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CHAPTER 73 

Impact of Renal Replacement Therapy on 
Metabolism and Nutrient Requirements in 
the Critically Ill Patient
Wilfred Druml

OBJECTIVES
This chapter will:
1. Explain the impact of several modalities of renal replace-

ment therapy on metabolism and nutrient balances.
2. Describe the effect of extracorporeal circuits and different 

types of anticoagulation on the inflammatory state of the 
patient.

3. Teach how to minimize these side effects and adapt nutrition 
therapy to compensate therapy-associated changes in 
nutrient requirements.

Renal replacement therapy (RRT) modalities are following 
a primary metabolic aim, that is, the alleviation of the 
manifold consequences of uremic intoxication. Nevertheless, 
all types of RRT, intermittent and continuous treatment 
modalities, are associated with a broad spectrum of addi-
tional, mostly untoward effects on metabolism and nutrient 
balances that often are neglected.1,2

Knowledge of the additional effects of extracorporeal 
treatment modalities on metabolism and nutrient balances 
is relevant in the care of critically ill patients because they 
can be associated with serious complications and have 
fundamental implications for designing nutritional programs 
for patients.3,4 (The specific alterations of metabolism and 
the nutrition of patients with acute kidney injury [AKI] are 
covered in Chapter 78.)

Please Note: All modalities of renal replacement therapy 
are associated with clinically relevant losses of nutrients 
and electrolytes, which have to be regarded in the care of 
these patients.

INTERMITTENT RENAL REPLACEMENT 
THERAPY, INTERMITTENT HEMODIALYSIS, 
HEMODIAFILTRATION, AND 
SLOW-EFFICIENCY EXTENDED 
HEMODIALYSIS

Intermittent RRT modalities (iRRT) continue to present 
standard treatment modalities in the care of patients with 
AKI. Also in the ICU these modalities are preferred in stable 
AKI patients and during the rehabilitation phase of the 
critical illness.

During the last decade also “semicontinuous” modalities 
with prolonged treatment periods at low blood flow rates, 
such as slow-efficiency extended hemodialysis (SLED) (also 
called extended daily dialysis, or EDD, e.g., the GENIUS 
machine) are used increasingly in the intensive care unit 
(ICU).

Metabolic Effects of Hemodialysis Modalities
All iRRTs obviously are not specific types of therapy that 
eliminate uremic toxins only from the bloodstream, but 
also all other substances that are water soluble and have 
a low molecular weight (Box 73.1). Thus iRRT modalities 
are associated with relevant losses of various nutrients and 
electrolytes.

Amino acids with a mean molecular weight of about 
145 D are eliminated effectively during hemodialysis (HD).5 
Amino acid loss is affected by the type of membrane used, 
the treatment modality (HD vs. hemodiafiltration [HDF]), 
and blood flow. However, a general rule is to assume a loss 
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This is caused not only by the losses of nutritive antioxi-
dants, such as vitamin C, but also by generation of ROS 
by the bioincompatibility of the extracorporeal circuit and 
the interaction of blood and artificial surfaces and in the 
bubble trap.22

In critically ill patients with AKI a profound depression 
of the antioxidant system is present, which is implicated 
as a leading mechanism in the pathophysiology of tissue 
injury and organ dysfunction.23 iHD can contribute to this 
pro-oxidative state. The loss/increased metabolic use of 
antioxidants increases nutrition requirements of antioxida-
tive compounds.13

Taken together, many of the untoward side effects of 
iHD are present also when using modern, more biocompat-
ible membranes and tubing systems and can be attributed 
to the obligatory phenomena of bioincompatibility. iHD 
induces an inflammatory reaction, which, together with 
the hemodynamic stress induced by iHD and its conse-
quences for microcirculation, is associated with the induc-
tion of protein catabolism and the cardiopulmonary side 
effects and potential tissue injury. Last, this increases the 
risk of developing infections by impairment of immuno-
competence. Whether anticoagulation with heparin may 
contribute to this pattern of side effects and whether this 
potentially can be mitigated by the use of citrate anticoagula-
tion remains to be shown (below, Metabolic Effects of 
Continuous Renal Replacement Therapy Modalities).24

Therapeutic Implications
The most important implication of this broad spectrum of 
side effects of iHD concerns nutrition therapy. Therapy-
associated losses have to be considered when designing a 
nutrition program and be compensated by an increased 
intake.

Amino acid intake should be increased by 0.2 g/kgBW.3 
The intake of water-soluble vitamins should be increased 
to twice the recommended daily allowance (RDA) (i.e., 2 
ampoules of a multivitamin preparation/day).25

Plasma phosphate must be monitored during therapy, 
and phosphate must be substituted as required. In patients 
not on nutrition support, intradialytic parenteral nutrition 
may be considered to improve nutrition state. Intradialytic 
nutrition can reverse the catabolic event hemodialysis into 
an anabolic situation.26

However, also from a metabolic perspective, the practice 
of iHD has to be adapted to the ICU patient, to minimize 
hemodynamic instability and hemodynamic microcirculatory 
stress and to improve biocompatibility (potentially also by 
the modification of anticoagulation).

METABOLIC EFFECTS OF  
CONTINUOUS RENAL REPLACEMENT 
THERAPY MODALITIES

In critically ill, hemodynamically unstable, ventilated ICU 
patients in whom it is difficult to maintain a desired fluid 
balance, continuous renal replacement therapy (CRRT) 
usually is employed. Because of the continuous mode of 
therapy and the currently recommended dose of therapy 
(dialysate/filtration volumes), these modalities exert a 
profound effect on metabolism and nutrient balances and 
are prone to the development of metabolic side effects and 
serious complications1 (Box 73.2).

of about 2 g/hr of treatment, which may be increased by 
about 30% with the use of modern high-flux membranes.6,7 
Furthermore, the loss of about 4 g amino acids, which is 
associated with the elimination of small peptides must be 
added. During SLED an amino acid loss of about 1 g/hr of 
treatment has been reported.8–10

Depending on the transmembrane pressure and the use 
of membranes with higher molecular cutoffs (and especially 
with “super-flux” membranes), a relevant elimination of 
albumin can occur. Filter clotting and the obligatory residual 
blood remaining in the extracorporeal circuit after termina-
tion of intermittent hemodialysis (iHD) treatment can result 
in additional losses of proteins (and blood).

During iHD relevant amounts of water-soluble vitamins 
are eliminated.11,12 As has been shown for vitamin C, in 
addition to diffusive losses during iHDF, convective losses 
contribute to the elimination of vitamins.13

This is especially relevant for ICU patients with preexist-
ing malnutrition and reduced vitamin stores. Thiamine 
presents a crucial factor in energy metabolism, and iHD-
induced losses can cause serious and even life-threatening 
complications, such as lactic acidosis and neurologic injury 
(see below, Metabolic Effects of Continuous Renal Replace-
ment Therapy Modalities).14,15 Carnitine also is eliminated 
during iHD, the relevance of which has not been assessed 
in acutely ill patients with AKI.

Most dialysate solutions for HD are designed for the 
therapy of chronic iHD patients and thus are phosphate 
free. Patients with AKI are at risk of developing hypophos-
phatemia, and this is augmented during iHD. Patients with 
AKI who develop hypophosphatemia during iHD may 
develop serious complications, such as weaning failure, 
and have a worse prognosis.16

Metabolic side effects during HD, however, are caused 
not only by the loss of various substances. Originally shown 
in investigations with sham HD treatments, the extracorporeal 
HD circuit induces—depending on the biocompatibility of 
the membrane used—an activation of protein catabolism.17,18 
This is mediated mainly by the induction of an inflammatory 
reaction and the release of inflammatory mediators. This 
activation of protein catabolism persists several hours after 
termination of HD treatment. Intracellular mRNA of cyto-
kines in skeletal muscle is upregulated also for several 
hours.19 Thus, iHD therapy induces an inflammatory reaction 
and is a catabolic event.18,20

In addition, it was demonstrated that during iHD there 
is an increased formation of reactive oxygen species (ROS).21 

BOX 73.1

Metabolic Side Effects of Intermittent Hemodialysis, 
Slow-Efficiency Extended Hemodialysis, and 
Hemodiafiltration

Loss of water-soluble molecules:
Amino acids
Water-soluble vitamins
L-carnitine, etc.

Electrolyte derangements (hypophosphatemia)
Induction of an inflammatory reaction/

release of cytokines (IL-1ß,TNF-α, etc.)
Activation of protein catabolism

Loss of amino acids
Loss of proteins and blood
Inflammatory state
Increased formation of reactive oxygen species
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many patients. Clinicians must be aware of the fact that, 
depending on the infusion/filtration volume, the use of 
these solutions is associated with a high infusion of L-lactate 
and thus increased energy intake.

This lactate uptake during CRRT can become relevant 
in two clinical contexts: (1) when metabolism of lactate is 
massively impaired, such as in liver failure or sepsis, or 
(2) in those situations in which endogenous lactate formation 
is augmented, such as in hemodynamic shock or septic 
shock. In these conditions the use of lactate-containing 
solutions can increase plasma lactate concentrations and 
should be avoided.

Many institutions prefer lactate-free substitution fluids 
based on bicarbonate. These solutions can contribute to an 
improvement of hemodynamic stability during CRRT.32

Anticoagulation using citrate for CRRT has become 
standard in many ICUs, either by using concentrated citrate 
solutions or by addition of citrate to the substitution fluid 
(serving as organic anion and anticoagulant).33 The metabolic 
use of citrate is not impaired in renal failure.34

Energy intake associated with citrate is dependent on the 
type of citrate anticoagulation and the solutions used and 
by the ratio of infusion/filtration, because a considerable 
part of citrate (and citrate calcium complex) is eliminated 
during therapy. The energy gain from citrate can account 
for about 400 kcal/day.30 When citrate anticoagulation 
is performed when using lactate-containing substitution 
fluids, this additional energy intake can add up to more 
than 1200 kcal/day. This combination should be avoided 
for CRRT.35

Electrolyte Derangements
Please Note: Patients on CRRT are at an increased risk of 
developing electrolyte derangements. In addition to the 
concise observation of fluid balance, CRRT requires a close 
monitoring of plasma electrolyte concentrations and elec-
trolyte balance.

The high fluid turnover associated with modern CRRTs 
and the continuous mode of therapy increase the risk of 
inducing derangements of electrolyte balance. Even in 
clinical studies on RRT the rate of electrolyte derangements 
is unacceptably high.36,37 Thus CRRT require a tight monitor-
ing of plasma concentrations of electrolytes. In many patients 
additional infusions of phosphate, potassium, and magne-
sium may become necessary.

During CRRT plasma water is filtered, which has a sodium 
concentration of approximately 146 to 150 mmol/L and 
thus is higher than in plasma or whole blood. With the use 
of most available substitution fluids a negative sodium 
balance is achieved, and this can contribute to hyponatremia, 
an electrolyte derangement that often is present in ICU 
patients.38

Phosphate elimination during CRRT can cause hypo-
phosphatemia and intracellular phosphate depletion, which 
are associated with many potentially life-threatening 
complications. Among these, prolonged mechanical ventila-
tion, difficulties in the weaning, increase in infections, and 
an impaired prognosis of critically ill patients have been 
reported.39,40 Initiation of nutrition support can increase 
the risk of inducing hypophosphatemia (“refeeding 
syndrome”).41,42

Until recently most substitution/dialysate fluids for 
CRRT have been phosphate free. To prevent the evolution 
of hypophosphatemia, phosphate has to be substituted 
in most patients. This can be achieved either by separate 
phosphate infusions, or preferentially by adding phosphate 

Heat Loss
Modern machines for CRRT have integrated heating systems 
by which the temperature of substitution fluid /dialysate 
can be adapted as required and heat balance can be modified. 
But also the use of those modern systems for CRRT is 
associated with heat loss, depending on the dose of therapy 
and filtration volume.27 Thus, during CRRT, body tempera-
ture is usually reduced.

This therapy-induced hypothermia can be desired (in 
the case of high fever, multiple organ dysfunction syndrome 
[MODS], and hemodynamic instability) and induce beneficial 
effects (i.e., reduction of oxygen consumption, improvement 
of hemodynamics, reduction of protein catabolism, mitiga-
tion of inflammation and tissue injury). However, this 
hypothermia potentially also can induce untoward effects, 
such as a disturbance of immunocompetence and increase 
in infections and impairment of wound healing.

Glucose Balance
Substitution fluids/dialysates for CRRT should have a 
glucose concentration of 100 to 180 mg/dL to maintain a 
zero glucose balance.28,29

The use of glucose-free substitution fluids cannot, as 
sometimes erroneously assumed, improve metabolic glucose 
control in ICU patients who exhibit insulin resistance. The 
glucose eliminated from the body (depending on the filtra-
tion volume, up to 40 to 80 g/day) in this situation must 
be considered when calculating energy requirements and 
substituted by an increased intake with nutrition.

Solutions with a high glucose concentration, as solutions 
designed for peritoneal dialysis, which are used in some 
countries, should not used for CRRT. The use of these 
solutions is associated with an excessive intake of glucose.29 
Furthermore, the mode of anticoagulation (use of antico-
agulant citrate dextrane [ACD] for citrate anticoagulation 
25 g/l glucose) can affect glucose balance during CRRT.30

Lactate, Acetate, and Citrate Intake
Acetate-based substitution fluids should no longer be used 
for CRRT because of the well-described negative side effects 
of acetate in ICU patients and, especially, its hemodynamic 
consequences (i.e., vasodilation, impairment of myocardial 
contractility).31

Many substitution fluids for CRRT contain as organic 
anion L-lactate. This certainly is an acceptable practice for 

BOX 73.2

Metabolic Side Effects of Continuous Renal  
Replacement Therapies

Loss of heat (= loss of energy)
(excessive) intake of substrates (= of energy)
(lactate, citrate, glucose)
Loss of nutrients
(amino acids, vitamins, trace elements, L-carnitine, etc.)
Loss of electrolytes (phosphate, potassium, magnesium)
Elimination of peptides/ proteins
(albumin, hormones, mediators)
Metabolic consequences of bioincompatibility
(Induction of an inflammatory reaction; activation of 

mediator-cascades, stimulation of protein catabolism)
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a reasonable approach. Reports on elimination of other 
trace elements, such as zinc, copper, and chromium, are  
conflicting.54

Elimination of Peptides and Short-Chain  
Proteins (“Mediators”)
Convective transport during hemofiltration is characterized 
by an identical clearance of all molecules up to a molecular 
size, which is determined by the pore size of the filtration 
membrane. This “cutoff” of modern synthetic membranes 
is about 15 to 25 kD. Membranes with a higher cutoff of 
about 50 kD to eliminate larger molecules have been tested 
in patients with sepsis.

Thus, compared with hemodialysis (= diffusion) during 
hemofiltration (= convection) also molecules with higher 
molecular size, “middle molecules,” can be extracted from 
the circulation. This convective elimination potentially 
extends also to cytokines, “mediators,” or other molecules 
involved in the pathology of sepsis and MODS, respectively 
(“bad guys”), and to other short-chain (potentially benefi-
cial) peptides, such as hormones and immunomodulatory 
substances (“good guys”).55,56

For assessment of physiologic relevance of the amount 
of a peptide eliminated, clinicians must consider the whole 
body pool, the endogenous turnover, and the elimination 
half-life of the molecule. Even when a hormone or a “media-
tor” is eliminated with a sieving coefficient of approximately 
1.0 (for most peptides much below 1), this is not associated 
with any alterations in plasma concentrations or conse-
quences for the course of disease because of the high 
endogenous turnover and short half-life.

Examples are the hormones catecholamines and insulin, 
which have a high elimination in the extracorporeal circuit, 
but this has no impact on hemodynamic stability or glucose 
tolerance during treatment.57

Most available studies could not demonstrate any relevant 
impact of hemofiltration on plasma concentrations of 
cytokines. But even if high-volume hemofiltration may have 
small effects on plasma levels, no relevant impact on the 
course of disease and prognosis in critically ill patients 
has been demonstrated.58,59 However, high filtration volumes 
may increase the risk of inducing electrolyte derangements 
and an inappropriate dosing of antibiotics, which are also 
eliminated during CRRT.59

Because of the rather flat cutoff characteristics of modern 
membranes, there is a loss of molecules with higher molecu-
lar weight, such as albumin. Depending on the mode of 
therapy, the membrane used, and transmembrane pressure 
employed, this albumin loss can account for up to 20 g/day.60

Adsorption of Proteins (Mediators), Drugs,  
and Endotoxin
Elimination of various substances and drugs during CRRT 
is caused not only by diffusion/convection but also by 
adsorption of proteins (hormones, cytokines, complement 
factors), of drugs (especially antibiotics), and potentially 
of endotoxin to the extracorporeal surfaces.56,61

Adsorption in the extracorporeal circuit is a temporally 
limited phenomenon. Artificial surfaces are rather rapidly 
saturated, and adsorption decreases within a time frame 
of 2 to 6 hours.56 After a short dip, plasma levels of a given 
molecule are rising again after a few hours.

If adsorptive properties should be take profit of (for which 
there is no evidence for a beneficial effect when using 

to the substation fluids (about 1 mmol/L). Recently, several 
phosphate-containing substitution fluids have become avail-
able, which will reduce the risks of phosphate depletion 
during CRRT.43

Citrate as anticoagulant is complexing not only calcium 
but also magnesium. Several available substitution fluids 
are magnesium free, and thus magnesium has to be supple-
mented in many patients.44 Some institutions use concen-
trated calcium plus magnesium for antagonizing citrate in 
the venous line during citrate anticoagulation.

The potassium concentration of various substitution 
fluids is inadequate to maintain stable plasma concentration 
and potassium has to be supplemented as required.

Please Note: Hypophosphatemia evolving during CRRT 
is a dangerous complication and must be regarded as a 
type of malpractice! Monitoring of electrolytes is an essential 
component in the care of CRRT patients.

Loss of Nutrients
Depending on the molecular weight, protein binding and 
plasma concentration of substances CRRT are associated 
with the loss of various nutrients. Depending on the mode 
and duration of therapy, the dose employed and the type 
of membranes used the losses reported in various studies 
are highly variable.

Because of the low molecular weight (mean MW, approxi-
mately 145 D) and the water solubility free amino acids 
(AA) are eliminated during CRRT. Because the sieving 
coefficient for amino acids is approximately 1, losses during 
postdilution hemofiltration correspond to the mean plasma 
concentration of amino acids (about 0.25 g/L) multiplied 
with the filtration volume.3 Depending on the dose of 
therapy/filtration volume, this loss can account for 8 g to 
16 g AA/day.45,46 Continuous hemodialysis and continuous 
hemodiafiltration are associated with an amino acids loss 
of comparable magnitude.46,47

Glutamine is the amino acid with the highest plasma 
concentration. Because of electrochemical properties glu-
tamine losses are even higher than expected from the plasma 
concentration (sieving coefficient > 1) and can account for 
up to 5 g/day.48,49

Nutrition therapy provided during CRRT does not 
increase amino acid losses substantially. Endogenous clear-
ance of amino acids is approximately 100 times higher 
than the exogenous clearance.3 However, when excessive 
amounts of amino acids are infused (recommended by some 
groups up to 2.5 g AA/kg/day), plasma concentrations of 
amino acids will rise and thus also the elimination of amino 
acids is increased.

During CRRT water-soluble vitamins also are eliminated 
effectively from the body. Specifically, this has been dem-
onstrated for vitamin C, folic acid, and vitamins B1 and 
B6.50,51 For example, thiamine deficiency can be induced 
during CRRT, with associated derangements of energy 
metabolism, lactic acidosis, and severe neurologic impair-
ment.14 Thiamine deficiency mostly remains unnoticed but 
certainly presents the most important, potentially life-
threatening micronutrient deficiency state in critically ill 
patients.15

Regarding the loss of trace elements, it has been shown 
that selenium is eliminated during CRRT in relevant 
amounts (>50 µg/day, i.e., two times the RDA).52,53 There 
is no generally accepted consensus on the optimal selenium 
supplementation in ICU patients with AKI. In consider-
ation of the therapy-associated losses, an intake of 300 
to 600 µg/day during the first treatment days seems to be 



Chapter 73 / Impact of Renal Replacement Therapy on Metabolism and Nutrient Requirements in the Critically Ill Patient  433

during metabolic care and nutritional support of the  
patients.

To achieve the required fluid elimination and target fluid 
balance, solutions with high glucose concentrations are 
used during PD. In ICU patients with impaired glucose 
tolerance, this can induce hyperglycemia and an increase 
in insulin requirements.66 Depending on the glucose con-
centration of peritoneal fluid, the dwell time, and the rate 
of fluid exchanges, this can account for the uptake of 200 
to 400 kcal/day.67

The losses of water-soluble substances, such as amino 
acids or water-soluble vitamins are much lower than during 
iHD or CRRT. In the case of amino acids this accounts for 
2 to 4 g/day.

However, PD is associated with a much higher loss of 
albumin and other proteins, within a range of 5 to 12 g/
day.67 This loss of “protein-bound” amino acids can increase 
considerably in the presence of peritoneal inflammation.66 
In addition, many protein-bound nutrients, such as trace 
elements and fat-soluble vitamins, are eliminated at a higher 
rate in PD as compared with iHD/CRRT (Box 73.3).

Implications for Nutrition Support
For calculating energy intake, peritoneal glucose uptake 
must be considered. When solutions with high glucose 
concentrations are used (3.6%), an energy gain of 
approximately 400 kcal should be taken into account to 
avoid overnutrition. Keeping this in mind, high-protein 
preparations/low-carbohydrate diets/solutions should be 
used for PD patients.

Electrolyte derangements are less frequent during PD 
than with other modalities. Nevertheless, hyperphospha-
temia also can develop during PD especially in malnourished 
patients and during initiation of nutrition support/refeeding.

An adequate supplementation of water- and lipid-soluble 
vitamins and trace elements should be observed in PD 
patients.

CONCLUSION

All types of extracorporeal treatment modalities and renal 
replacement therapies induce a broad pattern of side effects 
on metabolism and nutrient balances, which, unfortunately, 
often go unrecognized. These side effects, however, have 
to be observed in the metabolic management and nutrition 
support of critically ill patients on RRT.

One group of side effects concerns nutrient balances. 
This constitutes the loss of many nutrients (such as amino 
acids, water-soluble vitamins) but also of peptides and 
proteins. RRT and the type of anticoagulation, respectively, 
can be associated also with an uptake of clinically relevant 

conventional CRRT membranes), this would mean that the 
filters would have to be exchanged regularly. Specific 
adsorber cartridges with a much higher elimination capacity 
than conventional CRRT membranes have been designed 
and are tested in clinical studies.

Activation of Protein Catabolism During Continuous 
Renal Replacement Therapy
Protein catabolism during RRT is not only caused by the loss 
of amino acids (proteins and other nutrients). As discussed 
above for iHD, any extracorporeal circuit with protracted 
contact of blood components and the artificial surfaces 
induces obligatory phenomena of bioincompatibility, which 
can be summarized as an inflammatory reaction.62

This aspect of inflammation has not been evaluated 
systematically in CRRT. Even when modern synthetic mem-
branes used for CRRT have a high biocompatibility, CRRT 
still is associated with an activation of various plasmatic 
cascades systems, such as of coagulation and complement 
system, and also of various blood cells (thrombocytes, PMNs, 
monocytes) and thus induce a “low-grade “ inflammation. 
In a randomized controlled study comparing CRRT versus 
no CRRT, an increase in inflammatory markers has been 
observed in those patients allocated to hemofiltration.63

Implications for Nutrition Support
Considering energy intake, heat balance, glucose, lactate, 
and citrate intake must be considered. Total energy supply 
should not exceed the current recommendations for critically 
ill patients of 20 to 25 (maximum 30) kcal/kg/day.

During nutrition support of patients on CRRT protein/
amino acid intake should be increased by approximately 
0.2 g /kg/day to compensate therapy-induced losses. Cur-
rently, an intake of 1.5 to 1.7 g protein / AA /kg/day is 
recommended at least by ESPEN.25 Higher intakes of up to 
2.5 g/kg/day, as recently suggested in the ASPEN guidelines, 
have no proven benefits.64

To achieve this protein target the admixture of a protein 
supplement to the enteral diet during enteral nutrition 
solution or a separate parenteral infusion of amino acids 
may become necessary.

Because of the high therapy-associated losses during 
CRRT, the provision of the double amounts of the RDA of 
water-soluble vitamins should be provided during CRRT.25 
Usually, two ampoules of a commercially available multi-
vitamin preparation should be added to the nutrition 
solution. A higher intake of selenium (300 µg/day) should 
be considered (see earlier in the chapter).

Metabolic Effects Peritoneal Dialysis
Unfortunately, peritoneal dialysis (PD) is much underused 
in critically ill patients. Especially in elderly patients, in 
those with multiple comorbidities, and in patients with 
congestive heart failure or liver insufficiency, PD can offer 
fundamental advantages.65

Concerning potential metabolic side effects, certainly 
PD is associated with a lower inflammatory response and 
also lower losses of nutrients. Moreover, these losses can 
have considerable variations depending on the state of 
the peritoneum (inflammation), dwell time, and the rate 
of peritoneal fluid exchanges. However, metabolic side effects 
of PD are clinically relevant and should be considered 

BOX 73.3

Metabolic Side Effects of Peritoneal Dialysis

Glucose uptake
Loss of proteins
(increased during peritonitis)
Loss of protein bound molecules
(trace elements, lipid-soluble vitamins)
Loss of amino acids
Loss of other water-soluble molecules
(water-soluble vitamins, etc.)



2. Nutrient balances are affected by losses of various 
nutrients and peptides/proteins and potentially 
by an increased uptake of substrates (glucose, 
lactate, citrate), all of which have to be regarded 
when designing nutrition therapy.

3. All types of RRT induce an inflammatory reaction 
by obligatory phenomena of bioincompatibility and 
by the type of anticoagulation (heparin vs. citrate), 
which induces an inflammatory reaction.

4. Taken together, RRT induce/augment a proinflam-
matory, prooxidative, and catabolic state and a 
complex spectrum of metabolic side effects.
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Key Points

1. All types of RRT exert a profound impact on 
metabolism and nutrient balances.
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