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CHAPTER 122 

The Kidney During Mechanical Ventilation
Jan Willem Kuiper, A.B. Johan Groeneveld, and Frans B. Plötz

OBJECTIVES
This chapter will:
1.	 Describe the epidemiologic relationship between mechani-

cal ventilation and acute renal failure and address the 
indications for mechanical ventilation.

2.	 Review the adverse effects of mechanical ventilation on 
the lung and distant organs.

3.	 Outline the effects of mechanical ventilation on systemic 
hemodynamics, local renal blood flow, and on the kidney.

4.	 Discuss the possible effects of hypercapnia and hypoxemia 
on kidney function.

5.	 Describe the effects of mechanical ventilation induced on 
the kidney.

Mechanical ventilation has been of great value in improving 
the survival of many patients suffering from respiratory 
failure. A common cause of respiratory failure is the acute 
respiratory distress syndrome (ARDS) ranging from mild 
to severe ARDS, with a mortality rate of 38.5% for severe 
ARDS.1 Although the most obvious clinical abnormalities 
in ALI and ARDS are referable to the lung, the most 
common cause of death is multiple organ dysfunction 
including acute kidney injury (AKI).2 Respiratory failure 
and mechanical ventilation are risk factors for developing 
AKI; more than 75% of patients in the intensive care unit 
(ICU) with AKI receive mechanical ventilation.3 Also, 
increased duration of mechanical ventilation increases the 
risk of developing AKI after cardiac surgery.4 Mechanical 
ventilation has been shown to be an independent risk factor 
for in-hospital death in critically ill patients with AKI, 
more than tripling the risk of dying in hospital and doubling 
the risk 1 year after ICU admission.5 This chapter describes 
possible mechanisms through which mechanical ventilation 
affects the kidney in patients requiring ICU management 
and how these may contribute to the development of AKI.

MECHANICAL VENTILATION VERSUS 
SPONTANEOUS BREATHING

During spontaneous breathing, respiratory muscles establish 
negative intrathoracic and intrapulmonary pressures and, 
by downward movement of the diaphragm, a positive intra-
abdominal pressure. The resulting intrathoracic pressure–
to–ambient pressure gradient allows air to flow into the 
lungs. The physiologic mechanism of spontaneous breathing 
facilitates venous return, thereby supporting hemodynamics. 
In contrast with spontaneous breathing, mechanical ventila-
tion uses positive pressure to inflate the lungs.

In most patients with ARDS, either volume-controlled 
or pressure-controlled ventilation is used. In the volume 
control mode, a volume is preset on the ventilator, resulting 
in a variable airway pressure, whereas in the pressure control 
mode, the inspiratory pressure is preset, resulting in a certain 
tidal volume. Thus the airway pressure results from the 
applied tidal volume or preset inspiratory pressure and on 
the preset basic end-expiratory volume and depends on 
lung compliance, airway resistance, and air flow.

During mechanical ventilation, pressure gradients are 
altered considerably compared with pressure gradients in 
spontaneously breathing subjects. Intrathoracic, intrapul-
monary, and intra-abdominal pressures increase during 
inspiration and remain positive during the breathing cycle. 
Only at the end of expiration do they equalize with ambient 
pressure, when no positive end-expiratory pressure (PEEP) 
is applied. PEEP usually is applied to prevent the alveoli 
from collapsing at end expiration. Consequently, mechanical 
ventilation exerts systemic hemodynamic effects through 
a complex interaction among intrathoracic pressure, intra-
vascular volume, and cardiac performance. Mechanical 
ventilation decreases cardiac output by decreasing preload, 
affecting left ventricular geometry and pulmonary vascular 
volume and resistance, and, in addition, increasing right 
ventricular afterload. Evidence for these proposed mecha-
nisms has been known for decades, based on studies in 
animal models and human subjects during spontaneous 
ventilation or controlled mandatory ventilation in combina-
tion with PEEP.6,7
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inflammatory response.14,15 Indirect evidence from experi-
mental models ranging from an isolated perfused and 
ventilated mouse lung, intact animals with preinjured lungs, 
and humans with ARDS supports this hypothesis.16,17 
However, conflicting evidence exists.18,19 In addition, other 
mechanisms by which mechanical ventilation may affect 
distant organs include suppression of peripheral immune 
response and translocation of bacteria and endotoxin from 
lung and intestine to the systemic circulation.20

MECHANICAL VENTILATION  
AND THE KIDNEY

Acute tubular necrosis most often is ischemic or toxic in 
origin. Prerenal failure and ischemic tubular necrosis 
represent points along a continuum, with the former leading 
to the latter when blood flow is compromised sufficiently.6 
Many clinical conditions can lead to kidney ischemia as 
a result of either extrarenal or intrarenal factors that com-
promise renal blood flow.6 After ischemia, toxins account 
for the largest number of cases of acute intrinsic renal failure 
by directly damaging tubular cells or by various other 
mechanisms.6

Mechanical ventilation may contribute to the develop-
ment of AKI by three different mechanisms (Fig. 122.1): 
First, the effect of mechanical ventilation on systemic 
hemodynamics can alter renal blood flow; second, changes 
in PaCO2 and PaO2 can affect renal hemodynamics; and 

INDICATIONS FOR MECHANICAL 
VENTILATION

The most common and obvious indication for mechanical 
ventilation in patients under ICU care is ARDS. This condi-
tion can be defined qualitatively as any respiratory pathologic 
process associated with failure of arterial oxygenation and 
inadequate alveolar ventilation, with a subsequent decrease 
in PaO2 or rise in PaCO2, or both. Although in most mechani-
cally ventilated patients, normal gas exchange is targeted, 
in many patients with ARDS managed in the ICU, the 
maintenance of normal gas exchange is impossible. In such 
cases, to avoid ventilator-associated lung injury (VALI), a 
low PaO2 or a high PaCO2 is accepted.8 The former occurs 
despite measures to improve oxygenation and despite 
avoidance of high, potentially toxic inspired oxygen con-
centrations. The latter may be associated with a strategy 
of small tidal volume ventilation with adequate mean airway 
pressure to achieve satisfactory oxygenation, thereby avoid-
ing toxic inspired oxygen concentrations and allowing PaCO2 
to increase if necessary. These strategies are called permissive 
hypoxemia and permissive hypercapnia, respectively. In 
this regard, it is important to recognize that patients in the 
ICU may be subjected to acute changes in PaO2 and PaCO2, 
or to mild chronic hypoxemia or hypercapnia, as a result 
of the applied ventilatory strategy or their underlying 
condition.

VENTILATOR-INDUCED LUNG INJURY

Besides the adverse effects mechanical ventilation has on 
systemic hemodynamics, it also can cause direct damage 
to the lungs, which is termed ventilator-induced lung injury 
(VILI). VALI is used when a causal relationship between 
mechanical ventilation and lung injury cannot be estab-
lished, which is usually a clinical setting.9,10 Initial experi-
mental research on the induction and course of VILI focused 
primarily on the contribution of mechanical factors such 
as pressure and volume.11 Based on these studies, innovative 
and lung-protective strategies have been proposed to avoid 
VILI by limiting tidal volume and plateau pressure and by 
maintaining recruitment of alveolar regions with sufficient 
PEEP. Clinical trials subsequently made clear that ventilator 
management can alter mortality in patients with ARDS.8,12 
In 2000 the ARDS Network clinical trial revealed that 
mortality rate was significantly lower in the group managed 
with lower tidal volumes than for managed with traditional 
high tidal volumes (31.0% vs. 39.8%).12

Mechanical stresses caused by mechanical ventilation 
can affect cellular and molecular processes in the lung, a 
mechanism that has been called biotrauma.13 Two inde-
pendent pathways of the biotrauma hypothesis have been 
distinguished: (1) Ventilation may cause release of mediators, 
and (2) these mediators have biologic activity. Ventilation 
strategies using “large” tidal volumes and zero PEEP in 
already-injured lungs can promote the release of inflam-
matory mediators in the lungs. This potentiation of the 
inflammatory response is supported by evidence from 
experimental models ranging from mechanically stressed 
cell systems to isolated lungs and intact animals and 
humans. The possible pivotal role for biotrauma in the 
development of multisystem organ failure was based on 
the suggestion that this inflammatory reaction may not be 
limited to the lungs but, by way of spillover of mediators 
in the circulation, also may initiate and propagate a systemic 
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FIGURE 122.1  Mechanical ventilation affects the kidney through three 
distinct mechanisms: (1) direct effects on gas exchange that can 
activate vasoactive mechanisms and decrease renal blood flow; 
(2) depressing effects on systemic hemodynamics, thereby decreasing 
renal blood flow; and (3) secondary to biotrauma from mechanical 
ventilation, with the subsequent systemic release of inflammatory 
and proapoptic mediators that may affect the kidney. These effects 
may be more pronounced in patients with severe acute respiratory 
distress syndrome or with circulatory compromise. 
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respiratory failure or with chronic obstructive pulmonary 
disease. PaCO2 levels have been found to correlate inversely 
with renal blood flow.6 Hypercapnia can reduce renal blood 
flow by direct and indirect mechanisms. Hypercapnia 
directly causes renal vasoconstriction and stimulates 
norepinephrine release, acting on the sympathetic nervous 
system.6 Increased sympathetic activity can reduce renal 
blood flow and, to a lesser extent, GFR and may contribute 
to nonosmotic release of vasopressin.6 Indirectly, hyper-
capnia causes systemic vasodilation that decreases systemic 
vascular resistance, “inactivating” the baroreceptors with 
a subsequent release of norepinephrine and stimulation of 
the renin-angiotensin-aldosterone system, leading to a fall 
in renal blood flow.6

Human, post–renal transplantation, and animal studies 
suggest that local neurogenic mechanisms play a role in 
the response of renal blood flow to hypercapnia.25 In addi-
tion, other factors such as circulating catecholamines and 
neuropeptides also affect the renovascular response to 
hypercapnia, in addition to effects on renal innervation 
(Table 122.1). Of importance clinically, the rapid and marked 
decrease in renal blood flow in response to hypercapnia 
also occurs in the presence of normal or increased PaO2. 
This finding suggests that changes in PaCO2, independent 
from PaO2, play a pivotal role in determining the renovas-
cular response to changes in arterial blood gas pressures.

Hypoxemia
Severe hypoxemia (PaO2 less than 40 mm Hg) generally is 
thought to reduce renal blood flow and can lead to functional 
renal insufficiency.6 Reports on the renal effects of moderate 
hypoxemia are conflicting, however. Several studies suggest 
that mild hypoxemia without concomitant hypercapnia 

third, the systemic release of inflammatory mediators may 
have biologic activity that affects the kidney.6

Effects of Mechanical Ventilation  
on Renal Blood Flow
Based largely on renal ischemia-reperfusion studies, it is 
well known that a compromised renal blood flow contributes 
to renal vascular endothelial and tubular damage and 
influences long-term renal function. The mechanisms by 
which mechanical ventilation alters renal perfusion include 
a reduction in cardiac output and stimulation of hormonal 
and sympathetic pathways.6,21

First, a decreased cardiac output during mechanical 
ventilation in patients with respiratory failure may lead to 
decreased renal perfusion and is associated with reduced 
renal function as reflected in sodium handling, glomerular 
filtration rate (GFR), urinary output, and urea and creatinine 
clearance. Hemodynamic studies demonstrated an immediate 
decline in urinary output after start of mechanical 
ventilation—an effect that appears to be exacerbated by 
PEEP.6,21 The reported effects of mechanical ventilation on 
GFR and renal blood flow are variable and may reflect 
differences in hydration status, patient acuity, possible 
underlying pulmonary dysfunction, and anesthetics used. 
Dispute exists, however, regarding the relative contribution 
of effects of cardiac output and the stimulation of water- and 
sodium-retaining hormonal systems.

Second, various regulatory hormonal mechanisms that 
affect renal function during mechanical ventilation have 
been proposed. Thus far, no definite correlation between 
antidiuretic hormone (ADH), prostaglandin, catecholamine, 
atrial natriuretic factor (ANP), or vasoactive peptide levels 
and renal function during mechanical ventilation has been 
established.6 In rats, Kuiper et al. found that mechanical 
ventilation induced decreased RBF, which was associated 
with increased kidney endothelin-1 levels.22 Similarly, in 
rats mechanically ventilated after intratracheal instillation 
of lipopolysaccharide, renal hypoperfusion and impaired 
endothelium-dependent vasodilation was shown. This was 
associated with increased serum creatinine and renal 
neutrophil gelatinase-associated lipocalin.23 Mechanical 
ventilation increased renal endothelial nitric oxide synthase 
expression, which was correlated with increased renal 
protein loss and increased vascular permeability.24 Third, 
mechanical ventilation with PEEP increases sympathetic 
tone, resulting in increased plasma renin activity and thereby 
decreasing GFR by reducing blood flow.6 Mechanical ventila-
tion also has a transient effect on aortic blood pressure, 
which reflexively activates the sympathetic nervous system 
through aortic and (sino)carotid baroreceptors and, more 
slowly, affects intravascular volume by changing renal 
function.6 Whether the effect of atrial stretch receptors on 
renal vascular tone also alters renal function during mechani-
cal ventilation remains to be evaluated.6 In conclusion, the 
effects of a reduced cardiac output on kidney function 
during mechanical ventilation have been documented 
extensively. By contrast, the relative role of neurohumoral 
regulatory systems remains to be investigated.

Pa2, PaO2, and the Kidney
Hypercapnia
The effect of hypercapnia on renal blood flow has been 
well documented in normal persons and in patients in 

TABLE 122.1 

Inflammatory, Vasoactive, and Proapoptotic Mediators 
That Potentially Mediate the Effects of Mechanical 
Ventilation on the Kidney

INFLAMMATORY 
MEDIATORS

VASOACTIVE 
MEDIATORS

PROAPOPTOTIC 
MEDIATORS COAGULATION

IL-1β Nitric oxide Soluble Fas 
ligand

(a)PAI-1

IL-6 Vasopressin 
(ADH)

MCP-1 TATc

IL-8 Catecholamines Active tPA
IL-10 RAAS
TNF-α Prostaglandins
Soluble 
IL-1RA

ANF

Soluble  
TNF 
receptors

Endothelin

sICAM-1
aPC
MIP-2
GRO / KC
VCAM-1

ADH, Antidiuretic hormone; ANF, atrial natriuretic factor;  
(a)PAI, (activated) plasminogen activator inhibitor; aPC, activated  
protein C; GRO, growth-related oncogene; IL, interleukin;  
KC, keratinocyte chemoattractant; MCP-1, monocyte chemotactic 
protein-1; MIP, macrophage inflammatory protein; RA, receptor 
antagonist; RAAS, renin-angiotensin-aldosterone system; sICAM, soluble 
intercellular adhesion molecule; TATc, thrombin antithrombin complex; 
TNF, tumor necrosis factor; tPA, tissue-type plasminogen activator.
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chemotactic mediators; in particular TNF-α, IL-6, and MIP-2 
have been studied. In vivo, TNF-α can cause and contribute 
to AKI, but evidence for other proinflammatory mediators 
is lacking. IL-6 has been shown to be involved in AKI, but 
its role is incompletely understood. Of all antiinflammatory 
mediators, only IL-10 appears to have a protective role in 
the development of AKI. Mediators such as VEGF and 
activated protein C have been well described in the AKI 
literature but not in the context of mechanical ventilation. 
Others, such as ICAM-1, VACM-1, and sFasL have been 
studied in the context of biotrauma, but their potential 
effects on the kidney must be elucidated.14

In the aforementioned studies, specific issues must be 
evaluated. First, the source of the mediators remains 
uncertain. Lung-borne mediators may spill over into the 
systemic circulation and exert their effect on distant organs.28 
However, these mediators also may be produced locally in 
the kidneys as a result of a compromised renal blood flow 
and exert their effect directly in the organs where they are 
produced. Second, it is important to prove a cause-and-effect 
relationship between mediators and renal dysfunction, rather 
than simply recognizing an association.29

CONCLUSION

Mechanical ventilation plays an important role in the care 
of patients in the ICU and is critical to survival in many 
cases. Despite the emergence of new modes of ventilation 
and new ventilator strategies, the effects of mechanical 
ventilation remain complex and extend to organ systems 
other than the lung. In the ICU, patients usually suffer from 
ARDS, which significantly alters lung mechanics, thereby 
aggravating the adverse effects of mechanical ventilation—
further depression of hemodynamics and exacerbation of 
the pulmonary inflammatory processes. In addition, the 
harmful effects of mechanical ventilation on the kidney 
become more significant when comorbid conditions are 
present. In the presence of ARDS, it is more difficult to 
maintain normal gas exchange, and moderate arterial 
hypoxemia and hypercapnia often are accepted, which 
potentially decrease renal blood flow. Renal blood flow is 
compromised further because of a decreased cardiac output 
secondary to high intrathoracic pressures. Furthermore, 
the impact of biotrauma is not limited to the lungs but may 
lead to a systemic inflammatory reaction. These effects on 
renal function can be aggravated during sepsis, when 
prerenal blood flow is compromised further. This series of 
events may reflect a multifactorial process that eventually 
may result in the development of AKI. Despite difficulties 
in differentiating between the effects of mechanical ventila-
tion and the underlying disease on renal function, it is 
likely that mechanical ventilation greatly affects the kidney.

Key Points

1.	 Mechanical ventilation has been shown to be an 
independent risk factor for in-hospital death in 
critically ill patients with acute renal failure, more 
than tripling the risk of dying.

2.	 Through various mechanisms, mechanical ventila-
tion exerts effects on the lungs and extrapulmonary 
organ systems, including the kidney.

exerts no significant effect on renal hemodynamics.  
Other studies have demonstrated that acute normocapnic 
hypoxemia increases renal vascular resistance, leading to 
renal hypoperfusion and decreased GFR. The underlying 
mechanisms whereby changes in oxygenation induce 
vasomotor nephropathy are not fully understood. Possible 
mechanisms include (in)activation of vasoactive factors 
such as nitric oxide (NO), angiotensin II, endothelin, and 
bradykinin and a chemoreceptor-mediated sympathetic 
reflex (see Table 122.1).6 Although permissive hypercapnia 
with acidosis has cytoprotective and antiinflammatory 
properties, no recent studies have addressed the effects of 
permissive hypercapnia and hypoxemia.

BIOTRAUMA AND THE KIDNEY

An increasing number of mediators have been reported 
to increase in the systemic circulation during mechanical 
ventilation and may potentially contribute to AKI (see Table 
122.1).14 These mediators have been identified in clinical 
studies as well as animal experiments and not only are 
they proinflammatory by nature but also antiinflammatory 
mediators have been identified. The simultaneous detection 
of proinflammatory and antiinflammatory mediators may 
reflect altered regulation of the inflammatory response. 
A persistent activation of the inflammatory response is 
associated with organ failure.26 Inflammatory mediators may 
affect renal function through several mechanisms, some of 
which may be synergistic. Suggested mechanisms include 
(1) a direct effect on renal blood flow through the release of 
several vasoactive mediators, (2) induction of a local renal 
inflammatory response by proinflammatory mediators from 
pulmonary origin, and (3) the direct induction of apoptosis 
by proapoptotic factors.6 Soluble Fas ligand is known to 
induce apoptosis of glomerular cells, and interleukin (IL)-1β, 
IL-6, and tumor necrosis factor-alpha (TNF-α) may facilitate 
this process by activating platelet-activating factor and 
inducing an inflammatory reaction, both contributing to 
the apoptotic effects of soluble Fas ligand.14 In addition, 
mediators involved in coagulation and fibrinolysis have 
been found in plasma after mechanical ventilation, but 
the evidence for a direct effect on the kidney is limited. 
Vascular endothelial growth factor also has been found 
and may have injurious and protective effects.14 These 
processes are closely related and a combination of the 
aforementioned processes is more likely involved than one 
single process or mediator. By compromising renal blood 
flow, a critical threshold may be reached and inflammatory 
mediators may exert a direct effect on renal endothelial and 
epithelial cells, thereby inducing or contributing to AKI (see  
Fig. 122.1).

Only a few studies have addressed the role of biotrauma 
in association with the kidney. In a clinical study, Ranieri 
et al. observed that a conventional mechanical ventilation 
strategy was associated with a local and systemic cytokine 
response that was sustained over 36 hours in patients  
with ARDS, whereas in a second group of patients, the 
inflammatory response was attenuated by a lung-protective 
strategy. Patients in the latter group had significantly lower 
concentrations of a number of cytokines (TNF-α, IL-1β, 
IL-6, IL-8, soluble TNF receptors, IL-1 receptor antagonist) 
in plasma and bronchoalveolar lavage fluid at 36 hours.27 
A posthoc analysis revealed that an increase in IL-6 plasma 
concentrations correlated with the development of acute 
renal failure.17 Most studies on mediator release and effects 
on the kidney have focused on proinflammatory and 
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3.	 Mechanical ventilation exerts effects on systemic 
hemodynamics and local renal blood flow that 
may in turn influence renal function.

4.	 Mechanical ventilation strategies of permissive 
hypercapnia and hypoxemia may compromise renal 
blood flow, thereby affecting renal function.

5.	 Biotrauma, the propagation of a pulmonary inflam-
matory reaction and spillover of inflammatory 
mediators into the systemic circulation, also may 
affect renal function.
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