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CHAPTER 124 

Extracorporeal Carbon Dioxide Removal
Vito Fanelli, Andrea Costamagna, and V. Marco Ranieri

OBJECTIVES
This chapter will:
1.	 Explain the physiology of CO2 removal during extra-

corporeal support.
2.	 Describe potential clinical applications of extracorporeal 

CO2 removal systems (ECCO2R) support therapy in patients 
with acute respiratory distress syndrome (ARDS) and chronic 
obstructive pulmonary disease (COPD) as well as in those 
with acute kidney injury requiring renal replacement 
therapy.

Mechanical ventilation (MV) is a lifesaving treatment 
delivered to patients who suffer of a wide spectrum of 
respiratory failure.1 However, several concerns have emerged 
about its limits and iatrogenic potential.2 Extracorporeal 
life support (ECLS) techniques complement MV in several 
circumstances: (1) to correct life-threatening hypoxemia in 
patients with acute respiratory distress syndrome (ARDS) 
when all conventional therapies have failed; (2) to minimize 
the risk of ventilator-induced lung injury (VILI), allowing 
an “ultra-protective” ventilation strategy with very low tidal 
volume; and (3) to prevent the risk of endotracheal intubation 
when noninvasive mechanical ventilation is failing. To 
accomplish these putative indications, ECLS techniques 
range from the full-support devices called extracorporeal 
membrane oxygenation (ECMO, blood flow ≥ 3 L/min), 
which ensures full oxygenation and carbon dioxide (CO2) 
clearance with minimal need of MV, to minimally invasive 
extracorporeal CO2 removal systems (ECCO2R, blood flow 
0.4–1 L/min), which remove CO2 without any effect on 
oxygenation.3 The objectives of this chapter are to review 
fundamental concepts of CO2 handling during ECCO2R and 
provide current evidences of its application in patients 
with ARDS, chronic obstructive pulmonary disease (COPD), 
and acute kidney injury (AKI) requiring renal replacement 
therapy.

FROM RENAL TO RESPIRATORY DIALYSIS 
(HISTORICAL PERSPECTIVE)

Since the late 1970s, hypoxia and hypoventilation were 
described as usual respiratory adverse events that occurred 
during hemodialysis.4 The reduction in arterial partial 
pressure of CO2 (PaCO2) was considered the leading mecha-
nism of these alterations, and the acetate buffer that was 
used conventionally at that time in dialysis circuits was 
identified as the primum movens of this physiologic dis-
turbance. In fact, decrease of PaCO2 resulted from the 
corresponding reduction of HCO3

− in exchange for acetate. 
When bicarbonate dialysate was used, hypopnea and hypoxia 
were not detected.5 In those years, Kolobow and Gattinoni 
attempted to take advantage of this adverse effect and 

designed a modified venovenous ECMO circuit (blood flow 
of around 1 L/min) to reduce minute ventilation and 
consequently the risk of lung overdistension in patients 
with severe ARDS. Moreover, at that time full ECMO  
with high blood flow rates failed to demonstrate any 
improvement in survival of these patients because of ventila-
tion strategy that did not prevent VILI and major bleeding 
complications.4,6–9

CARBON DIOXIDE PHYSIOLOGY

Carbon dioxide is produced in mitochondria as the end 
product of the aerobic metabolism and in blood combines 
with free water (H2O) to form carbonic acid (H2CO3); this 
reaction is catalyzed in red blood cells (RBC) and on 
pulmonary capillaries membranes by carbonic anhydrase, 
which is not present in plasma. At physiologic pH ranges, 
96% of carbonic acid is dissociated in bicarbonate ion 
(HCO3

−) and hydrogen ion (H+).
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Five percent of the total CO2 is conveyed in physical solu-
tion, following Henry’s solubility law, stating that the mass 
of a dissolved gas is proportional to its partial pressure.10 
The remaining fraction of CO2 binds to carbamino com-
pounds to their free amine group (R-NH2). Among these, 
hemoglobin (Hb) is the most efficient CO2 carrier, in par-
ticular in its reduced, nonoxygenated form.

In the healthy adult subject at rest, the amount of CO2 
production by systemic metabolism (VCO2) is about 200 mL/
min, which can increase to a value of 30% higher in 
pathologic conditions. The concentration of CO2 in arterial 
blood is about 48 mL/dL (at a PaCO2 of 40 mm Hg), and 
the same in mixed venous blood is 52 mL/dL (at a PvCO2 
of 46 mm Hg). Consequently, an ideal ECCO2R device may 
be able theoretically to remove up to 250 mL/min of CO2 
with a low blood flow of 500 mL/min.

In fact, ECCO2R systems are able only to remove the 
amount of the dissolved CO2 from blood, and in the mem-
brane lung the input partial pressure of CO2 is directly 
proportional to CO2 removal.11 However, as has been 
mentioned already, only a small amount of CO2 is dissolved 
in blood. Finding a way to increase free CO2 entering the 
membrane lung is a hot topic for the actual research in the 
field. In animal models, the acidification of blood entering 
the membrane lung with lactic acid demonstrated to be 
effective in increasing the CO2 removal capacity of a low-flow 
ECCO2R device, but the impact on ventilation was limited 
to a rise in energy expenditure resulting from lactic acid 
infusion.12–14 In another animal model, Zanella et al. pro-
posed an appealing approach to enhance the inlet CO2 
concentration by blood acidification using an electrodialysis 
cell and thus avoiding the undesired effects related to the 
addition of an acid solution to the blood. Bicarbonate ion 
and dissolved CO2 are in equilibrium in blood, and changes 
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in acid-base status can promote the conversion of one form 
in the other one. Electrodialysis can enhance PaCO2 in 
blood before entering the membrane lung through the 
application of an electrical current to solutions separated 
by ion-exchange membranes into an acid and a base chamber. 
In the acid chamber, Cl− ions combine with H+ thus reducing 
pH; on the contrary, in the base chamber OH− ions derived 
from hydrolysis compensate for Cl− loss and create an 
alkaline milieu. Blood in the circuit therefore is acidified 
with this net exchange of HCO3

− for Cl−, and CO2 extraction 
is increased about two times more compared with standard 
ECCO2R efficiency.15

TECHNICAL DESCRIPTION OF 
EXTRACORPOREAL CARBON DIOXIDE 
REMOVAL SYSTEMS

ECCO2R devices can be grouped in two main categories: 
the low-flow venovenous pump-driven ECCO2R devices 
(VV-ECCO2R) and the arteriovenous pumpless systems 
(AV-ECCO2R). In VV-ECCO2R systems blood is driven from 
a large vein, such as femoral or jugular vein, it passes 
through an oxygenator called “membrane lung,” and it 
returns to central venous circulation (Fig. 124.1).

Two one-lumen or one dual-lumen cannulas can be 
used, depending on the available system. With the advent 
of dedicated CO2 removal devices, technology improvement 
allowed reduction of the size of cannulas, whose diameter 
may vary from 14 to 18 French (Fr), depending on systems 
and settings. In fact, if we approximate the Hagen-Poiseuille 
equation, laminar blood flow is directly proportional to the 
fourth power of the radius of the cannula and inversely to 
its length. Therefore targeting a blood flow rate of 400 to 
1000 mL/min, it is possible to reduce invasiveness through 
downsizing cannulas’ diameter. Percutaneous cannulation 
with the Seldinger technique is the first choice for VV-ECCO2R. 
Ultrasound visualization of vessels is recommended to 
identify the target central veins and to control their size, 
compared with cannulas diameters. With ultrasound it is 
also possible to control the guidewire before dilatation and to 
limit adverse events such as accidental arterial cannulation.

Blood is conveyed through a nonocclusive roller or a 
centrifugal or diagonal flow magnetic rotary pump, which 
generates the pressure gradient needed to generate an 
anterograde blood flow through the circuit. Blood is driven 
to a specifically designed oxygenator, which is called 
membrane lung. Membranes are composed by a microporous 
hollow-fiber of polypropylene, or by a nonmicroporous 
hollow-fiber of polymethylpentene (PMP). To date, PMP 
represents the most used configuration because it allows 
to reduce plasma leakage ad to obtain gas transfer by dif-
fusion avoiding direct blood-gas contact.16

Membrane lung total surface is directly proportional to 
blood flow and so to oxygenation capability. This implies 
that for selective CO2 removal membrane lung with small 
areas is sufficient, in comparison with full ECMO needs. 
Membrane lung is connected to a gas source (which can be 
air or 100% oxygen), called the “sweep gas,” which allows 
it to wash out CO2 in excess from blood by diffusion passing 
through the oxygenator. The amount of sweep gas (expressed 
in L/min) is directly proportional to CO2 clearance.

In AV-ECCO2R blood is driven from the femoral  
artery to an oxygenator, and then it returns to the contra-
lateral femoral vein; blood flow is strictly dependent on 
the patient’s cardiac output, and this device also allows 
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FIGURE 124.1  Schematic representation of an extracorporeal CO2 
removal (ECCO2R) renal replacement therapy (RRT) integrated system. 
The hemofilter can be placed upstream or downstream (as shown 
in this figure) from the membrane lung. The replacement fluid can 
be delivered before or after the membrane lung and hemofilter. 

partial oxygenation. It is more invasive than VV-ECCO2R, 
and blood flow cannot be regulated from the outside. In 
addition, several complications have been described, such 
as lower limb ischemia, compartmental syndrome, and need 
for surgical cannulation in some patients.17,18 Accurate 
description of the technical features and the clinical applica-
tions of these devices is beyond the scope of this chapter, 
which focuses only on low-flow ECCO2R.

To date, several VV-ECCO2R devices have been designed 
especially for this purpose (Table 124.1). PALP (Maquet) 
is based on the Cardiohelp console and can be switched 
from low-flow CO2 removal to full ECMO. In the same way, 
iLA active (Novalung) consists of modular components that 
allow support of the lung from CO2 removal to complete 
oxygenation. Decap (Hemodec) is focused specifically on 
CO2 removal, but now it has a feature to allow contemporary 
renal replacement therapy with the same circuit when used 
in combination with B. Braun Avitum. Ablycap (Bellco) 
incorporates an optimized oxygenator within a multiorgan 
support device called Lynda for septic and anuric patients. 
Hemolung RAS (Alung) represents the first device specifi-
cally designed for CO2 removal with all the components 
integrated in one system. Prolung (Estor) provides a similar 
alternative to the previously described systems.
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been assessed more recently by Fanelli et al.20 In 15 patients 
with moderate ARDS enrolled in four European intensive 
care units, VT was reduced from baseline (6.2 mL/kg PBW) 
to 4 mL/kg PBW, while PEEP was adjusted to target plateau 
pressure: Pplat ≤ 25 cm H2O. In all patients, a significant 
respiratory acidosis developed, and ECCO2R with a blood 
flow of around 400 mL/min and sweep gas of 10 L/min was 
able to correct pH and PaCO2 to within 10% of baseline 
values. Driving pressure (difference between plateau pressure 
and PEEP)21 that is independently associated with the risk 
of death in ARDS patients was reduced significantly from 
13.9 to 11.6 cm H2O. New generation of a low-flow ECCO2R 
system, Hemolung Respiratory Assist System (RAS, ALung 
Technologies, Inc, Pittsburgh, PA), was used in this study. 
Venous blood was circulated through a 15.5-Fr dual-lumen 
venous catheter (jugular or femoral) by a magnetically driven 
centrifugal pump at a flow rate of 350 to 550 mL/min. The 
pump was integrated within a cylindric bundle of hollow 
fiber membranes. Sweep gas (air or 100% O2) was drawn 
through the hollow fibers under negative pressure by a vacuum 
pump, creating a gradient for CO2 diffusion. Maintaining 
the sweep gas under negative pressure mitigates the risk of 
air embolism across the membrane and also allowed for 
automatic removal of plasmatic water condensation from 
the fiber lumens to preserve gas exchange efficiency.

Appropriate strategies to manage worsening hypoxemia 
during ECCO2R treatment are a compelling issue. In fact, 
ventilation with very low tidal volume may promote 
atelectasis formation because of alveolar derecruitment; 
moreover, ARDS may progress from moderate to severe 
making worse oxygenation. For this reason, during treatment 
with ECCO2R, PEEP levels are increased consequently, and 
prone position is considered when PaO2/FiO2 drops to 150. 
Prone positioning has been demonstrated to be effective 
not only in improving oxygenation but also in decreasing 
early and late mortality.22 In Fanelli’s cohort, 27% of patients 
required prone positioning without any interruption of 
ECCO2R and showed improvement in arterial oxygenation. 
Only two patients required escalation from ECCO2R to ECMO 
because of life-threatening hypoxemia. Mortality at 28 days 
was 47%, which was expected in a cohort of moderate and 
severe ARDS patients.

Moreover, feasibility, safety, and efficacy of ECCO2R 
strategy to ensure ultraprotective mechanical ventilation 
in patients with moderate ARDS will be the end point of 
the upcoming SUPERNOVA randomized clinical trial 
(NCT02282657) promoted by the European Society of 
Intensive Care Medicine.

Anticoagulation management still represents a challenge 
for ECCO2R devices. Although the main components of  
the commercially available systems invariably are coated 
with heparin or other similar substances with antithrombotic 
capability, systemic anticoagulation is still a duty. It can 
be achieved with a continuous infusion of unfractionated 
heparin following specific activated clotting time (ACT)  
or activated partial thromboplastin time (aPTT) therapeutic 
targets to prevent circuit and/or membrane lung clot 
formation.

CLINICAL APPLICATIONS OF 
EXTRACORPOREAL CARBON  
DIOXIDE REMOVAL

Acute Respiratory Distress Syndrome
In patients with ARDS, stretch forces generated across lung 
parenchyma during mechanical ventilation play a pivotal 
role in promoting lung inflammation, alveolar edema, 
impairment of edema clearance, and cell death. Therefore 
ventilation strategy with tidal volume of 6 mL/kg of pre-
dicted body weight that limits end inspiratory lung stretch 
has been demonstrated to reduce lung injury and mortality 
of 10%. Current use of ECCO2R aims to further minimize 
the risk of VILI, ensuring ultraprotective mechanical ventila-
tion that consists of very low tidal volume (around 4 mL/
kg) to keep end inspiratory pressure at around 25 cm H2O. 
In a proof of concept observational study, Terragni et al. 
demonstrated that minimally invasive ECCO2R system 
tempered VILI when used in combination with protective 
mechanical ventilation. In 10 patients with ARDS, in whom 
plateau pressure was between 28 and 30 cmH2O, tidal 
volume was reduced to reach a plateau pressure of 25 to 
28 cm H2O. The following respiratory acidosis (pH < 7.25) 
was managed successfully with a modified continuous 
venovenous renal replacement circuit incorporating a 
neonatal membrane lung with a total membrane surface of 
0.33 m2 (Decap, Hemodec, Salerno, Italy) coupled in series 
with a hemofilter. This strategy was associated with less 
signs of alveolar overdistension at lung CT scan analysis 
and lower concentration of inflammatory cytokines in 
bronchoalveolar lavage fluid.19

Feasibility and safety of an ultraprotective ventilation 
strategy facilitated by low-flow venovenous ECCO2R has 

TABLE 124.1 

DEVICE PUMP MEMBRANE LUNG BLOOD FLOW

PALP (Maquet) Centrifugal Polymethylpentene hollow fiber
Surface area = 0.98 m2

BF up to 2.8 L/min

iLA active (Novalung) Rotary pump with diagonal 
flow and magnetic drive

Polymethylpentene
Plasma-tight hollow fiber
Surface area = 0.32 m2

BF up to 800 mL/min (upgradable 
depending on cannulas and ML)

Ablycap (Bellco) Roller pump Polymethylpentene hollow fiber
Surface area = 0.67 m2

BF up to 450 mL/min

Hemolung RAS (Alung) Centrifugal
magnetically driven

Cylindric hollow fiber
Surface area = 0.59 m2

BF up to 550 mL/min

Prolung (Estor) Roller pump Polymethylpentene
Surface area = 1.8 m2

BF up to 450 mL/min

Decap SMART (B. 
Braun)

Roller pump Polymethylpentene
Surface area = 1.35 m2

BF up to 450 mL/min

BF, Blood flow; ML, membrane lung.
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effect.29–31 In fact, secondary data analysis from a multicenter 
randomized clinical trial on protective mechanical ventila-
tion in patients with ARDS has identified higher plasma 
concentrations of PAI-1, interleukin 6 (IL-6), and soluble 
receptor of TNF (sTNFRs) as biologic predictors of AKI.32 
ARDS patients often develop AKI, with potential need of 
renal replacement therapy (RRT) and ECCO2R treatment. 
Technologic advances allow in a single minimally invasive 
treatment the combination of ECCO2R and RRT; this strategy 
aims to support vital functions (i.e., respiratory and renal) 
modulating organ cross-talk, which is a signature of critical 
illness. In 16 patients with AKI requiring RRT and respira-
tory failure–associated respiratory acidosis, Quintard et al. 
showed that a pediatric membrane lung introduced into 
the circuit in a serial manner was able to correct acid base 
imbalance up to 24 hours.33

In 2013 Forster et al. treated patients with AKI combining 
ECCO2R and continuous venovenous hemodialysis (CVVHD). 
In 10 patients, application of a hollow-fiber gas exchanger 
with a surface area of 0.67 m2 in series with the hemofilter 
in the CVVHD circuit allowed 28% reduction of PaCO2 
values. This strategy was associated with improvement in 
pH (from 7.18 to 7.3) and with lower need of norepinephrine 
(from 0.22 to 0.16 mcg/kg/min). Tidal volume was reduced 
after 24 hours of treatment (from 8.4 mL/kg to 7.3 mL/kg); 
unfortunately, values of plateau pressure were not provided.34 
Allardet-Servent et al. expanded these findings, demonstrat-
ing that a combined strategy of ECCO2R and RRT in patients 
with AKI-associated moderate ARDS (P/F 134) was safe 
and effective in counterbalancing respiratory acidosis 
associated to tidal volume reduction to 4 mL/kg. In 11 
patients, the authors showed that a membrane lung (surface 
0.652) upstream or downstream of hemofilter was able to 
remove CO2 at a rate of 83 ± 20 mL/min (corresponding to 
20% of PaCO2 baseline value) with a blood flow of around 
400 mL/min. Importantly, plateau pressure decreased from 
25 to 21 cm H2O after VT reduction to 4 mL/kg.35

An ongoing clinical trial promoted by the University of 
Turin-Italy aims to assess whether, in AKI patients requiring 
mechanical ventilation, a strategy that combines RRT and 
ECCO2R would allow reduction of tidal volume, plateau 
pressure, and release of inflammatory and apoptotic media-
tors in plasma (NCT02595619).

COMPLICATIONS OF EXTRACORPOREAL 
CARBON DIOXIDE REMOVAL

Compared with VV-ECMO, a fewer number of complications 
have been described with new ECCO2R systems because 
of less invasiveness and technologic advances. In fact, blood 
flow of up to 0.4 to 1 L/min that is required for CO2 clearance 
is reached with a size cannula ranging between 14 and 18 
Fr. Despite less mechanical complication related to vessel 
cannulation, the risk of bleeding associated with systemic 
anticoagulation is still a concern. In our center, a heparin 
bolus of 50 UI/kg at the moment of cannulation is followed 
by a continuous infusion dose of 18 UI/kg/hr to reach a 
target PTTr of 1.5 to 2. In a prospective trial involving 10 
ARDS patients treated with ECCO2R, patient-related com-
plications were not reported. The authors described only 
few mechanical complications, namely three cases of 
membrane clotting that did not require additional transfu-
sions, one case of cannula displacement, the need for 
cannula replacement for three patients, and one case of 
pump malfunction.19

CHRONIC OBSTRUCTIVE  
PULMONARY DISEASE

Extracorporeal CO2 removal with low-flow ECCO2R devices 
has been applied in patients with exacerbation of COPD 
with the aim of avoiding intubation or facilitating weaning 
from invasive mechanical ventilation (IMV). In a pilot study 
Abrams et al. suggested that ECCO2R devices may facilitate 
early extubation and ambulation of COPD patients requiring 
IMV.23 After 4 hours from the beginning of ECCO2R, all five 
patients were extubated and after around 1 day patients 
were able to ambulate. The mean duration of ECCO2R 
support was 8 days without any significant serious adverse 
effect except for minor bleeding at the site of cannula 
insertion.23 Noninvasive ventilation (NIV) is the mainstay 
of therapy for patients with acute exacerbation of COPD; 
however, NIV failure is associated with higher risk of 
hospital mortality. Toward this end, ECCO2R removal has 
been proposed as a supportive therapy to avoid the risk of 
intubation with the assumption that CO2 removal may reduce 
the request of minute ventilation and limit dynamic hyper-
inflation.24 In a matched cohort study, 25 patients who were 
at risk of failure NIV (defined by arterial pH ≤ 7.3 with 
PaCO2 > 20% of baseline and respiratory rate ≥ 30 breaths/
minor use of accessory muscles/paradoxic abdominal 
movements) were treated with ECCO2R. Compared with 
historic controls, these patients had 73% risk reduction of 
intubation, and this result may be attributable to reduction 
of respiratory rate after CO2 removal.25

The use of ECCO2R also has been theorized in COPD 
patients who fail weaning from mechanical ventilation in 
absence of respiratory acidosis. In fact, CO2 partial removal 
obtained with the use of ECCO2R may reduce respiratory 
muscle effort, avoiding fatigue and pump failure. In four 
patients with COPD who have failed two consecutive trials 
of T-piece, ECCO2R support was started during the following 
spontaneous breathing trials. All patients matched a priori 
defined criteria and were extubated successfully under 
ECCO2R. Interestingly, all indices of respiratory muscles 
effort (pressure time integrals of the diaphragm and esopha-
geal pressure per minute) and work of breathing were 
reduced significantly compared with those measured during 
the first attempts of spontaneous breathing.26

PATIENTS WITH ACUTE KIDNEY  
INJURY WHO REQUIRE RENAL 
REPLACEMENT THERAPY

In critically ill patients with acute renal failure, concomitant 
respiratory failure that requires mechanical ventilation is 
one of the strongest risk factors for hospital mortality to 
levels similar to hematologic diseases and hepatorenal 
syndrome.27 Concomitant lung and kidney failures indicate 
higher severity of multiple organ dysfunctions and imply 
a lung-kidney cross-talk. In fact, a growing body of evidence 
indicates that AKI induces distant organ dysfunction.28 Lung 
failure–associated AKI is characterized by increased vascular 
permeability, impaired lung edema clearance, and over-
whelmed leukocytes trafficking.28

Animal models of AKI induced by bilateral nephrectomy 
or ischemia reperfusion injury showed cytokine mediated 
pulmonary injury and dysregulation of lung salt and water 
channels that are involved in alveolar edema clearance. 
Inflammatory cytokines are potential mediators of this 



400 to 1000 mL/min). Extracorporeal CO2 removal 
(ECCO2R) systems do not improve oxygenation.

2.	 ECCO2R can be used to minimize the risk ventilator 
induced lung injury (VILI) in ARDS patients and 
to reduce the need of invasive mechanical ventila-
tion in patients with chronic obstructive pulmonary 
disease.

3.	 Veno-venous ECCO2R devices can be incorporated 
within renal replacement therapy systems to allow 
simultaneous renal and pulmonary extracorporeal 
support.

4.	 The need for systemic anticoagulation may be still 
a concern that limits a wider application of ECCO2R 
systems.
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CONCLUSION
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effects in patients with ARDS, with acute exacerbation  
of COPD, and with AKI requiring RRT. However, its  
efficacy and safety must be proven in well-designed future 
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Key Points

1.	 Dissolved CO2 can be removed effectively with a 
low-flow extracorporeal device (blood flow from 
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