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SECTION 20

The Liver and the Kidney

OBJECTIVES
This chapter will:
1.	 Give the reader an overview of the liver as an acid-base 

organ.
2.	 Describe the complexities of the liver-kidney interaction 

at the molecular level.
3.	 Relate the pathophysiologic abnormalities of liver-kidney 

interactions to outcomes of kidney injury in patients with 
liver disease.

The kidney is the primary organ for body-wide homeostasis, 
and disruption to its multiple functions has significant 
impact upon on all organ systems. Correspondingly, the 
interaction between the liver and kidney is complex and 
currently poorly understood. Both organs have similar 
physiologic roles in metabolic and endocrine homeostasis, 
protein, carbohydrate, and lipid metabolism, and the clear-
ance of many pharmaceutical agents. In particular, they 
share a combined role in the provision of acid-base balance 
in the body. Given the large number of shared functions, 
it is perhaps not surprising that kidney disease is associated 
with liver impairment and more commonly, liver disease 
is associated with kidney impairment. This is clinically 
relevant because critically ill patients with kidney and liver 
dysfunction have a significantly higher morbidity and 
mortality.1–3 In this chapter we provide an overview of  
the liver’s role in acid-base balance and briefly present the 
clinical significance of acid-base balance abnormalities in 
the setting of liver disease.

ROLE OF AMMONIA AND GLUTAMINE

Traditionally, it was thought that ammonia (NH3) has a key 
role in the acid-base balance because of its combination 
with hydrogen ions and subsequent formation of ammonium 
ions (NH4

+) that are excreted readily via urine for a net loss 
of acid. However, the ammonia precursor, glutamine, exists 
in its ionized form in vivo (Fig. 127.1) and not the un-ionized 
form. Like other amino acids, it is a dipolar ion containing 

an anionic carboxylate group (-COO−) and a cationic-
substituted ammonium (-NH3

+) group. The formation and 
excretion of ammonia in this pathway are electrochemically 
neutral with no uptake or loss of protons and therefore do 
not appear to influence body-wide acid-base balance, so 
an alternative explanation is required.

After glutamine has been reduced by the removal of two 
NH4

+ groups, the remaining carbon skeleton, α-ketoglutarate, 
has two negatively charged carboxylate groups. Most of 
this α-ketoglutarate is metabolized within the kidney to 
glucose or CO2, and consequently two HCO3

− ions are 
produced according to the conservation of charge. However, 
these changes do not correlate with other changes occurring 
in the setting of metabolic acidosis. During metabolic 
acidosis, renal utilization of metabolic fuels switches away 
from α-ketoglutarate and other carboxylate-containing 
bicarbonate precursors, including lactate, resulting in net 
normal bicarbonate generation in acidosis and alkalosis.4,5 
More important, if an increase in renal bicarbonate produc-
tion were to occur, it would not affect systemic acid-base 
balance. Glutamine that is not used in the kidney will be 
metabolized elsewhere (Fig. 127.2).6 Metabolic acidosis, in 
addition to increasing renal glutamine utilization, deceases 
hepatic glutamine utilization. Regardless of the location of 
metabolism, two bicarbonate ions are generated from each 
molecule of glutamine, and the alkalinizing effect on the 
blood is the same in both cases.

UREAGENESIS

A key tenet of this model of acid-base balance is that ure-
agenesis is a bicarbonate-consuming process (Fig. 127.3).7–10 
In hepatocytes, NH4

+, derived partly from the portal blood 
and partly from the action of pH-dependent glutaminase, 
reacts with bicarbonate from carbamoyl phosphate, with the 
self-evident consumption of bicarbonate. In the subsequent 
formation of citrulline in the urea cycle, a proton is released; 
it, in turn, converts HCO3

− to CO2 and H2O. Thus two bicarbon-
ates are consumed with each revolution of the urea cycle. 
This can be represented in summary fashion as follows:

2 2 34 3 2 2 2 2NH HCO NH CO NH CO H O+ −+ → + +— —
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FIGURE 127.1  Deamidation and deamination of glutamine in the kidney. A, The conventional Pitts formulation. NH3, derived from glutamine, 
moves into the lumen and combines with H+ that was obtained from the body buffer, with generation of an equimolar amount of HCO3

−, 
which moves into the blood. B, The chemically valid formulation, taking ionization into account. NH4

+, rather than NH3, is the product 
of deamidation and deamination of glutamine, and excretion of NH4

+ has no effect on the body buffer. 

LIVER

Urea

Glutamine Glutamine

Urea Urea

Proteins

n(Amino acids)�

n

n

KIDNEY URINE

2-OG

2-OG
2-OG

1

2
4

3

2 NH4
+NH4

+

HCO3
– 2 HCO3

–

2 NH4
+2 NH4

+

FIGURE 127.2  Ammonium metabolism and bicarbonate homeostasis. NH4
+ and HCO3

− generation are ultimately linked in a 1 : 1 stoichiometry 
during protein catabolism because of the irreversible elimination of both compounds via hepatic urea synthesis. Flux through the urea 
cycle is sensitively controlled by the extracellular acid-base status. The mechanisms involved adjust bicarbonate-consuming urea 
synthesis to the requirements of acid-base homeostasis. When urea synthesis decreases relative to the rate of protein catabolism in 
acidosis, bicarbonate is spared and NH4

+ is excreted as such in the urine; there is no net production or consumption of α-ketoglutarate 
(2-oxoglutarate, or 2-OG) in the organism. Numbers in circles refer to major points of flux controlled by the acid-base status. In metabolic 
acidosis, flux through the area cycle (reaction 1) and hepatic glutaminase (reaction 2) are decreased, whereas flux through hepatic 
glutamine synthesis (reaction 3) and renal glutaminase (reaction 4) are increased. This interorgan “team effort” between the liver and 
the kidney results in NH4

+ disposal without concomitant removal of HCO3
− from the organism. (From Haussinger D, Gerok W, Sies H. 

The effect of urea synthesis on extracellular pH in isolated perfused rat liver. Biochem J. 1986;236:261–265.)
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the complex handling of nonvolatile acids by the liver  
and kidney. The Stewart approach uses three properties of 
physical chemistry—namely electroneutrality, conservation 
of mass, and electrolyte disassociation—to identify only 
three independent variables that control acid-base balance 
in the body.14 The three variables are the partial pressure 
of carbon dioxide, the strong ion difference (SID), and total 
weak acid concentration (Atot). According to the Stewart 
model, the kidneys remain the primary organ for acid-base 
balance but by maintaining the SID. This is completed 
mechanistically by the excretion of the strong Cl− ion.15 
Ammonium (and consequently glutamine) has a key role 
in providing electrochemical neutrality by the production 
of the weak cation NH4 by the kidneys to be excreted in 
electrochemical neutrality with the strong Cl− anion. In 
contrast to the proposed physiologic pathway for the 
alkalinization described earlier, glutamine can be seen as 
alkalinizing because it is used in this manner to facilitate 
the excretion of Cl− as opposed to the traditional view of 
HCO3 production.

The Stewart approach also offers important insight into 
other acid-base abnormalities not fully explained by other 
models. In animal models it has been shown that, when 
assessed by the SID, the liver is responsible for anion 
removal but, in the setting of endotoxemia, is a net producer 
of anions.16 Because the liver is responsible for protein 
synthesis, its role in acid-base balance via Atot is significant. 
The weak acids that compose Atot are largely hepatically 
synthesized carrier proteins, of which albumin is the most 
abundant and provides the remainder of the balance required 
to maintain electrochemical neutrality (i.e., SID = 0). 
Subsequently, a decrease in Atot has an alkalizing effect on 
acid-base balance by increasing the SID. Although liver 
disease and critical illness are associated commonly with 
hypoalbuminemia, the overall effects of the lower Atot on 
acid-base balance are negligible. Most studies have shown 

Because NH4
+ (pK = 9.3) is a very weak proton donor at 

physiologic pH levels, it would be thermodynamically 
impossible to titrate HCO3

− (pK = 6.1) directly. The only 
means by which protons of NH4

+ can be obtained for titration 
of HCO3

− is through incorporation of the nitrogen into an 
uncharged group of an organic molecule with liberation of 
protons. Metabolic energy is required, and the process is 
made energetically feasible by being coupled to the conver-
sion of four molecules of adenosine triphosphate (ATP) to 
adenosine diphosphate (ADP); this forces the titration of 
HCO3

− by a proton donor that is much too weak to effect 
the titration directly. This generation of protons appears 
to be a major metabolic function of ureagenesis. The rel-
evance of this energy-consuming biosynthesis becomes 
evident from numerous studies showing that hepatic 
ureagenesis is responsive to the needs of systemic pH 
regulation8; indeed, the increase in urinary ammonium long 
known to accompany hydrochloremic acidosis in humans 
has been shown to be accompanied by an equimolar decrease 
in urea excretion.11 By decreasing urea production, the liver 
decreases the consumption of bicarbonate stores, which is 
what induced the adaptation in the first place. However, 
these models of how acid-base status is regulated by the 
liver and kidney have been challenged by alternative 
paradigms.

ALTERNATIVE APPROACH

The traditional model, as described earlier, has significant 
limitations in the interpretation of acid-base balance of the 
body.12 Although it is superficially appealing, it fails to 
take into account the complex acid-base abnormalities that 
can develop during critical illness.13 An alternative, the 
Stewart approach, also can be used to examine and explain 
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FIGURE 127.3  The pathway of urea synthesis. Compounds and ions that are consumed or produced are enclosed in boxes. In each turn 
of the cycle, two bicarbonate ions (one of which is retained in the product, urea) are titrated with protons derived from two ammonium 
ions. This titration, which would be thermodynamically impossible as a direct reaction, is made energetically favorable by being coupled 
to the conversion of four molecules of adenosine triphosphate (ATP) to adenosine diphosphate (ADP). (From Atkinson DE, Boorke E. 
pH Homeostasis in terrestrial vertebrates: Ammonium ion as a proton source. In Heisler N [ed]. Mechanisms of Systemic Regulation: 
Acid-Base Regulation, Ion Transfer and Metabolism, no. 22 [Advances in Comparative and Environmental Physiology]. Berlin, Springer, 
1995, pp 1–26.)
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acinus extends from a terminal portal venule along a 
sinusoid to a terminal hepatic venule. The hepatocytes 
near the sinusoidal inflow are termed periportal, and those 
near the sinusoidal outflow are termed perivenous hepa-
tocytes. A remarkable functional hepatocyte heterogeneity 
with respect to nitrogen metabolism occurs; it involves 
metabolic zonation of ureagenesis and glutamine synthesis, 
respectively, which is attributable to a special separation 
of the key enzymes between the periportal (urea cycle 
enzymes, glutaminase) and the perivenous (glutamine 
synthetase) hepatocytes of the hepatic acinus. Accordingly, 
along the sinusoid, the pathways of urea and glutamine 
synthesis are arranged in sequence. This organization 
prevents competition for the available ammonium between 
the two processes. Instead, there exists an established prior-
ity for ureagenesis. From the periportal venule, throughout 
a substantial length of the hepatic acinus, the enzyme 
glutaminase that contributes to the supply of ammonium 
for ureagenesis and also the enzymes the urea cycle share, 
as it were, a common hepatic compartment, giving preva-
lence to ureagenesis. Downstream, separately compartmental-
ized in the last rung of cells of the perihepatic venule, is 
the enzyme glutamine synthetase, which acts as a high-
affinity scavenger for ammonium that has not been used 
in the periportal synthesis of urea. As the blood moves 
downstream through the sinusoid from the portal toward 
the hepatic venule, there is initially the formation of urea 
from the consumption of bicarbonate, which is derived 
from the metabolism of carboxylate groups of keto acids, 
and of ammonium, which is derived in part from the portal 
blood but is kept in adequate supply by the action of gluta
minase. Acidosis reduces this bicarbonate-using process. 
As a consequence, there is ammonium left over, which  
is not used for ureagenesis. This leftover ammonium is 
taken up by the last rung of cells of the acinus, where 
glutamine synthetase incorporates it into glutamine, thereby 
controlling the blood ammonium concentration and serving 
as a transport mechanism for ammonium to the kidney.

ACID-BASE BALANCE IN HEPATIC 
FUNCTIONAL IMPAIRMENT

It is unclear what impact liver impairment has upon  
acid-base balance. Early experimental research concluded 
that, despite decreased urinary urea, that there was no major 
role for the liver in acid-base regulation.18 This has been 
supported by other studies looking at postoperative acid-base 
balance after major hepatic surgery, showing early acidosis 
but no overall longer-term impact upon acid-base balance.19,20 
A key component of the hepatic resection is to ensure that 
the liver remnant is of sufficient size to maintain normal 
hepatic metabolic function. Currently approximately 25% 
of hepatic tissue is recommended; it is likely that this 
residual tissue is sufficient to maintain adequate ureagenesis 
and ammonia detoxification in the absence of profound 
systemic insult.21 Chronic liver disease, however, presents 
a different and more complex picture.22–24 A study with 
patients with histologically stratified liver disease revealed 
increased in vivo plasma bicarbonate with progressive loss 
of in vivo urea cycle capacity; in these patients, other causes 
of metabolic alkalosis, such as diuretics, antacids, vomiting, 
hyperaldosteronism, and renal dysfunction, were excluded.21 
More recent studies have shown that in patients with stable 
cirrhosis there is apparent net normal acid-base balance, 
but this was due to the equilibrium of hypoalbuminemia, 
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FIGURE 127.4  Schematic representation of nitrogen metabolism in 
the liver. As blood flows from the portal venule through the sinusoid, 
it first passes cells that contain glutaminase and the enzymes of 
the urea cycle. Glutamine is hydrolyzed to a greater or lesser 
extent. NH4

+ is generated from the hydrolysis and from the metabo-
lism of amino acids (not shown); incorporation of NH4

+ into urea 
generates protons that serve to titrate HCO3

−, half of which is 
incorporated into urea, with the other half converted to CO2. The 
last rank of cells around the hepatic venule takes up glutamate 
and NH4

+ and synthesizes glutamine. Changes in widths of the 
bars represent changes in concentrations of the corresponding 
substances. Glu, Glutamate; Glu-NH2

±, glutamine. (From Atkinson 
DE, Boorke E. pH Homeostasis in terrestrial vertebrates: Ammonium 
ion as a proton source. In Heisler N [ed]. Mechanisms of Systemic 
Regulation: Acid-Base Regulation, Ion Transfer and Metabolism, 
no. 22 [Advances in Comparative and Environmental Physiology]. 
Berlin, Springer, 1995, pp 1–26.)

that despite low Atot, these patient groups have normal  
pH, SID, and standard-base excess.17 It was postulated,  
on the basis of animal models, that the SID can be reset  
to ensure acid-base balance in the face of alkalizing 
hypoalbuminaemia.15

REGULATORY ROLE OF HEPATOCYTE 
HETEROGENEITY

The role of the liver in acid-base balance is supported 
further by the sequential distribution of enzymes within 
the functional units of the liver. The acini, which give 
precedence to the regulation of ureagenesis over glutamine 
synthesis, enable the rate of ureagenesis to respond to pH 
change, while leftover NH4

+ is packaged into glutamine for 
export. The arrangement that facilitates this regulated 
sequence can be summarized as follows (Fig. 127.4): Each 



ureagenesis and ammonia metabolism are crucial steps in 
maintaining overall systemic acid-base balance. The underlying 
physiology and its relation to pathophysiology is still under 
investigation, and it appears that a physical chemical approach 
to acid-base in liver disease may provide a greater understand-
ing and potentially improved management of patients with 
liver disease with alterations in acid-base balance.

Key Points

1.	 Contrary to the traditional view, glutamine does 
not generate NH3 and therefore cannot remove H+.

2.	 Ureagenesis is an acidifying process, whereas 
glutaminogenesis is alkalinizing.

3.	 The kidney’s role in acid-base regulation requires 
cooperation with the liver.

4.	 Renal ammonium production is activated when 
ureagenesis decreases; this occurs not only in 
metabolic acidosis, when urea synthesis is inhibited 
because of homeostatic regulation, but also during 
alkalosis, when urea synthesis fails because of liver 
disease.
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hyperchloremia, and lactic acidosis.22 In addition, this study 
highlighted the benefits of the physical, chemical, or physico-
chemical  approach to acid-base in liver disease populations. 
However, this stability appears to be lost as patients with 
cirrhosis decompensate, with studies demonstrating sig-
nificantly abnormal standard base excess (SBE), HCO3, and 
strong ion difference (SID) values in those admitted with 
critical illness.23,24 In addition, these abnormalities were 
found to be associated significantly with increased patient 
mortality.23,24

It is not clear why patients with cirrhosis are so suscep-
tible to such complex acid-base disturbances, but it is likely 
that a complex interaction exists between the liver’s meta-
bolic function, the pathophysiologic consequences of liver 
disease, and the primary role of the kidney in acid-base 
balance. Proponents of the traditional view of acid-base 
balance propose that a feedback circuit exists between urea 
synthesis, bicarbonate accumulation, amplification of hepatic 
ammoniagenesis via glutaminase, and renal ammoniagenesis 
for excretion is controlled by systemic acid-base status.22,25,26 
Liver disease leads to the decrease of urea cycle capacity 
and subsequently increased alkalinization and hepatic 
glutaminase activity. This increases glutamine production 
and augments urea synthesis and restores a normal urea 
flux.22,25,26 Correspondingly, the progressive loss of urea 
cycle capacity in cirrhosis is paralleled by an increase in 
renal ammonium excretion, despite coexisting metabolic 
alkalosis, indicating that the kidney undertakes the task of 
eliminating ammonium when urea synthesis fails.22,25,26

From a physical chemistry perspective, factors that are 
highly likely to be involved are the vasopressin-associated 
altered renal free water handling in cirrhosis and subsequent 
dilutional hyponatremia and relative hyperchloridemia. 
This, in turn, will influence the handling of strong ions 
and subsequently acid-base balance within the body. Progres-
sive hepatic dysfunction and the increased risk of developing 
an episode of critical illness will lower the total amount 
of weak acids via the reduction in albumin, adding a 
confounding metabolic alkalosis to the acid-base balance. 
Finally, the role of the liver as an anion producer or remover 
has not yet been elucidated fully; it may be that the liver 
acts as either remover or producer, depending on overall 
systemic health.

In conclusion, the liver and kidney are intricately related 
in the maintenance of acid-base balance. It is clear that 
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