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CHAPTER 89 

Endothelial Dysfunction of the Kidney in Sepsis
Philippe Guerci and Can Ince

OBJECTIVES
This chapter will:
1. Describe the role of the endothelium dysfunction during 

sepsis and its interplay with the local environment.
2. Explain how endothelium damage translates into a loss 

of kidney function: sepsis-induced acute kidney injury.
3. Summarize the therapies targeting renal endothelial cells 

in sepsis-induced acute kidney injury.

Endothelial dysfunction and microcirculation impairment 
are recognized hallmarks of sepsis-related organ failure.1–7 
Many experimental and clinical studies have emphasized 
the central role of endothelial cell (EC) activation and 
dysfunction in promoting the coagulation cascade, leukocyte 
adherence, vascular barrier compromise, hemodynamic 
collapse, and vascular hyporesponsiveness. These processes 
contribute to organ failure with an increased risk of morbid-
ity and mortality for the patient. Among the organ failures 
observed in septic patients, acute kidney injury (AKI) is 
one of the most frequent. Sepsis-induced AKI may be 
associated with mortality rates above 50%.8–11 In fact, the 
kidney exhibits a high sensitivity to microcirculatory altera-
tions, especially heterogeneity, and to tissue hypoxia, two 
main phenomena that occur during septic shock.12–15

This chapter provides an overview of sepsis-related 
endothelial dysfunction with a particular focus on the 
kidney. We discuss the features of healthy and injured septic 
vascular endothelium of the kidney, the interplay between 
ECs and blood cells, and interactions among a wide range 
of molecules. Moreover, we describe how septic insult to 
endothelium can lead to a loss of kidney function.

ROLE OF RENAL ENDOTHELIUM  
IN FUNCTION

Endothelial Cells
The ECs form the interface between the content of the inner 
lumen of vessels and the surrounding environment, compris-
ing the vascular smooth muscle cells (VSMCs), the interstitial 
space and the parenchymal cells that are responsible for 
organ function.16 The ECs constitute a monolayer, lining 
the interior of all blood vessels. This surface is estimated 
to comprise approximately 1013 cells, covering 4000 to 
7000 m2. ECs generally have a thickness of approximately 
0.5 µm and are 100 µm long by 10 µm wide.

The endothelium is remarkably heterogeneous in 
structure and function. The arrangement of ECs may differ 

significantly from one organ to the next, from juxtaposed 
arrangements to overlapping arrangements. This heteroge-
neous distribution also may vary within the same organ; 
in the kidney, for instance, various EC arrangements grant 
different permeability properties. The EC lining contains 
pores and fenestrations to ensure partial permeability and 
to transport molecules to the underlying cells and basal 
membrane. The kidney and intestines exhibit the highest 
permeability. ECs are linked together by transcellular compo-
nents, including gap junctions for electrical communication 
for upstream vascular regulation and intercellular tight 
junctions for maintaining vascular barriers.6,17 Previously 
considered a passive barrier, it is now apparent that ECs 
play a crucial role in the regulation of vasomotor tone, 
hemostasis, immunologic functions, and the secretion of 
molecules by sensing through mechanotransducers, which 
subsequently initiate transcellular and intracellular signaling 
and activation.

Glomerular and Peritubular Endothelium
Glomerular endothelial cells are unusually thin; around 
capillary loops, they have a cell thickness of approximately 
50 to 150 nm, whereas in other locations, this thickness is 
approximately 500 nm.18 ECs in the glomerulus present 
large fenestrated areas constituting 20% to 50% of the entire 
endothelial surface.19 These fenestrations are typically 60 
to 70 nm in diameter but, unlike renal peritubular ECs, do 
not seem to possess a thin (3–5 nm) diaphragm.20,21 In 
general, these fenestrations act as a sieving barrier to control 
the production of urine in the glomerulus, filtering plasma 
because of hydrostatic pressure.22 The kidney has one of 
the richest and most diverse EC populations found within 
any organ. The microcirculation of the kidney presents two 
specialized capillary beds connected in series: the glomerular 
capillary bed in the cortex for plasma filtration and the 
peritubular capillary bed, which forms the vasa recta 
responsible for electrolyte reabsorption in the outer and 
inner medulla. Thus the arrangement of ECs and the perme-
ability of the endothelium differ for these two microcircula-
tions. Glomerular microcirculation functions via continuous 
and fenestrated endothelium with no diaphragm, whereas 
it is more continuous and nonfenestrated in the descending 
vasa recta in peritubular microcirculation.23,24

The endothelium must face and resist extreme physiologic 
conditions, such as large changes in oxygenation and 
osmolality. Indeed, ECs in the cortex are exposed to almost 
normal oxygen partial pressure and osmolality, whereas 
those in medullar microcirculation function in an osmolarity 
of up to 1200 mosmol/L-1 and a PO2 as low as 20 mm 
Hg.23,25,26 The microvascular arrangement has a specialized 
structure in the medulla. The vasa recta, connected in series 
with the juxtaglomerular microvasculature, surround the 
peritubular cells in the outer and inner medulla and are 
responsible for solute exchange. The ECs of these microves-
sels are exposed to countercurrent oxygen exchange, 
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membrane of ECs, protects the endothelium and regulates 
cellular and macromolecular traffic.33–35 The glycocalyx 
contributes to the microvascular barrier permeability.34 The 
glycocalyx is a 0.2- to 0.5-µm–thick negatively charged 
gel-like surface structure of proteoglycans with bound 
polysaccharide chains called glycosaminoglycans (GAGs), 
glycoproteins, and glycolipids.33–35 It is thought to represent 
20% of the intravascular volume.33,36 This highly interactive 
scaffold is capable of sensing blood flow and facilitating 
protein interactions with their receptors or other proteins, 
and it houses many EC receptors and compounds important 
for maintaining hemostasis and homeostasis and providing 
antiinflammatory defense to the parenchymal cells.31,34,35 
The glycocalyx also exhibits anticoagulant properties33 by 
means of negatively charged components.34

The morphology and composition of the glycocalyx layer 
vary from organ to organ and contribute to the heterogeneity 
observed in EC functions. Significant differences among 
vascular beds37 and between fenestral and interfenestral 
regions of glomerular ECs were revealed in an analysis of 
the composition of the ECs in the glycocalyx.38 For instance, 
the glycocalyx in the fenestrae region presents a higher 
ratio of heparan sulfates and hyaluronic acid to sialopro-
teins. The particular composition of the glycocalyx in the 
fenestrae is likely crucial for its sieving and permeability  
properties.33

Endothelium and Hemostasis
The interactions between ECs and the coagulation system 
are very complex. These interactions not only regulate 
pro- and anticoagulant patterns involving ECs, plasma-
soluble factors, platelets, and leukocytes but also direct 
platelets and fibrin clotting to injured areas of the endo-
thelium. ECs are like minifactories that synthesize and 
express molecules necessary to regulate hemostasis, with 
either anticoagulant or procoagulant activities. Thrombo-
modulin, endothelial protein C receptor (EPCR), heparan, 
tissue-type plasminogen activator (tPA), tissue factor pathway 
inhibitor (TFPI), eNOS, and CD39 are the main anticoagulant 
factors. Procoagulant factors include tissue factor (TF), von 
Willebrand factor (vWF), factor VIII, and plasminogen 
activator inhibitor type 1 (PAI-1). TF creates complexes 
with factor VIIa and then activates factors IX and X. Impor-
tantly, each of these molecules is expressed differentially 
across the vascular tree, arteries, capillaries, or veins. For 
every procoagulant response, there is a natural anticoagulant 
reaction, resulting in the finely tuned balance that is needed 
to control hemostasis.

Under physiologic conditions, ECs inhibit blood coagula-
tion via the activation of protein C, the expression of 
thrombomodulin and specific proteoglycans, and the release 
of TPA. TFPI controls the extrinsic pathway and regulates 
TF,39 antithrombin III (ATIII)–heparan counterbalances the 
serine proteases in the cascade,40 the thrombomodulin (TM)/
protein C/protein S mechanism inactivates cofactors Va 
and VIIIa, and plasmin degrades preformed fibrin.30 Plasma 
vWF binds and aggregates platelets by bridging platelet 
receptor platelet glycoprotein (GPIb-IX) to denudated 
endothelium. The cleaving of vWF is regulated by a dis-
integrin and metalloproteinase with thrombospondin motifs, 
also known as ADAMTS-13. Various components of the 
coagulation system directly signal within endothelium via 
protease-activated receptors (PAR1). This complex cascade 
and interplay among leukocytes, endothelium, and hemo-
stasis is disturbed severely in sepsis and contributes to the 
pathogenesis of sepsis-induced organ failure.

resulting in a gradient of decreasing oxygen tension (to 
approximately 10 mm Hg).26,27 Thus their functions differ 
considerably along the tubule. In addition, ECs are affected 
and injured by ischemia injury differently.28

Interplay of Endothelium and Leukocytes
The inner lumen of ECs is exposed to blood flow, consisting 
of red blood cells, leukocytes, and plasma. In the physiologic 
state, endothelium–leukocyte interactions are limited. Five 
steps generally describe the interactions between ECs and 
leukocytes during inflammation, beginning with limited 
contact, then more prolonged contact, leukocyte rolling, 
strong adhesion, and finally transendothelial migration, a 
process referred to as diapedesis.29 ECs regulate leukocyte 
trafficking between circulating blood and the surrounding 
tissue. When activated, the endothelium exhibits enhanced 
endothelium–leukocyte interactions that are secondary 
to increased expressions of cell adhesion molecules 
(CAMs), such as intercellular adhesion molecule selectins 
(E-selectin and L-selectin), ICAM-1, ICAM-2, vascular 
adhesion molecule (VCAM), and platelet endothelial cell 
adhesion molecule (PECAM).6,30 The upregulation of CAMs 
promotes increased adhesion, rolling, and transmigration 
of circulating leukocytes. Many integrins also are involved 
in the adhesion of polymorphonuclear leukocytes and 
monocytes in the proximal tubule and serve as transcellular 
mechanotransducers.31

Regulation of Vascular Tone
An essential mechanism involved in the vasomotor tone 
underlying renal autoregulation is endothelium-dependent 
relaxation. Various physiologic stimuli, including myogenic, 
metabolic, and neurohormonal factors, lead to endothelium-
mediated vascular smooth muscle (VSM) relaxation or 
constriction. Myogenic activation is mediated by shear stress 
induced by blood flow and translated into biochemical 
signals through mechanotransductors, inducing vasore-
laxation by vasoactive compounds such as nitric oxide 
(NO).4,5,17,30,32 ECs synthesize and release various enzymes 
or molecules (EDHF: endothelium-derived hyperpolar-
izing factor, NOS: nitric oxide synthase, SOD: superoxide 
dismutase, COX: cyclooxygenase, and CSE: cystathionine 
γ-lyase) that also produce various relaxing factors (NO, 
PGI2, and H2S). These factors then diffuse toward VSM 
cells to produce relaxation. Endothelial NOS (eNOS)-derived 
NO prevents vascular dysfunction via a direct vasodila-
tory effect, inhibiting platelet aggregation and leukocyte  
activation.4

Under physiologic conditions, the glomerular filtration 
rate (GFR) is regulated tightly by the renin-angiotensin-
aldosterone system (RAAS). The RAAS system is activated 
by tubuloglomerular feedback (TGF), which acts as a negative 
feedback control mechanism driven by distal tubular fluid 
flow and sodium and chloride reabsorption.25 TGF modulates 
the renal blood flow entering the glomerulus, subsequently 
controlling the hydrostatic pressure within Bowman’s 
capsule by varying the tone of afferent and efferent arterioles 
via the aforementioned regulators.26

Endothelial Surface Layer: Role of the Glycocalyx
Among the essential components constituting of vascular 
barrier, the glycocalyx, a thin layer lining of the luminal 
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neutrophil infiltration nor endotoxin-induced AKI.48 These 
findings suggest that sepsis involves multiples pathways 
leading to endothelial dysfunction and AKI.

Shedding or damaged glycocalyx expose CAMs, previ-
ously embedded in the glycocalyx and shielded from the 
leukocyte interaction. Under such conditions, many EC 
functions mediated by the glycocalyx are jeopardized.17,33,44,49 
Glycocalyx degradation contributes to an increase in vascular 
barrier permeability with subsequent albuminuria.17,50–53 An 
upregulation of P-selectin, ICAM-1 and VCAM-1 also has 
been observed in the peritubular capillaries during sepsis.48,54 
Inflammatory mediators and reactive oxygen species released 
by leukocytes and ECs and upregulated to destroy pathogens 
may themselves harm the endothelium as an unwanted 
side effect. Clinical studies have demonstrated that increased 
excretion of glycocalyx degradation products in urine was 
associated with microalbuminuria.51,52 This finding indicates 
that the glomerular basal membrane is damaged during 
sepsis as the result of the endothelial vascular barrier injury. 
At the tissue level, damage to the glycocalyx correlates 
with increased interstitial fluid and tissue edema.

Plasma leakage is a result of altered vascular barrier 
permeability. In addition to CAMs and cell-cell junction 
molecules, vascular endothelial growth factor (VEGF) and 
angiopoietin–Tie2 systems are involved critically in vascular 
barrier permeability compromise during sepsis.55–60 High 
levels of VEGF have been shown in septic patients.58–63 
However, low VEGF concentrations were associated pref-
erentially with more severe renal dysfunction.63 Whereas 
VEGF and angiopoietin-2 promote microvascular permeabil-
ity, angiopoeitin-1 (Ang1) acts as an antipermeability 
molecule and may protect against plasma leakage during 
sepsis.64,65 In fact, Kim et al. showed that the administration 
of a variant of Ang1 (COMP-Ang1) in mice subjected to 
endotoxin-mitigated renal EC dysfunction and protected 
against AKI.66

The systemic inflammatory response associated with 
sepsis leads to activation of coagulation and disrupts 
hemostasis, promoting procoagulant and antifibrinolytic 
states.67,68 Increasing evidence points to an extensive cross-
talk between coagulation and inflammation during sepsis. 
After injury, ECs express tissue factor and initiate coagulation 
cascades that activate thrombin and deposit fibrin.40,68 Tissue 
factor expression triggers the activation of coagulation. In 
sepsis, TF upregulation is counteracted insufficiently by 
TF inhibitors. In addition, the fibrinolytic pathway is altered 
with increased PAI-1 activity, resulting in an inhibition of 
fibrin removal.67 The level of activated protein C is decreased, 
contributing to the formation of micro-clots/plugs in the 
microcirculation.5 If uncorrected, this procoagulant state 
may cause thrombi formation and/or severe bleeding or 
hematomas as part of disseminated intravascular coagulation 
(DIC) syndrome. Bleeding is caused by the consumption 
and subsequent exhaustion of coagulation proteins and 
platelets because of the ongoing activation of the coagulation 
system.67 In addition, platelets also may attach to ECs and 
are involved in EC activation by several mechanisms. The 
engagement of platelet GPIIb/IIIa upregulates CD40 ligand 
expression on the platelet membrane, stimulating endothelial 
cells to express adhesion molecules and TF.69 Platelet 
P-selectin, not endothelial P-selectin, is key in the develop-
ment of ischemic AKI.70 Platelet consumption also may 
play an important role in patients with sepsis because of 
the ongoing generation of thrombin.71 Platelets contribute 
to microvascular dysfunction and play a pivotal role in 
organ failure.72,73 Finally, neutrophil extracellular traps 
(NETs) also contribute to microvascular impairment.68 NETs 
are networks of chromatin filaments composed of histones 

ENDOTHELIAL CELLS AND THE 
PATHOPHYSIOLOGY OF SEPSIS

The host response to pathogens primarily determines how 
severe it inflammatory activation is promoted, contribut-
ing to endothelial injury. This sequence of events leads 
to microcirculation derangement, resulting in plugged 
microvessels, functional microcirculation shunting contribut-
ing to reduced O2 extraction, and renal tissue hypoxemia. 
This heterogeneous flow generates microareas of ischemia, 
leading to functional failure of the kidney. The next step is 
characterized by organ dysfunction, which affects patient 
outcome. Therefore septic kidneys can become compromised 
because of several pathogenic events, including (1) endothe-
lial function directly affecting peritubular epithelial cells 
causing AKI,41 (2) glycocalyx shedding that alters the venal 
vascular barrier,33 and (3) microcirculation heterogeneity 
and renal tissue hypoxia.15

Endothelial cell activation causes important structural 
changes in the glomerular and peritubular capillaries. The 
damage- or pathogen-associated molecular patterns (DAMPs/
PAMPs) are key signals that trigger systemic reactions by 
priming, signaling, alerting, and guiding the immune system 
to fight pathogens.42,43 The cause of endothelium impairment 
during sepsis has not been established clearly. DAMPs/
PAMPs involved in EC dysfunction also can be recognized 
by several cellular types, causing indirect deleterious effects 
on EC functions. Thus ECs, leukocytes, platelets, and the 
endothelium surface simultaneously trigger cascades of 
mediators, causing massive physiologic changes. However, 
leukocyte–EC interactions are considered of specific impor-
tance. The cross-talk between ECs and leukocytes is mediated 
by CAMs, as described above, which enables leukocytes 
to adhere the endothelium. Because these molecules are 
embedded in the EC glycocalyx layer, such activation 
presumably is preceded by glycocalyx shedding because 
of inflammatory mediators (e.g., cytokines, reactive oxygen 
species, and nitrosative species).6,13,17,33,44,45 An illustrative 
clinical setting that puts into perspective the contributing 
effect of each component in sepsis-induced endothelium 
dysfunction is the context of agranulocytosis/neutropenia 
or bone marrow–suppressed patients. These patients exhibit 
the most severe pattern of septic shock, although no 
leukocyte–EC interactions are present because no leukocytes 
exist. Moreover, many studies have analyzed endothelium 
dysfunction via perfusion with various fluids and molecules 
without the addition of leukocytes. Eliminating leukocytes 
could be considered a weakness of such studies or could 
emphasize the fact that leukocyte–EC interactions may not 
be a fundamental element contributing to endothelial 
dysfunction in renal dysfunction.

TNF-α exerts deleterious effects on renal ECs and plays 
a key role in AKI.46 In the light of these findings, Xu et al. 
observed in TNF receptor 1 (TNFR1) knocked-out mice 
submitted to endotoxin challenge that the glomerular 
endothelial surface layer, endothelial cell fenestrae, GFR, 
and albuminuria were diminished. These results suggest 
that sepsis-induced endothelial dysfunction may be mediated 
by TNF-α activation of TNFR1.46,47 In addition, Wu et al. 
demonstrated that mice lacking expression of ICAM-1 
exhibited reduced AKI, leukocyte infiltration, and mortality 
in response to endotoxin.48 ICAM-1 may not be crucial 
solely for leukocyte–EC interactions, although it may play 
a pivotal role in endotoxin-induced AKI. Mice lacking 
expressions of the two principal ligands for ICAM-1, ß1 
integrin LFA-1 (CD11a/CD18), and Mac-1 (CD11b/ CD18), 
present on circulating leukocytes, were not protected against 
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TRANSLATION OF ENDOTHELIUM DAMAGE 
INTO A LOSS OF KIDNEY FUNCTION

As described above, endothelial dysfunction is a conse-
quence of a series of simultaneous or consecutive pathogenic 
events mediated by toxic compounds produced in large 
quantities, including IL-6, IL-8, TNF-α, vWF fragments, 
plasma-free hemoglobin, MPs, ROS, and RNS (Fig. 89.1). 
It previously was thought that histologic damages were 
present in critically ill patients suffering from AKI. Lerolle 
et al. revealed fibrin deposition in the glomeruli and signs 
of acute tubular injury and leukocyte activation, primarily 
monocytes, in kidney biopsies taken from 19 patients with 
AKI within 30 minutes postmortem.84 However, these results 
must be interpreted with caution, because the patients were 
enrolled after having AKI for 2 days with severe hypo-
perfusion, which could be responsible for the observed 
renal alterations and not related solely to AKI (causing 
irreversible damages). Indeed, in experimental studies, no 
cellular changes have been found, which could account 
for the marked reduction in glomerular filtration as observed 
in AKI, supporting the notion that early septic acute kidney 
injury represents a functional disturbance within the 
kidney.85,86 This concept is in line with the need to identify 
physiologic biomarkers of AKI instead of pharmacologic 
markers of cellular damage.87 These results suggest that 
AKI may be prevented or at least controlled via pharma-
cologic treatments because the insult does not induce 
irremediable histologic damages.

Because different microcirculations coexist in the kidney, 
sepsis-induced disturbances of the microvascular bed may 
take different forms. Thus albuminuria may be related more 
to glomerular microcirculation EC glycocalyx degradation, 
inadequate Na+ reabsorption, and ineffective TGF because 
of the peritubular microcirculation. All of these contribute 
to decreases in the GFR. Rodent models of sepsis-induced 
AKI suggest that cortical peritubular microvasculature is 
among the first structures injured.88–91 The interactions 
among various factors contributing to the development of 
renal failure implicates inflammatory activation character-
ized by leukocyte-EC interactions. These interactions paired 
with the imbalance of O2 homeostasis, involving the delicate 
balance among O2, NO, and ROS, and inflammation causes 
renal microcirculatory dysfunction. These events represent 
the mechanism of renal function failure.

Role of Kidney Hypoxia
The final common pathway of the pathophysiologic response 
to sepsis, as discussed above, leads to tissue hypoxia.15 EC 
damage is associated with microcirculation impairment 
followed by tissue hypoperfusion and hypoxia. Lack of 
oxygen to parenchymal cells directly causes loss of organ 
function, especially in tubular cells of the kidney.15 Increas-
ing evidence has demonstrated that a loss of renal oxygen-
ation in heterogeneous areas occurs during sepsis and 
resuscitation.92–94 Therefore the role of hypoxia may have 
been overlooked previously, assuming that renal blood flow 
(RBF) is increased during the early phase of sepsis such 
that oxygen delivery is maintained or even increased. 
However, a thorough literature review emphasized the high 
heterogeneity of RBF changes during sepsis that depends 
on the time of insult, the model of sepsis-induced AKI, 
and the monitoring tools and analyses used in the experi-
ments.95 Alterations in the microvascular perfusion distribu-
tion and a mismatch between kidney tissue oxygen demand 

and DNA strands, decorated with proteins and lysosomal 
enzymes. They are released by neutrophils upon contact 
with infectious agents, inflammatory cytokines, or reactive 
oxygen species (ROS).68

A common end product of microvascular injury and the 
combined degradation arising from the glycocalyx, ECs, 
leukocytes, red blood cells, and platelets is the generation 
of microparticles (MPs).74 MPs are cell membrane–derived 
particles that are 0.2 to 2 µm in diameter, promote coagula-
tion and inflammation, and contribute to multiple-organ 
injury, including AKI.75 MPs remotely promote widespread 
endothelial dysfunction.76 Zafrani et al. showed a direct 
role of MPs in sepsis-induced AKI by using calpastatin, a 
calpain-specific inhibitor (calpain is essential in release of 
MPs).77 Several procoagulants (TF and phosphatidylserine) 
are included in the outer leaflet of MPs perpetuating the 
prothrombotic state of sepsis.

The above-described events generate oxidative and 
nitrosative stress. Because of tissue hypoxia caused by 
microvascular dysfunction during sepsis, parenchymal 
and endothelial cells can switch from aerobic to anaerobic 
respiration, producing toxic byproducts, such as ROS. Reac-
tive nitrogen species (RNS) derived from NO and ROS, such 
as superoxide (O2

−), are produced in large amounts during 
sepsis. The upregulated production of superoxide arises from 
(1) the reactions catalyzed by NAPDH oxidase present in leu-
kocytes and endothelial cells, (2) the conversion of xanthine 
dehydrogenase to xanthine oxidase, and (3) the uncoupling 
of NOS in conditions of tetrahydrobiopterin deficiency.78 In 
an anaerobic state, ROS are produced aggressively by the 
mitochondria, resulting in more cell damage and endothelial 
cell dysfunction. RNS and ROS alter EC functions and cause 
lipid peroxidation, in addition to exerting antimicrobiotic 
action. Noiri et al. demonstrated that L-N6-(1-iminoethyl)
lysine hydrochloride (L-NIL) administration, an inhibitor of 
inducible NO synthase (iNOS), resulted in amelioration of 
renal dysfunction and reduced nitrotyrosine formation, lipid 
peroxidation, and DNA damage.79 This suggests that per-
oxynitrite, rather than superoxide anions, is responsible for 
renal cell damage. In a model of renal ischemia/reperfusion 
(IR) injury, L-NIL also prevented ischemic-induced renal 
microvascular hypoxia, indicating that renal IR induced 
early iNOS-dependent microvascular hypoxia by disrupting 
the balance between the microvascular oxygen supply and 
consumption.80 Conversely, N-nitro-L-arginine methyl ester 
(L-NAME), an NO blocker, has been shown to aggravate the 
course of AKI after IR injury.81

In contrast to many other organs, iNOS is expressed 
constitutively in mouse and human renal tubule cells82 and 
may contribute to changes in renal hemodynamics and a 
reduction in the GFR. The generation of iNOS results in two 
pathogenic actions: (1) the inhibition of eNOS-derived NO 
generation and (2) the contribution of ROS to the formation 
of peroxynitrite. Depletion of essential cofactors necessary 
for eNOS activity, such as tetrahydrobiopterin, uncouples 
eNOS and results in the generation of superoxide anion 
and reduced NO production, a process referred to as eNOS 
uncoupling. Langenberg et al. demonstrated in a sheep model 
of sepsis-induced AKI that all subtypes of NOS were highly 
expressed in the renal cortex but not in the renal medulla.83 
They hypothesized that overexpression of NOS isoforms in 
the cortex may lead to intrarenal shunting. This may induce 
a lack of blood flow in the medulla, promoting medullar 
hypoxia. Vascular hyporesponsiveness is one of the final 
pathogenic effects in EC injury and further contributes to 
microcirculation disorders.4 However, vasodilation, micro-
circulation alterations, and tissue hypoxia are heterogeneous 
during septic shock, and the kidney is no exception.1,15
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microvascular oxygenation paradoxically worsened and 
VO2/TNa+ increased.94 Evans et al. suggested that arteriovenous 
shunts may represent an adaptive mechanism for preventing 
hyperoxia and the overproduction of ROS because of the 
high renal perfusion needed to sustain the GFR and for 
limiting oxygen debt in the entire kidney.27

The role of hypoxia-induced factor α (HIFα) activation 
and regulation in the kidney during sepsis is a subject of 
intense investigation.83,92,106–108 HIFα may play a crucial role 
in protecting the kidney during IR injury.28 Studies have 
shown that the expressions of HIFα genes and mRNA is 
upregulated during sepsis-induced AKI in cecal ligation 
puncture and endotoxemia models of insult.83,107 HIFα is 
an O2-sensitive transcription factor that accumulates and 
binds to the key sequence of the erythropoietin (EPO) gene, 
the hypoxia-responsive element (HRE), and activates 
transcription of EPO when oxygen tensions decrease. HIFα 
possesses two isoforms, HIF-1α and HIF-2α, which are 
expressed in a cell-type fashion: HIF-1α is expressed in 
tubular cells, and HIF-2α is expressed in interstitial and 
endothelial cells.109 In a multi-insult rat model of AKI, 
Rosenberger et al. showed that HIF-1α was more expressed 
in collecting ducts than in the medullary thick ascending 
limb (mTAL) of the loop of Henle.109 The limited activation 
of HIF-1α in the mTAL may explain the susceptibility of 
these cells to injury.

The activation of TGF via the renin-angiotensin aldo-
sterone system (RAAS) is part of the response to sepsis 
insult. Increased levels of angiotensin-2 (Ang-2) leads to a 

and delivery occur, especially in the kidney cortex during 
the early phase of insult. Functional shunting of O2 transport 
occurs, resulting in small areas of hypoxia.96,97

Oxygen consumption by the kidney is related predomi-
nantly and directly to Na reabsorption (~80%).98–101 Indeed, 
the oxygen requirement of the kidney is determined primar-
ily by the ATP production needed for Na/K pump function 
on the basal side of thick ascending limb cells. Microcircula-
tory dysfunction can severely limit the ability of circulation 
to provide adequate oxygen for fueling oxidative phos-
phorylation for the production of ATP and can directly 
impair the function of the Na/K ATPase pump.102 Numerous 
studies have demonstrated oxygen impairments in the kidney 
even during the early phase of sepsis.94,103,104 The unique 
arrangement of the renal microvasculature, serially orga-
nized, with vasa recta emerging from the efferent arterioles 
of the juxtamedullary glomeruli, makes the maintenance 
of the medullary perfusion highly depend on adequate 
cortical perfusion. O2 shunting occurs between the descend-
ing and ascending vasa recta and contributes to the high 
sensitivities of the medulla and corticomedullary junction 
to decreased O2 supply.23,26,27,92,105 Thus decreased O2 avail-
ability reduces solute and electrolyte exchange, leading to 
further activation of the TGF to maintain GFR constant. 
Johannes et al. showed in an endotoxemia rat model that 
cortical microcirculatory PO2 was preserved despite hypoten-
sion and a drop in renal arterial flow.94 Interestingly, despite 
fluid resuscitation in this model, which corrected the mean 
arterial pressure and increased RBF, the renal cortical 
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incompletely. Selective iNOS inhibition for the treatment 
of sepsis-induced AKI also has been suggested as a potential 
EC-targeted therapeutic strategy, outlining the importance 
of this enzyme as a therapeutic target.122 However, specific 
iNOS inhibitors are not currently in use in clinical practice, 
although antiinflammatory drugs such as steroids are potent 
inhibitors of iNOS. Holthoff et al. investigated the effects 
of rolipram, a selective phosphodiesterase 4 inhibitor, and 
resveratrol, a polyphenol vasodilator that is also capable 
of scavenging reactive nitrogen species, in a rodent model 
of sepsis-induced AKI induced by CLP.90,123 Both treatments 
improved renal microcirculation, reduced vascular perme-
ability, and improved renal function. In a retrospective 
clinical study, the administration of ulinastatin, a urinary 
trypsin inhibitor that possesses a variety of antiinflammatory 
effects, was found to be associated with a lower incidence 
of AKI after cardiopulmonary bypass surgery.124 The authors 
concluded that the favorable outcome observed may be 
related to less EC-damaging cytokines that are often present 
in AKI. Another recent review listed the novel repair targets 
in ECs during AKI.125 However, these therapies often focused 
on one target, whereas cellular and tissue repair are more 
complex processes involving hundreds of pathways.

New and interesting approaches incorporate cell-based 
therapies, such as mesenchymal stem cells126–128 and endo-
thelial progenitor cells (EPCs),129,130 which may be more 
efficient given the complex mechanisms of injury. Cellular 
therapies aim to use cells that are capable of modulating 
the global inflammatory response by secreting large quanti-
ties of proinflammatory and antiinflammatory agents and 
other types of molecules. The many molecules that can be 
secreted cells can target a variety of receptors, better 
preventing/limiting sepsis-induced organ damage, restoring 
microcirculation, and promoting parenchymal function than 
a single drug may do. These cell-based therapies also are 
believed to speed the recovery of renal function and healing. 
This approach is the object of intense research and several 
ongoing projects.126,129 Several authors have demonstrated 
potential interest of cell-based therapies for treatment of 
acute renal ischemia/reperfusion injury in rats using EPCs 
derived from either bone marrow or Wharton’s jelly of 
human umbilical cords.127,130,131 However, the reported data 
regarding EPCs during sepsis are inconsistent. Some authors 
found that an increased number of EPCs in critically ill 
patients was associated positively with better outcomes,132,133 
suggesting a positive effect, whereas others reported the 
opposite.134

Impact of Fluid Resuscitation on Endothelial Cells
Fluid resuscitation is the cornerstone of the management 
of sepsis-induced AKI. The choice of fluid used during the 
resuscitation process has been debated extensively. Briefly, 
current evidence suggests that fluid resuscitation should not 
further harm ECs or aggravate tissue edema, with the goal 
to not further worsen kidney function.112,114 However, the 
optimal fluid and optimal dose that should be administered 
to a specific patient remains a source of debate, and to 
what extent fluid therapy promotes microcirculatory flow 
and preserves EC functions in the kidney is unknown.135 
Data regarding the specific action of fluids on ECs in the 
kidney are scarce. To date, although there is a growing body 
of evidence regarding the importance of the glycocalyx in 
vascular barrier permeability, it is not clear if restoring or 
preserving the glycocalyx layer from shedding influences 
renal outcome or decreases the occurrence of sepsis- 
induced AKI.

reduction in GFR by causing vasoconstriction of the afferent 
and efferent arterioles in the glomerulus. The activation of 
TGF then decreases hydrostatic pressure in the glomerulus 
and reduces the GFR.43 Regional reductions in microcircula-
tory flow cause heterogeneous regional microischemia, 
resulting in impaired cortical and medullar µPO2 and 
contributing to the recruitment of shunts and a reduction 
in renal oxygen extraction.92

Renal Tissue Edema
The primary cause of renal edema is thought to be initiated 
by the degradation of the EC glycocalyx. The actors involved 
in glycocalyx shedding are thought to be ROS, such as 
hydroxyl anions, hydrogen peroxide, peroxynitrite, and 
superoxide, or other molecules/enzymes, including hepa-
ranase or tumor necrosis factor-α (TNF-α).6,110,111 Indeed, 
antioxidant enzyme treatments (catalase or superoxide 
dismutase) experimentally dampened the shedding products 
of the endothelium and maintained vascular barrier integ-
rity.45 The final result of loss-of-barrier function is interstitial 
edema. Edema and, more generally, fluid overload after 
fluid resuscitation of septic patients, is a well-recognized 
contributor to organ dysfunction. The use of fluids to treat 
AKI is a controversial topic, because the amount112–114 and 
type of fluid are currently under debate. The kidney is 
contained in a noncompliant capsule, increasing the harmful-
ness of increased interstitial renal pressure secondary to 
fluid overload.114 Because of glycocalyx degradation and 
EC dysjunction, increases in vascular barrier permeability 
in the glomerular and peritubular microcirculations 
occur.86,112,115 Subsequent fluid accumulation in renal tissue 
causes a rise in interstitial pressure, increases the pressure 
gradient across the glomerular capillary, and may result in 
microcirculatory flow impairment and capillary collapse. 
In a large cohort of critically ill, septic patients presenting 
AKI, fluid overload was a major contributor of AKI.116 During 
renal IR in a murine model, intrasubcapsular pressure 
increased because of tissue edema, possibly increasing renal 
vein pressure, and was correlated with considerably reduced 
tubular excretion rates and renal perfusion.117 These con-
siderations suggest that fluid resuscitation during sepsis 
must be guided carefully to avoid fluid overload and further 
impairment of renal microcirculation.112,114 Vascular conges-
tion also has been noted as a cause of AKI.118

THERAPIES TARGETING RENAL ECS IN 
SEPSIS-INDUCED ACUTE KIDNEY INJURY

Targeting Endothelial Cells
More than 100 randomized clinical trials have tested the 
hypothesis of modulating the host response to sepsis, many 
dedicated to studying target receptors on or in ECs or 
blocking/modulating molecules known to promote EC 
injury.119 Unfortunately, most studies failed to demonstrate 
any benefits on outcome. Matejovic et al. analyzed all 
ongoing experimental and clinical studies, aiming to improve 
renal microcirculation hemodynamics during sepsis, either 
in the glomerular or in the peritubular microvascular bed, 
with promising results that require confirmation.120 There 
is a growing body of evidence suggesting benefits of using 
corticosteroids during septic shock.121 However, the specific 
action of glucocorticoids on ECs in the kidney is addressed 



4. Therapies aimed at restoring endothelial cells 
function, renal microcirculation, and renal tissue 
oxygenation are needed to prevent the occurrence 
or treat sepsis-induced acute kidney injury.
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Key Points

1. Two different types of microcirculatory compart-
ments (tubular and glomerular) exist in the kidney. 
Therefore the injury to the kidney can occur at 
different levels, compromising the kidney function 
at distinct levels.
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play a central role in the pathophysiology of sepsis-
induced kidney injury.

3. Fluid resuscitation may have deleterious effects 
on the renal microcirculation irrespective of the 
type of fluid.
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