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CHAPTER 118 

Principles of Diuretic Management in 
Heart Failure
Eric C. Siddall and Jai Radjakrishnan

OBJECTIVES
This chapter will:
1.	 Explain the negative effects of extra cellular fluid volume 

expansion on cardiac and renal function.
2.	 Explain how heart failure and chronic kidney disease 

contribute to diuretic resistance.
3.	 Identify risk factors for worsening renal function in acute 

decompensated heart failure.
4.	 Describe combination diuretic therapy in acute decom-

pensated heart failure.

Heart failure (HF) currently affects approximately 26 million 
adults worldwide, including 15 million in Europe and 5.7 
million in the United States.1 The worldwide cost of HF 
is estimated to be $108 billion per year.2 Among those 
admitted to the hospital with HF, approximately 25% in 
the United States are readmitted within 30 days, whereas 
31.9% in Europe are readmitted within 1 year.1,3 Of patients 
readmitted,14% to 30% are due to HF.4 Studies have shown 
that patients frequently are discharged from the hospital with 
elevated filling pressures (intravascular volumes).5 Fluid 
overload not only contributes to hospital readmissions but 
also negatively affects myocardial and renal performance.6 
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reduce the GFR by more than 25%.18 In a study of patients 
with acute decompensated heart failure (ADHF), elevated 
IAP was associated with increased baseline creatinine; 
there was a significant positive correlation between reduc-
tions in intraabdominal pressure and reductions in serum 
creatinine.19

PHYSIOLOGIC RESPONSE TO DIURETICS

The normal physiologic response to a diuretic leads to a 
decrease in the effect of the diuretic over time. Inhibition of 
sodium chloride reabsorption in the thick ascending limb of 
Henle (TALH) by loop diuretics causes a significant increase 
in the delivery of sodium chloride to the distal convoluted 
tubule (DCT). Studies have demonstrated a load-dependent 
increase in DCT sodium reabsorption in response to a 
bolus of furosemide.20 Once the tubular diuretic concen-
tration falls below its threshold concentration, a period 
of sodium retention begins. Mechanisms of postdiuretic 
sodium retention include extracellular fluid volume (ECFV) 
depletion, increased TALH sodium reabsorption (caused 
by increased NKCC transporter number and activity), and 
increased DCT sodium reabsorption (caused by increased 
sodium chloride transporter number).20 Finally, chronic 
diuretic use leads to progressively less natriuresis for any 
given diuretic dose. This response has been termed the 
“braking phenomenon.” ECFV depletion is necessary for 
the braking phenomenon to occur.20 Depletion of the ECFV 
causes stimulation of sympathetic nervous system (SNS) 
and the renin-angiotensin-aldosterone system (RAAS). SNS 
stimulation and angiotensin II increase proximal tubular 
sodium reabsorption as well as increase the filtration 
fraction.21–23 An increase in filtration fraction results in 
greater proximal tubular fluid reabsorption owing to 
increases in peritubular capillary oncotic pressure. Nor-
epinephrine and angiotensin II reduce renal blood flow, 
thus reducing the filtered load and excretion of sodium. 
Aldosterone causes increases in collecting duct sodium 
reabsorption, which further reduces urine sodium excre-
tion. Finally, the chronic administration of loop diuretics 
leads to hypertrophy and hyperplasia of the DCT, which 
further increases sodium reabsorption and contributes to the 
braking phenomenon.24,25 This DCT hypertrophy depends 
on increased sodium chloride delivery and increased serum  
aldosterone.26

INFLUENCE OF HEART FAILURE ON 
DIURETIC RESPONSIVENESS

In HF, arterial underfilling causes baroreceptor activation 
resulting in increased levels of norepinephrine, renin, 
angiotensin II, and aldosterone.27 Consequently, there is a 
reduction in the filtered load of sodium, an increase in the 
proximal reabsorption of sodium, decreased distal delivery 
of filtrate to the nephron, and increased distal sodium 
reabsorption. All of the above events reduce the available 
sodium to be excreted by diuretics. Furthermore, in more 
advanced HF, baroreceptor-mediated vasopressin release 
causes increased water reabsorption by the nephron. As 
HF progresses, the degree of arterial underfilling worsens, 
causing progressive increases in norepinephrine, angiotensin 
II, aldosterone, and vasopressin. The physiologic responses 
to HF act synergistically with the normal responses to 
diuretics, potentially leading to diuretic resistance.

Congestive symptoms of dyspnea, abdominal fullness, and 
edema are some of the most common clinical manifestations 
of HF. Diuretics remain one of the most important therapies 
in HF because they improve congestive symptoms and, in 
some cases, improve organ function. Despite the benefits 
of diuretics, studies have shown increased mortality in HF 
patients treated with diuretics, particularly in high doses. 
Resistance to diuretic therapy is a common problem in 
patients with HF and is associated with increased mortality. 
In addition, diuretics may be associated with worsening 
renal function in HF patients. Chronic kidney disease 
(CKD) commonly coexists with HF and contributes to 
diuretic resistance and increased mortality. The normal 
counterregulatory responses to diuretics are aggravated 
by neurohormonal changes of HF, further contributing to 
diuretic resistance. Appropriate diuretic management in HF 
requires an understanding of diuretic resistance, mechanisms 
of perturbations in renal function during diuretic treatment, 
and an understanding of the pharmacology of diuretics.

CONSEQUENCES OF EXTRACELLULAR FLUID 
VOLUME EXPANSION

Fluid overload causes a number of abnormalities in the 
heart. Progressive fluid overload and consequent ventricular 
dilatation cause dilatation of the mitral valve annulus and 
malcoaptation of the leaflets.7 As a consequence, mitral regur-
gitation increases and forward ejection decreases. Ventricular 
dilatation also increases myocardial wall stress, which 
increases myocardial oxygen demand and can contribute 
to myocardial ischemia.8 Furthermore, progressive volume 
overload can lead to a leftward shift of the interventricular 
septum. Septal shift causes a reduction in left ventricular 
(LV) cavity size, reduced LV filling and thus a reduction 
in cardiac output.9

Fluid overload also can compromise renal function 
directly. Elevation of right-sided filling pressures (right 
atrial pressure, central venous pressure) leads to eleva-
tion in renal venous pressure. Using isolated dog kidneys 
perfused by a heart lung apparatus, Winton showed that 
increases of venous pressure to more than 20 mm Hg caused 
decreased renal blood flow, increased blood urea nitrogen, 
decreased urine volume, and decreased urine sodium excre-
tion.10 Importantly, the lower the mean arterial pressure, 
the lesser was the increase in venous pressure required to 
reduce urine volume. Using isolated, perfused rat kidneys, 
Firth showed that an increase of venous pressure of at least 
12.5 mm Hg reduced urine Na excretion, where as a venous 
pressure of at least 25 mm Hg reduced glomerular filtra-
tion rate (GFR).11 Increased renal venous pressure in intact 
dogs has been shown to reduce urine sodium excretion.12,13 
Maxwell showed that increased renal venous pressure was 
associated with decreased GFR in HF patients.14 In a study of 
patients with pulmonary hypertension, right atrial pressure 
showed a significant negative correlation with GFR.15 In a 
study of patients undergoing right heart catheterization, a 
significant negative correlation was found between central 
venous pressure (CVP) exceeding 6 mm Hg and estimated 
GFR.16 Mullens showed that a higher admission CVP was 
associated with the development of worsening renal func-
tion (WRF) in patients with acute decompensated heart  
failure.17

Increases in intraabdominal pressure sometimes are seen 
in advanced HF and can affect renal function. Experimental 
increases in intraabdominal pressure (IAP) to 20 mm Hg 
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not prove causation. It is possible, if not likely, that the 
need for high-dose diuretics is a marker of disease severity 
in HF, rather than a cause of increased mortality.

HF is associated with elevation of serum renin and 
aldosterone levels.27 As HF worsens, renin and aldosterone 
levels increase progressively49 and are associated with a 
worse prognosis.27 Diuretic treatment in HF causes increases 
of renin and aldosterone, which has added to concerns that 
diuretic treatment is harmful in HF.49,50 Analysis of renin 
and aldosterone levels from the DOSE-AHF and CARRESS-
HF trials showed that changes in renin and aldosterone 
levels during the trials were not associated with 60-day 
outcomes of death or rehospitalization for HF.49 There was no 
significant difference in renin or aldosterone levels in those 
treated with high versus low-dose diuretics. Furthermore, 
ultrafiltration was found to increase renin more than bolus 
loop diuretic treatment.

Diuretic use in HF is associated with worsening renal 
function (WRF). WRF occurs in 23% to 36% of patients 
hospitalized for ADHF.51–53 WRF during a hospitalization for 
ADHF predicts greater in-hospital and long-term mortality.32 
Risk factors for WRF included a history of hypertension, 
SBP exceeding 200 mm Hg, Cr greater than 1.5 mg/dL, BUN 
greater than 40 mg/dL, and more than basilar rales.53,54 In 
the setting of an HF exacerbation, an increase in creatinine 
of even 0.1 mg/dL increases the risk of mortality and length 
of hospital stay.55 It often is assumed that diuretics are the 
cause of worsened renal function and increased mortality 
in HF, but other factors may be important.

Patients with HF and more advanced CKD are less 
likely to be prescribed angiotensin-converting enzyme 
(ACE) inhibitors.56 Hospitalized patients with ADHF and 
progressive renal failure are less likely to be discharged 
on ACE inhibitors or angiotensin receptor blockers.29,57 
Compared with patients with advanced HF who tolerate 
an ACE inhibitor, those with circulatory or renal intolerance 
to an ACE inhibitor have a mortality rate that is 35% higher 
over 81

2  months.58 Among patients with HF and CKD with 
a GFR below 40 cc/min, the use of ACE inhibitors was 
associated with improved survival compared with those 
who did not use ACE inhibitors.31 In a study of patients 
admitted with ADHF, a GFR less than 30 cc/min was associ-
ated with a significantly increased risk of death in those 
not prescribed an ACE inhibitor; the risk of death was not 
increased significantly in those who were prescribed an 
ACE inhibitor.57

Hypertension is a consistent risk factor for WRF during 
an admission for ADHF.53,54,59 In an analysis of the ESCAPE 
trial, those who developed WRF had a significantly greater 
reduction in systolic blood pressure (SBP) versus those 
who did not experience WRF (−10.3 +/− 18.5 vs −2.8 +/− 
16 mm Hg, p < .001).60 For every 10 mm Hg SBP decreased, 
the odds ratio for WRF increased by 1.3 (p < .001). The 
mean doses of hydralazine, nitrates, and ACE inhibitors 
were significantly greater in the group with greater SBP 
reduction. In addition, thiazide diuretic use and weight 
loss were greater in the group with greater SBP reduction. 
WRF was not associated with an increase in mortality in 
those who had a significant decrease in SBP, whereas it was 
associated with a significant increase in mortality in those 
who did not have a decrease in SBP. Those with WRF who 
experienced significant hemoconcentration (an indicator 
of significant diuresis) did not demonstrate an increase in 
mortality, whereas those who did not experience hemo-
concentration did have a significant increase in mortality. 
Finally, patients who experienced both hemoconcentration 
and a significant decrease in SBP showed improved survival 
as compared with the rest of the group.

INFLUENCE OF CHRONIC KIDNEY DISEASE 
ON DIURETIC MANAGEMENT

CKD stage 3 or higher is common in HF with a prevalence 
29% to 63%.28–30 Higher CKD stage is associated with 
increasing mortality in HF patients.30,31 Increasing levels 
of blood urea nitrogen (BUN) and creatinine at admission 
for ADHF predict greater in-hospital and long-term mortal-
ity.32 In CKD there is a decrease in renal blood flow in 
addition to a decrease in GFR.33 Decreases in renal blood 
flow result in reduced diuretic delivery to the nephron. 
Diuretics are protein bound and therefore are not filtered 
at the glomerulus. Diuretics reach the tubular fluid from 
the peritubular capillaries by secretion through the organic 
anion transporter in the proximal tubular cells. In CKD, 
retention of organic anions creates competition for proximal 
tubular uptake of diuretics.34 Thus, owing to reductions in 
renal blood flow and accumulation of organic anions as 
occurs in CKD, the diuretic dose needed to reach the effec-
tive threshold tubular concentration is increased. Finally, 
impaired renal autoregulation is known to occur in older 
patients and those with hypertension, atherosclerotic disease, 
and CKD owing to afferent arteriolar narrowing.35 Aggressive 
diuresis and reductions in blood pressure are more likely 
to lead to worsening renal function in such patients.

BENEFITS OF DIURETICS IN HEART FAILURE

The most obvious benefits of diuretics in HF are their ability 
to improve patient symptoms.36 Diuretics relieve dyspnea 
and abdominal distention and increase exercise capacity. 
In addition to symptomatic benefits, diuresis affords several 
physiologic benefits in HF. Intravenous furosemide causes 
acute reductions in the pulmonary capillary wedge pressure 
within 5 to 15 minutes; a time before any significant change 
in urine volume occurs.37–39 This hemodynamic change 
results from increases in peripheral venous capacitance. 
After days of diuresis, increases in stroke volume and 
decreases in wedge pressure, mean arterial pressure, and 
systemic vascular resistance are seen.40 All of these effects are 
beneficial to those admitted with ADHF. Reduction of filling 
pressures results in a decrease in the mitral regurgitant orifice 
and thus decreases mitral regurgitation.7,41 This reduction in 
mitral regurgitation leads to increased forward flow, which 
probably explains, in part, how cardiac output is maintained 
during diuresis in HF.42 Diuretic treatment often affects renal 
function in HF. Of patients admitted with ADHF, 16% to 
31% will develop improved renal function in response to 
diuresis.43,44 Those who develop improved renal function 
have more acute kidney injury on presentation as well as 
more clinical and echocardiographic evidence of right HF.44

NEGATIVE EFFECTS OF DIURETICS IN  
HEART FAILURE

Several retrospective studies have shown that diuretic use 
in HF is associated with an increased risk of death.45–48 
Studies have shown further that higher diuretic dosages 
are associated with increased mortality.46–48 Another study 
showed that diuretics were associated significantly with 
an increased risk of arrhythmic death.45 Ultimately, these 
studies show an association of diuretics with death but do 
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Administering high-dose loop diuretics as an infusion 
rather than a bolus can reduce the risk of ototoxicity. Loop 
diuretics have maximal elimination half-lives that range from 
1 hour for bumetanide, to 2 hours for furosemide, to 4 hours 
for torsemide.62 Increases of norepinephrine, angiotensin 
II, and aldosterone in response to loop diuretics result in 
significant tubular sodium reabsorption during the time the 
diuretic dose is below its tubular threshold concentration. 
As such, loop diuretics must be administered multiple 
times per day to achieve maximal sodium excretion. In an 
attempt to overcome rebound sodium absorption during the 
diuretic offset, some practitioners administer loop diuretics 
as continuous infusion. In a study of patients admitted 
with ADHF, there was no difference in symptom relief or 
renal function between those randomized to bolus versus 
continuous infusion of loop diuretics.64 In another study 
of patients with ADHF, compared with bolus loop diuretic 
therapy, continuous infusion was associated with a higher 
discharge creatinine, no difference in weight loss, longer 
length of stay, and higher rates of 6-month readmissions 
or death.65

Resistance to loop diuretics is a common problem in HF. 
Patients who are resistant to high-dose loop diuretics can 
benefit from combinations of diuretics that sequentially block 
sodium reabsorption at different sites along the nephron 
(Fig. 118.2). In patients who cannot achieve euvolemia with 
optimal doses of loop diuretics, the addition of a thiazide 
diuretic can significantly increase natriuresis and weight 
loss.66,67 Of the thiazide diuretics, only chlorothiazide is 
available IV. Thiazide diuretic dosages range from 2.5 to 
10 mg daily of metolazone, 25 to 200 mg daily of hydro-
chlorothiazide, 25 to 100 mg daily of chlorthalidone or 
500 to 1000 mg daily of chlorothiazide in single or divided 
dosages. Studies have shown that thiazide diuretics remain 
effective in combination with loop diuretics even with a 
GFR less than 30 cc/min.68,69 Hypokalemia is a common side 
effect of combination loop and thiazide diuretic therapy.66,67 
The major role of aldosterone antagonists in ADHF is to 
mitigate potassium losses resulting from combination 
loop and thiazide diuretic therapy. The typical dosage of 

The same group of investigators performed another analy-
sis of the ESCAPE trial, focusing on the relation between 
hemoconcentration, WRF, and outcomes.61 Patients who 
developed lab evidence of hemoconcentration lost more 
weight, had greater reductions in filling pressures, and had 
WRF. Those with hemoconcentration had lower 180-day 
mortality; this effect persisted after adjustment for baseline 
patient characteristics. In aggregate, these studies suggest 
that hemodynamic factors underlie WRF in many patients, 
and that hemodynamic acute kidney injury (AKI) in ADHF 
is not associated with a negative prognosis. In fact, the study 
focusing on hemoconcentration suggests that aggressive 
diuresis that causes WRF can be associated with improved 
outcomes. In aggregate, these studies suggest that the cause 
of WRF is prognostically more important than WRF.

In an analysis of the ESCAPE trial, it was found that 
patients with ADHF who develop WRF have the same 
mortality as those who develop improved renal function 
(IRF).43 Both groups had increased mortality as compared 
with patients whose renal function remained stable. Another 
study of ADHF by the same group also showed that patients 
with IRF have increased mortality.44 The increase in mortality 
seen in the IRF group was restricted to those who rede-
veloped worsening renal function after hospital discharge. 
Patients with IRF had more clinical and echocardiographic 
findings of right HF; filling pressures were not different in 
those with IRF compared with other patients. Thus improved 
renal function during ADHF may be a marker for right HF, 
which may be a marker of poor outcomes.

As can be seen from the above, factors beyond diuretics 
explain at least some of the excess mortality seen with WRF 
during ADHF. In particular, the prescription of fewer ACE 
inhibitors to those with WRF is likely to factor significantly 
into their poor prognosis. Hemodynamic causes of WRF seem 
to have a more benign prognosis, whereas those that are 
not hemodynamic (cardiorenal causes) are associated with 
increased mortality. Although seemingly counterintuitive, 
the poor prognosis for some with improved renal function 
during ADHF (in the context of right HF and recurrent 
outpatient AKI) further underscores the importance of 
cardiac function in the determination of mortality.

DIURETIC MANAGEMENT

Loop diuretics are the cornerstone of diuretic management in 
HF because of their ability to inhibit the highest percentage 
of the filtered sodium load (Fig. 118.1). Equipotent doses of 
the three commonly prescribed loop diuretics are equally 
effective. Although bumetanide and torsemide have an 
oral bioavailability of 80% to 100%, furosemide has an 
average oral bioavailability of 50% with a range of 10% to 
100%.62 The potential relevance of diuretic bioavailability 
was demonstrated in an open label trial of oral torsemide 
versus furosemide in chronic HF. Patients randomized to 
torsemide had fewer rehospitalizations for HF compared 
with the furosemide group.63 A dose of 40 mg of intravenous 
(IV) furosemide is equivalent to 20 mg of IV torsemide and 
1 mg of IV bumetanide. The maximal effective IV dose of 
furosemide in patients with HF and normal renal function 
is 40 to 80 mg.62 In patients with advanced renal failure, 
competition for the organic anion transporter decreases 
the amount of furosemide that reaches the tubular lumen. 
As a result, higher doses of furosemide must be given as 
renal function deteriorates. The maximal effective dose of 
furosemide in a patient with advanced renal and cardiac 
failure is 160 to 200 mg IV.62

Optimize dose of Loop Diuretics

• Twice or thrice daily dosing

• GFR-adjusted dosing

• Switch furosemide to bumetanide or
torsemide    

Add a thiazide 

Potassium < 4.6: “diuretic” doses of spironolactone 

Metabolic alkalosis: add acetazolamide 

Consider ultrafiltration  

Persistent Congestion Low output state 

Advanced cardiac
therapies 

FIGURE 118.1  Stepwise approach to diuretic management in heart 
failure. GFR, glomerular filtration rate. 
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can improve renal function in some cases. History, physical 
exam, and chest radiography are known to be insensitive 
for detecting elevated filling pressures, particularly in those 
lacking edema.73,74 In some situations it can be challeng-
ing to discern between a low cardiac output state with 
high filling pressures, a normal cardiac output state with 
high filling pressures, and a normal cardiac output state 
with low filling pressures. In these patients, a right heart 
catheterization with direct assessment of filling pressures 
and cardiac output can clarify the physiologic state and 
guide further management.

In those who remain fluid overloaded despite optimal 
doses of loop and thiazide diuretics, and in whom a low 
cardiac output state has been excluded, ultrafiltration or 
dialysis is the next step. The routine use of ultrafiltration 
for volume removal in those with ADHF who are diuretic 
responsive is not encouraged. In a study of patients with 
ADHF and cardiorenal syndrome, ultrafiltration resulted in 
similar weight loss, but a higher incidence of renal failure 
and serious adverse events as compared with diuretics.36 
In some patients with ADHF and AKI, reduction of filling 
pressures and relief of renal venous congestion with ultrafil-
tration can improve renal function and ventricular mechanics 
such that diuretic responsiveness can be restored.75

Currently there are no recommended daily fluid removal 
goals in HF. Removal of fluid at a rate that exceeds the vas-
cular refill rate could lead to renal failure despite persistently 
elevated filling pressures. In a study of ultrafiltration in 
class IV ADHF patients with generalized edema, requiring 
inotropes, and with AKI, removal of 4880 +/- 896 mL over 
9+/- 3 hours (542 cc/hr) did not result in any significant 
changes in blood pressure, heart rate, or intravascular 
volume.75 The plasma refill rate was 14 cc/min at the 

spironolactone in this setting is 50 to 100 mg daily. The 
addition of an aldosterone antagonist also can increase 
sodium excretion and weight loss in patients with ongoing 
fluid overload despite treatment with high-dose loop diuret-
ics.70 Metabolic alkalosis is another common complication 
of loop and thiazide diuretic therapy as a consequence 
of hypokalemia and hypochloremia. Despite aggressive 
potassium repletion, metabolic alkalosis persists in some 
patients. The carbonic anhydrase inhibitor acetazolamide, 
in doses of 500 to 1000 mg daily, can correct metabolic 
alkalosis and increase sodium excretion in such patients.71 
Hypokalemia is a potential complication of acetazolamide 
therapy, particularly in combination with loop and thiazide 
diuretics. In those who fail combination diuretic treatment, 
a low cardiac output state or advanced renal failure is likely 
to be present. If a low cardiac output state is suspected or 
confirmed, the addition of inotropes may restore diuretic 
efficacy.66 The development of AKI in response to diuretics 
is common in those with ADHF. The differential diagnosis 
includes true intravascular volume depletion (low cardiac 
filling pressures with low or normal cardiac output), a low 
cardiac output state with high filling pressures, cardiorenal 
syndrome (high filling pressures with normal cardiac output), 
or removal of volume at a rate that exceeds the rate of 
capillary refill. In addition to causing AKI, a low cardiac 
output state also can limit the effectiveness of loop diuretics 
because of a reduction in the filtered load of sodium and 
to a reduction in delivery of tubular fluid to the distal 
nephron. Clues to a low cardiac output state include a 
proportional pulse pressure of 25% or less, cool extremities, 
and a systolic blood pressure less than 90 mm Hg; these 
findings have high specificity, but low sensitivity.72 In low 
cardiac output patients, the addition of inotropic support 
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FIGURE 118.2  Diuretics and their sites of action in the nephron. 
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use is associated with increased mortality in HF, there is no 
proof of causality. Alternative explanations such as greater 
disease severity in patients treated with high-dose diuret-
ics and less prescription of ACE inhibitors in those with 
WRF may explain the association with mortality. Although 
diuretic treatment can lead to WRF, studies suggest that 
WRF resulting from volume contraction or reductions in 
blood pressure is not associated with negative outcomes. 
This strengthens the notion that achievement of euvolemia 
is the paramount concern in HF patients.

Neurohormonal changes in HF compound the normal 
physiologic response to diuretics and contribute to diuretic 
resistance. The coexistence of CKD in many HF patients 
makes diuresis even more challenging. Higher doses of loop 
diuretics as well as combination therapy with thiazides 
are required in such patients to achieve euvolemia. An 
accurate assessment of cardiac output and volume status 
are essential to the appropriate management of HF patients. 
Although the routine use of pulmonary artery catheters 
in HF does not change outcomes and is discouraged,84 
patients with an unclear hemodynamic state may benefit 
from pulmonary artery catheterization to guide further 
therapy. Therapies for volume management beyond diuret-
ics have been shown to be ineffective (vaptans, adenosine 
antagonists) or remain experimental (hypertonic saline and  
furosemide).

Key Points

1.	 Increased renal venous pressure is a dominant 
mechanism of acute kidney injury in acute decom-
pensated heart failure.

2.	 Increases in creatinine associated with hemody-
namics changes (decreased blood pressure, hemo-
concentration) are not associated with increased 
mortality.

3.	 Patients with chronic kidney disease require much 
higher doses of loop diuretics.

4.	 Physiologic renal adaptation to loop diuretics, 
including increased number and activity of thick 
ascending limb NKCC and distal tubular NaCl 
transporters, reduces the efficacy of loop diuretics 
over time. For this reason, higher doses of loop 
diuretics, often in combination with thiazides 
diuretics, are necessary for adequate diuresis.
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beginning of treatment and declined gradually during the 
course of treatment. In another study of ultrafiltration in 
patients with treatment-resistant HF, the plasma refill rate 
was found to be 12.7 mL/min or 762 cc/hr.76 These data 
suggest that in ADHF, 4 to 5 L of fluid can be removed 
safely in a 24-hour period.

BEYOND DIURETICS

Tolvaptan
In a study of patients with ADHF managed with conventional 
therapy, tolvaptan reduced weight by 0.8 kg versus placebo 
at day 1 and day 7.77 In a study of tolvaptan versus placebo 
in addition to furosemide in ADHF, there was no differ-
ence in relief of dyspnea at 24 hours, absence of clinical 
congestion at 72 hours, length of stay, or 30-day outcomes.78 
Tolvaptan-treated patients had a greater total weight loss 
at 24 and 72 hours of 1.4 kg and 1.2 kg versus placebo, 
respectively. Thus, although tolvaptan remains beneficial for 
hyponatremia, it has no role for primary volume management 
in HF patients.

Hypertonic Saline and Furosemide
In a study of ADHF, patients randomized to high-dose 
furosemide and hypertonic saline demonstrated a higher 
daily urine volume, greater weight loss, lower serum cre-
atinine, and reductions in hospitalization time and hospital 
readmission rates compared with those treated with high-
dose furosemide alone.79 The mechanism of benefit of the 
hypertonic saline is unknown but may relate to improving 
loop diuretic efficacy or better mobilization of fluid into 
the intravascular space.

Rolofylline
Increased sodium chloride delivery to the macula densa 
causes release of adenosine, which then binds to the afferent 
arteriole causing vasoconstriction.80 This vasoconstriction 
subsequently decreases GFR. The opposite response occurs 
because of decreases in sodium chloride delivery to the 
macula densa. This process, termed tubuloglomerular 
feedback (TGF), links sodium chloride reabsorption to 
GFR and thus prevents excessive gains or losses of sodium 
chloride. Loop diuretics increase sodium chloride delivery 
to the macula densa but do not elicit a TGF response 
because they inhibit the NKCC channel.80 Adenosine is 
increased in HF patients,81 and antagonism of adenosine 
in HF patients was found to augment diuresis resulting 
from furosemide.82 Adenosine antagonism also was found to 
prevent furosemide-induced decreases in GFR. However, in a 
phase III trial of ADHF, the adenosine antagonist rolofylline 
did not prevent persistent worsening renal function versus 
placebo.83

SUMMARY

Diuretics remain the most important treatment modality for 
the relief of congestive symptoms in HF. Beyond symptom 
relief, diuretics also afford physiologic benefits in HF 
patients. Although studies have shown that any diuretic 
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