biomaterial surfaces. Negatively charged 
surfaces easily trigger the intrinsic pathway: it depends 
on the conformational changes and self-activation of 
Hageman factor, induced by interactions with negative 
charges. However, the adsorbed protein layer may itself 
provide the required negative charges. Once activated, 
factor XII cleaves prekallikrein to kallikrein: this allows a 
reciprocal activation of kallikrein and Hageman factor as 
well as the triggering of coagulation, through the generation 
of activated factor XI. The procoagulatory activity varies 
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synthetic membranes elicit neutropenia and hypoxemia to 
a lower extent than Cuprophan ones. According to animal 
models, pulmonary leukostasis seems to be related to the 
expression of C5a receptors within the lungs. Both C5a 
and cellulosic membranes modulate the expression of 
several molecules (e.g. CD11b/CD18 and L-selectin) on 
leukocytes, thereby promoting their adhesion to endothelial 
cells. Similarly, reversal of leukopenia, observed towards 
the end of dialysis session, has been explained through a 
decrease in serum C5a levels and a reduced expression of 
its receptors on granulocytes26–28.

Leukocyte activation also leads to degranulation and 
release of reactive oxygen species (ROS) by neutrophils and 
production of inflammatory cytokines, such as interleukin-1, 
tumor necrosis factor-α and interleukin-6, by monocytes. 
The role of cytokines in mediating acute hypotensive and 
febrile reactions as well as metabolic, immunological and 
inflammatory changes was first introduced by Henderson 
and colleagues as “the interleukin hypothesis”29. Several 
studies have shown the role of cellulose membranes in 
triggering both cytokine and ROS production through direct 
and complement-mediated activation of leukocytes27,30. As 
discussed below, with synthetic high-flux membranes, pro-
inflammatory and pro-oxidative responses may occur because 
of blood exposure to microbial contaminants originating 
from dialysis fluids. The inflammatory cytokines stimulate 
liver to synthesize acute phase proteins, such as C-reactive 
protein, thereby promoting a state of chronic inflammation 
in hemodialysis patients. Inflammation and oxidative stress 
have a synergistic relationship in development and progres-
sion of vascular and tissue damage. Several authors have 
regarded inflammation as a general pathway associated with 
poor biocompatibility of hemodialysis system and patients’ 
long-term complications, such as anemia, malnutrition, 
atherosclerosis and cardiovascular disease27,31,32.

AKI is known to be associated with inflammation. Regard-
less of the initial insult, intrarenal inflammation plays a 
major role in the pathogenesis of AKI and it exerts harmful 
effects on distant organs, by promoting a systemic inflamma-
tory response33. Moreover, high levels of pro-inflammatory 
cytokines have been associated with increased mortality in 
AKI34,35. In the clinical setting, the nature and outcome of 
inflammatory responses in AKI may be reasonably influenced 
by the biocompatibility of hemodialysis system. As discussed 
below, studies on this topic are lacking and limited to the 
comparison of membranes.

Finally, immune dysfunctions have been linked to uremia 
per se, although limited evidence suggests a possible influ-
ence of membrane biocompatibility. Compared to synthetic 
membranes, cellulose ones have been found to suppress 
phagocyte function36, to increase leukocyte susceptibility to 
apoptosis37 and to induce premature senescence of mono-
cytes, as demonstrated by a decrease in telomere length 
and an increase in pro-inflammatory cells CD14+/CD16+38.

DIALYSATE AND INFUSATE

Dialysis fluid quality has a pivotal role in determining the 
biocompatibility of hemodialysis system, since contaminants 
may elicit acute reactions and contribute to long-term 
complications39. Although high-flux synthetic membranes 
may adsorb endotoxins, this capability is limited. Back
transport into blood of endotoxins and bacterial fragments 
from contaminated dialysate may occur, as a consequence 
of backfiltration and backdiffusion40. Replacement fluids are 
infused into the patient’s circulation, thereby raising the 

formation of C3b in the plasma and its deposition onto the 
membrane surface. Once adsorbed, C3 can act similarly to 
C3b, after undergoing conformational changes. Biomateri-
als with nucleophilic surface sites, such as Cuprophan 
membranes with hydroxyl groups, are much more prone 
to activate complement, since nucleophiles covalently 
bind C3b and favor its interaction with factors B and D 
to form C3 convertase. Substitution of hydroxyl groups 
decreases complement activation, because it renders 
modified cellulose membranes capable of binding factor 
H rather than factor B. This prevents the AP activation 
through C3b inactivation9,17. Synthetic membranes have the 
advantage of reducing complement activation, particularly 
those with adsorptive capability, such as PAN and PMMA. 
These membranes remove C3a and C5a to a greater extent 
and adsorb factor D, thereby reducing both exposure 
to anaphylatoxins and formation of C3 convertase7,8. 
Additionally, PEPA membranes manufactured without 
polyvinylpyrrolidone have shown to hardly activate 
complement20. Nevertheless, all membranes elicit comple-
ment activation to some extent, since both the classical 
and lectin pathways may be involved. The CP can be 
triggered either through the interaction between adsorbed 
immunoglobulins and C1q or through C1 activation by 
Hageman factor and kallikrein. The LP could be activated 
by certain PS membranes through their binding to ficolin 
2, as suggested by recent proteomic investigations6,9,17,21.

Activation of Blood Cells, Inflammation and 
Oxidative Stress
Interaction between blood and membrane influences 
leukocyte, platelet and endothelial cell functions, either 
through direct contact with the membrane or indirectly 
through mechanisms of cross-talk between humoral and 
cellular systems.

Several studies have shown a decrease in platelet count 
during the first 30 minutes of dialysis. Contact with mem-
branes leads to platelet activation, degranulation, adhesion 
and aggregation. Both cellulosic and synthetic membranes 
elicit platelet activation to some extent, even though it 
seems to be reduced with synthetic ones. Additionally, the 
amount of polyvinylpyrrolidone alloyed onto PS membranes 
seems to reduce platelet activation22,23. These responses 
are also mediated by platelet binding to fibrinogen and 
von Willebrand factor, adsorbed on dialysis membranes, 
through specific receptors (GPIIb/IIIa and GPIb). Membrane 
hydrophobicity, roller pump action, air microbubbles, 
soluble C5b-9 and activation of coagulation may additionally 
stimulate platelet functions. Once activated, platelets release 
a number of compounds (e.g. platelet factor 4, adenosine 
diphosphate, thromboxane A2) and up-regulate their surface 
markers. Platelets may adhere and aggregate onto dialysis 
membrane or form circulating platelet-platelet and platelet-
leukocyte aggregates, by the expression of P-selectin and 
other molecular mechanisms. Interaction between platelets 
and leukocytes leads to mutual activation, thereby promoting 
oxidative, inflammatory and thrombotic responses. Whether 
this cross-talk between platelets and leukocytes may have a 
role in the pathogenesis of cardiovascular disease in chronic 
hemodialysis patients remains to be elucidated9,22,24,25.

As mentioned above, activated neutrophils migrate in 
pulmonary capillaries, leading to transient leukopenia. 
Lung vascular leukostasis has been regarded as a possible 
mechanism in the multifactorial pathogenesis of intradialytic 
hypoxemia. Indeed, a strong correlation between leukope-
nia and complement activation has been found. Besides, 
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the need for further studies to develop alternatives with a 
favourable profile for efficiency and safety48,53.

The sterilization process may have a major impact on 
biocompatibility, since adverse reactions may result from 
leaching of residues or physicochemical polymer alterations 
and subsequent release of degradation products. The steril-
izing agent ethylene oxide (ETO) is retained by polyurethane 
potting compounds and it can be released into patients’ 
blood during hemodialysis treatment. ETO may form an 
allergenic albumin-ETO conjugate, which can trigger IgE-
mediated reactions, encompassing itching, rhinitis, asthma, 
urticaria, angioedema or, rarely, anaphylactic shock2,54. 
Sterilization with ETO is now less common, having been 
widely replaced with other methods such as steam heat, γ 
rays or electron-beam irradiation. However, these methods 
have disadvantages too. Moist heat sterilization cannot be 
employed for heat sensitive polymers, such as PMMA, PAN 
and CTA. Irradiation with γ rays may induce formation or 
breaking of bonds and creation of free radicals within the 
polymer structure, thereby increasing patients’ oxidative 
stress and cytotoxicity. Aromatic polyurethane may release 
the carcinogen 4,4’-methylenedianiline during sterilization 
with both γ irradiation and steam heat2,55,56. During the 
manufacturing process, infusion with perfluoroheptane can 
be used to detect and repair leaks in hollow fibers. Residuals 
from this compound can cause lethal complications through 
lung embolism and exposure to hydrogen fluoride, a highly 
toxic decomposition product that can be generated using 
either γ and β sterilization57. Finally, a retrospective cohort 
study by Kiaii and colleagues suggested that the sterilization 
of PS dialyzers with electron-beam irradiation is a possible 
cause of dialysis-induced thrombocytopenia58. However these 
findings were not confirmed by other studies and need to 
be further investigated59,60.

THE EFFECT OF DIALYSIS MEMBRANES ON 
PATIENTS’ OUTCOMES IN AKI

As discussed above, poor biocompatibility of Cuprophan 
membranes has been implicated in acute and long-term 
complications of chronic hemodialysis patients. It has been 
hypothesized that the inflammatory response and immune 
dysfunction induced by less biocompatible membranes may 
exacerbate the AKI and delay recovery of renal function. 
Three meta-analyses have reviewed the impact of dialysis 
membranes on AKI outcomes and their findings are conflict-
ing. Subramanian and colleagues, analyzing 8 trials and 867 
patients, reported a significant lower risk of death among 
patients treated with synthetic membranes compared to 
those dialyzed with cellulose membranes. However, after 
stratifying by cellulose membrane type (unsubstituted and 
substituted), the survival advantage for synthetic membranes 
remained limited to the comparison with Cuprophan ones61. 
Jaber and coworkers, analyzing 7 studies and a total of 722 
patients, did not find any survival advantage conferred by 
the use of synthetic membranes versus cellulose ones62. 
Similarly, in the most recent meta-analysis of 10 trials in 
1100 patients, Alonso and colleagues could not establish any 
advantage for synthetic membranes63. None of the mentioned 
meta-analyses demonstrated a relevant impact of dialysis 
membranes on recovery of renal function. Several limita-
tions may have affected these meta-analyses: insufficient 
sample size of included studies, inclusion of non randomized 
controlled trials and heterogeneity in the study populations 
due to differences in age, comorbidities, etiology of AKI, 

possibility of direct exposure to biological contaminants. 
The risk of microbial contamination of fluids and circuitry 
cannot be excluded even with use of sterile fluids during 
continuous RRT41. Consequently, any measures should be 
taken to avoid patients’ exposure to impure dialysis fluids, 
particularly in vulnerable patients with AKI. The use of 
ultrapure dialysate, produced in accordance with latest 
standards, should be regarded as mandatory and a rigorous 
monitoring of microbiological quality is particularly needed 
with on-line production of replacement fluids42.

THE HEMODIALYSIS CIRCUIT AS A POSSIBLE 
SOURCE OF TOXINS: LEACHABLES AND 
STERILIZATION PROCESS

Dialyzer housings and tubing sets contain several chemical 
compounds. Polyurethane is applied as a potting material 
to secure the hollow fibers at both dialyzer ends; silicone 
rings prevent fluid leakage; polycarbonate, polypropylene 
or polystyrene are used for casings. Polyvinyl chloride 
(PVC), as a biomaterial for tubing, needs plasticizers for 
its flexibility, such as diethylhexyl phthalate. All of these 
compounds may affect the biocompatibility2.

Bisphenol A (BPA) has been found to leach into blood 
during hemodialysis and an increase in serum BPA levels 
may be detected after a single session. Polycarbonate dialyzer 
housings, PVC bloodlines and PS and PEPA membranes 
are potential sources of BPA2,43,44. BPA is an endocrine 
disruptor, which interferes with estrogen receptors. Several 
studies have shown an association between BPA exposure 
and development of obesity, metabolic syndrome, diabetes, 
hypertension, proteinuria and renovascular damage in 
humans45. In vitro studies have found a pro-inflammatory 
effect of BPA on cultured leukocytes and a potential 
cytotoxicity on monocytes44,46. To date, little information 
concerning BPA exposure from medical devices is available, 
especially in patients receiving RRT. However, the European 
Scientific Committee on Emerging and Newly Identified 
Health Risks (SCENIHR) has recently recommended to 
evaluate the possibility of finding alternatives for BPA 
containing materials, especially for neonates in intensive 
care units, infants undergoing prolonged medical procedures 
and dialysis patients47. Similarly, diethylhexyl phthalate 
(DEHP), the most widely used plasticizer, is released into 
blood from bloodlines and other components made of PVC. 
In rodents, DEHP is an endocrine disruptor and a liver 
carcinogen; it exerts developmental effects and toxicity 
on the reproductive system and kidneys. Additionally, it 
has been classified as possibly carcinogenic to humans48. 
In vitro studies have found that DEHP-plasticized PVC 
increases platelet adhesion and aggregation, activates the 
complement and exerts a pro-inflammatory effect on human 
neutrophils49–51. Although available evidence on effects of 
DEHP exposure in humans is limited, several scientific and 
regulatory agencies have pointed out possible health risks 
for infants, children, pregnant women and adults receiving 
medical treatments with DEHP-plasticized PVC devices48,52,53. 
Hemodialysis patients may receive a relevant amount of 
DEHP, which may exceed the tolerable daily intake. Since 
induced effects of such exposure cannot be excluded, the 
Health Canada Expert Advisory Panel and the SCENIHR 
have suggested to consider the use of devices with low 
release potential or not containing DEHP. However, given 
the paucity of data on the effects of alternate materials 
and plasticizers in medical devices, they have underlined 



evidence concerning the influence of the system biocom-
patibility on patients’ outcomes is not conclusive. Further 
studies aimed at evaluating how the dialysis system may 
affect the biological processes associated with AKI, such as 
inflammation, are desirable.

Key Points

1.	 In addition to dialysis membranes, all elements of 
the circuit and the manufacturing process combine 
to determine the system biocompatibility.

2.	 In the setting of AKI, biological mechanisms and 
consequences related to the biocompatibility of 
dialysis system are not fully elucidated
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