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CHAPTER 72 

Energy Requirement and Consumption in 
the Critically Ill Patient
Lindsay D. Plank and Graham L. Hill

OBJECTIVES
This chapter will:
1.	 Describe the pathogenesis of hypermetabolism in critical 

illness.
2.	 Delineate the components of total energy expenditure.
3.	 Review techniques for the measurement of energy expen-

diture in critically ill patients.
4.	 Explain how to estimate energy expenditure in the  

critically ill.
5.	 Highlight the distinction between energy requirement and 

energy consumption in critical illness.

METABOLIC RESPONSE TO CRITICAL ILLNESS

In 1932 Cuthbertson1 was the first to describe the metabolic 
response to traumatic injury. Later, he divided the response 
to such injury into two distinct phases.2 Characteristics of 
these phases are listed in Table 72.1. The short-lived “ebb,” 
or hypometabolic, phase immediately after injury is mani-
fested clinically by cold, clammy extremities and a thready 
pulse. After adequate resuscitation, the patient warms up 
and cardiac output increases. The flow, or hypermetabolic, 
phase is characterized by a rise in energy expenditure that 
peaks at 5% to 60% above normal, depending on the 
magnitude of the injury. The duration of this phase depends 
on the severity of injury and the development of complica-
tions. Profound metabolic changes occur during this phase, 
and the increased oxygen consumption supports these 
interorgan substrate exchanges.

Metabolism in serious sepsis is similar to that of major 
traumatic injury.3 A systemic inflammatory response is 
induced in patients with sepsis as well as in patients with 

major traumatic injury, and the two groups of patients also 
experience similar metabolic sequelae. This generalized 
response is evident in patients with major burn injury,4 who 
may exhibit oxygen consumption rates far in excess of those 
seen in patients with severe sepsis and major trauma.5 A high 
percentage of patients with so-called systemic inflammatory 
response syndrome (SIRS) develop dysfunction of one or 
more organ systems. A major cause of acute renal failure in 
critically ill patients is SIRS with associated organ dysfunc-
tion. The hypermetabolism associated with sepsis and the 
inflammatory response is shown in Fig. 72.1 for patients 
with and without acute renal failure. These data, derived 
from Uehara et al.,6 illustrate the similarity in response for 
both groups of patients, peaking approximately 10 days 
after admission to an intensive care unit (ICU). The onset 
of SIRS is the predominant determinant of the degree of 
hypermetabolism, whereas the development of organ failure 
portends a prolonged hyperdynamic phase.

Reprioritization of the normal nutritional homeostasis 
of the body occurs in response to the hypermetabolism and 
catabolism of the systemic inflammatory response. Marked 
alterations in carbohydrate, fat, and protein metabolism 
occur (see Chapters 135, 136, and 138). Hyperglycemia, 
hypertriglyceridemia, high lactate levels, and high free fatty 
acid concentrations are characteristic of the critically ill 
patient and indicate major derangements in intermediary 
metabolism. Optimal nutritional management of these 
patients requires an understanding of fuel utilization and 
the control of energy balance in the flow phase of critical 
illness.

Physiologic Aspects of Energy Metabolism
The human body can be considered as a continuous energy 
exchange device in which energy is taken in as food and 
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Oxidation of a given substrate is associated with produc-
tion of a particular quantity of heat for a given quantity of 
oxygen consumption and a unique ratio of carbon dioxide 
production (VCO2) to oxygen consumption (VO2) (respiratory 
quotient [RQ]). For instance, the combustion of 1 mole of 
glucose requires 6 moles of O2 with release of 6 moles of 
CO2 and an RQ of 1.0:

C H O O CO H O6 12 6 2 2 26 6 6+ → +

whereas combustion of a typical fat (triglyceride of palmitic 
acid) yields an RQ of 0.703:

2 145 102 9851 98 6 2 2 2C H O O CO H O+ → +

The calculation for protein oxidation must account for 
the incomplete combustion of protein in the body, where 
some of the oxygen and carbon remain combined with 
nitrogen and are excreted as nitrogenous products. Livesey 
and Elia8 have published constants for heat release and gas 
exchange for typical macronutrients.

Components of Energy Expenditure
It is useful to distinguish between the basal metabolic rate, 
also called the basal metabolic expenditure (BME), and the 
resting metabolic expenditure (RME). BME refers to the 
basal requirement occurring in deep sleep and is generally 
of little clinical relevance. RME applies to the fasted, rested 
patient in a thermoneutral environment and may be 5% to 
10% higher than BME. The thermic effect of food is the 
energy expended in the assimilation of nutrients, which, 
in the critical care situation, may be provided enterally or 
parenterally in a continuous manner. It varies depending 
on the type of diet consumed and the metabolic state of 
the patient but approximates 10% of RME. The term resting 
energy expenditure (REE) refers to the energy expenditure of 
the patient receiving continuous enteral or parenteral nutrition 
and is the sum of the RME and the thermic effect of food. 
The remaining component contributing to the total energy 
expenditure (TEE) is activity energy expenditure. In health, 
REE typically makes up 60% to 70% of TEE (Fig. 72.3).

MEASUREMENT METHODS

The measurement of TEE in the critically ill patient raises 
formidable problems. Continuous whole-body calorimetry9 
is the most accurate means of assessing TEE, but for obvious 
reasons this technique is not applicable to hospital patients. 
The doubly labeled water technique for measuring total 
free-living energy expenditure has been applied widely 
in healthy individuals.10 The assumptions underlying this 
method11 may be seriously violated in critically ill popula-
tions, and the approach relies on measurements over an 
extended period (typically 10 to 14 days), which renders it 
of limited value in the intensive care setting. TEE also has 
been measured over defined periods of time by measuring 
the changes in body composition that occur so that changes 
in the energy stores of fat, carbohydrate, and protein can 
be derived.12 The total change in energy stores, or energy 
balance, is the difference between TEE and energy intake. 
In practice, this method is not applicable to individual 
patients because of the limited precision with which the 
energy balance can be measured.

In principle, continuous indirect calorimetry could 
be used to measure TEE in critically ill patients.13,14 This 
technique measures O2 consumption and CO2 production 

released as heat (Fig. 72.2). The energy conversion occurs 
through the oxidation of ingested macronutrients, carbo-
hydrates, fats, and proteins. Oxygen is consumed, carbon 
dioxide is produced, and heat is generated in proportion 
to the quantity of substrate oxidized. The heat production, 
that is, the energy expenditure, of the body can be measured 
by direct calorimetry, in which a sealed, insulated chamber 
is used to isolate the subject. In steady-state conditions, 
respiratory gas exchange (measured by indirect calorimetry) 
reflects cellular gas exchange, and under these conditions 
a close correspondence is found between the direct and 
indirect calorimetric techniques for determining energy 
expenditure.7

TABLE 72.1

Characteristics of the Ebb and Flow Phases  
of Cuthbertson

EBB PHASE FLOW PHASE

Hypometabolic Hypermetabolic
Low core temperature Raised core temperature
Decreased energy 
expenditure

Increased energy expenditure

Normal glucose 
production

Increased glucose production

Mild protein catabolism Profound protein catabolism
Raised blood glucose Raised or normal blood glucose
Raised catecholamines Raised or normal 

catecholamines
Raised glucocorticoids Raised or normal 

glucocorticoids
Low insulin Raised insulin
Raised glucagon Raised or normal glucagon
Low cardiac output Increased cardiac output
Poor tissue perfusion Normal tissue perfusion
Patient cold and clammy Patient warm and pink
Preresuscitation phase Recovery phase

From Cuthbertson DP. Post-shock metabolic response. Lancet. 
1942;1:433–437.
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FIGURE 72.1  Hypermetabolism (expressed as the ratio of measured 
resting energy expenditure [REE] to predicted energy expenditure) 
for patients with serious sepsis with (n = 5, closed circles) or 
without (n = 7, open circles) early acute renal failure from 2 days 
after admission to the intensive care unit through day 12, with 
subsequent measurements at day 23. 
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ESTIMATION OF ENERGY EXPENDITURE

In many hospitals, limited access to equipment for measuring 
energy expenditure necessitates estimation by equations, 
usually based on prediction of RME that would apply in 
health, with allowances made for the thermal effect of food, 
degree of injury or stress, and activity. The principal determi-
nant of RME in health is body size (e.g., weight, fat-free mass, 
or body surface area). Age and gender are also important 
factors because of the covariation among RME, age, gender, 
and fat-free mass. The Harris-Benedict equations,19 which 
relate RME measured by indirect calorimetry in healthy 
adults to weight, age, and gender, were developed in the 
early 1900s and remain the most widely used equations 
for estimating energy expenditure. Substantial uncertainty 
results when applying such equations to individual patients. 
In particular, use of body weight for patients with fluid 
retention may be misleading. Use of a pre-illness weight,20 
an adjusted weight,14 or a “dry” weight (correcting for fluid 
excess)21,22 has been advocated. Furthermore, application 
of a stress factor may not be straightforward given the 
interindividual variation in the effect of the injury or insult 
on metabolic expenditure. Coupled with this, the stage of 
the patient in the typical stress response to illness must 
be considered. Fig. 72.4 suggests an adjustment to RME 
between 20% and 50% for a ventilated patient with severe 
sepsis. When patients are taken off ventilation, their energy 
consumption may increase significantly. This is illustrated 
in Table 72.2, where, in sepsis and posttrauma patients, 
REE approximated TEE during the first week of admission 
while the patients were ventilated, but over the second 
week, when many were taken off mechanical ventilation, 
TEE rose to 170% to 180% of REE.

Equations have been developed from indirect calorimetry 
measurements in mechanically ventilated critically ill 
patients in whom less reliance is placed on the use of stress 
categories. These equations use dynamic physiologic vari-
ables, which allow daily recalculation of energy expenditure 
(Table 72.3). The Swinamer equation23 was based on REE 
measurements in 108 (48 trauma, 60 nontrauma) patients 
on day 1 or day 2 of their ICU admission. The effect of the 
inflammatory response on metabolic rate is represented by 
the body temperature, respiration rate, and tidal volume 
variables, and there is no factor representing type of insult. 
No nutritional support was provided (except for IV dextrose 
in some patients). Ireton-Jones et al.24 developed an equa-
tion from 65 (52% burn, 31% trauma) patients requiring 
nutritional support and subsequently published an amended 
version based on the same data.25 Frankenfield et al.26–28 
produced a series of equations, which included an RME 
prediction in health with a “stress multiplier” in addition 

rates, from which energy expenditure can be calculated if 
the urinary nitrogen excretion rate is known.8 The classic 
formula of Weir15 is generally used:
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where UN is urinary nitrogen excretion, which corrects for 
the incomplete oxidation of protein in vivo. Ignoring this 
correction results in less than 2% error on average in energy 
expenditure even with the higher-than-normal protein 
oxidation in critically ill patients.16

Although it has the advantage of providing estimates 
of TEE over periods of a day or less, the indirect calo-
rimetry approach is problematic in patients in the early 
flow phase of their illness. It is suitable for patients on 
mechanical ventilation, but the errors in oxygen consump-
tion measurement increase markedly with inspired oxygen 
fraction (FIO2), particularly above 60%.17 Recent commercial 
developments have improved performance in the 60% to 
80% range of FIO2. Conditions such as changing metabolic 
acid-base status and the use of extracorporeal CO2 removal 
or oxygenation devices effectively rule out the indirect 
calorimetry method.17,18 These situations commonly apply 
in the intensive care setting.

Typically, indirect calorimetry measurements are carried 
out over short periods of time (less than 1 hour) on patients 
in a steady-state condition. The latter ensures that the 
respiratory gas exchange measurements reflect the metabolic 
gas exchanges. In mechanically ventilated patients, a steady-
state measurement of REE closely approximates TEE.13
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JM. Energy metabolism: Heat, fuel and life. In Kinney JM, 
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Metabolism in Patient Care. Philadelphia: WB Saunders; 
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FIGURE 72.3  The components of total energy expenditure (TEE) with 
typical values for a male with a body weight of 70 kg and 10% 
body fat. BME, Basal metabolic expenditure; REE, resting energy 
expenditure; RME, resting metabolic expenditure. 
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and medical ICU patients (see Table 72.3). All three equations 
involved similar adjustments to RME as estimated by either 
the Harris-Benedict equations19 or the equations developed 
by Mifflin et al.29 The Faisy et al.30 equation, developed from 
measurement in 70 patients, was shown to better predict 
energy expenditure in this group than was the use of the 
Harris-Benedict equations with factors for severity of insult.

Validation studies of these equations are limited and 
have been summarized by Frankenfield.31 Flancbaum et al.32 
found a poor correlation between energy expenditure 
predicted by the Ireton-Jones 199224 and Frankenfield 
et al.26–28 equations and the energy expenditure measured 
by indirect calorimetry in a group of surgical intensive care 
patients on mechanical ventilation and nutritional support. 
MacDonald and Hildebrandt33 compared 24-hour indirect 
calorimetry measurements in a heterogeneous group of 76 
patients on nutritional support with the predictions from 
the Harris-Benedict,19 Ireton-Jones 1992,24 Swinamer,23 
Frankenfield,26 and Penn State 199827 equations. The 
Swinamer and Harris-Benedict equations (using a 1.6 stress 
factor) performed better than the others and predicted energy 
expenditure within 20% of measured values approximately 
88% of the time. The two Ireton-Jones24,25 and three Penn 
State equations27,28 were compared by Frankenfield et al.28 
against resting indirect calorimetry measurements in 47 
patients (trauma, surgical, and medical) on mechanical 
ventilation. The Penn State 2003a equation28 predicted 
energy expenditure within 10% of measured values 72% 
of the time compared with 60% for the Ireton-Jones 1992 
equation. The former equation predicted energy expenditure 
more than 15% above or below measured values 11% of 
the time versus 32% for the latter. The Ireton-Jones 2002 
equation performed less well for this patient group than 
its predecessor, with predicted energy expenditure within 
10% of measured values 36% of the time and outside 15% 
of measured values 40% of the time.

ENERGY REQUIREMENT VERSUS  
ENERGY CONSUMPTION

Measurement of energy expenditure in a critically ill patient 
provides an estimate of energy consumption or energy use 

to terms reflecting the inflammatory response. The first of 
these equations26 was based on 423 measurements over a 
maximum of 10 days in 56 multiple-trauma patients (30 of 
whom developed SIRS). Subsequently, three forms of the 
“Penn State equations” were constructed from retrospective 
analysis of 169 measurements in a mix of trauma, surgical, 
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FIGURE 72.4  Approximate adjustments to resting metabolic expen-
diture (RME) for the effects of disease and injury. (Modified from 
Elia M. Organ and tissue contribution to metabolic rate. In Kinney 
JM, Tucker HN, eds. Energy Metabolism: Tissue Determinants and 
Cellular Corollaries. New York: Raven Press; 1992:61–79.)

TABLE 72.2

Estimation of Total Energy Expenditure in Patients With Sepsis or Trauma

TOTAL ENERGY EXPENDITURE TEE/REE

TEE (kcal/day) TEE/Bwt (kcal/kg/day) INDIRECT CALORIMETRYa HARRIS–BENEDICT EQUATIONb

Sepsis
Week 1 1927 ± 370 25 ± 5 1.0 ± 0.2 1.3 ± 0.2
Week 2 3257 ± 370 47 ± 6 1.7 ± 0.2 2.3 ± 0.3
Pc 0.046 0.021 0.042 0.027
Trauma
Week 1 2380 ± 422 31 ± 6 1.1 ± 0.2 1.4 ± 0.3
Week 2 4123 ± 518 59 ± 7 1.8 ± 0.2 2.5 ± 0.3
Pc 0.049 0.029 0.089 0.039

Data are calculated from 5-day study periods in 12 sepsis and 12 trauma patients. Values are mean ± standard error of mean (SEM).
aREE measured by indirect calorimetry.
bREE (men) = 66.5 + 13.8 × Bwt + 5.0 × height − 6.8 × age; REE (women) = 655.1 + 9.6 × Bwt + 1.9 × height − 4.7 × age
cComparison of weeks 1 and 2 by paired t-test.
Bwt, Averaged measured body weight over the 5-day study period; REE, resting energy expenditure; TEE, total energy expenditure.
From Uehara M, Plank LD, Hill GL. Components of energy expenditure in patients with severe sepsis and major trauma: A basis for clinical care. Crit 
Care Med. 1999;27:1295–1302.
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fewer impediments to the delivery of substantial energy 
loads by this mode of administration compared with enteral 
delivery. The patient receiving parenteral nutrition has no 
protective mechanism for dealing with overfeeding and 
must assimilate substrate. Increased sepsis complication 
rates in patients with major trauma have been attributed to 
overfeeding by the parenteral route.42 Hypocaloric support 
for critically ill patients who are not malnourished has 
been suggested as a means to prevent overfeeding-related 
complications.43 The question of hypocaloric or hypercaloric 
nutritional support for critically ill patients continues to 
receive much attention.

In view of the difficulties associated with estimation 
of energy requirements in the critically ill, many centers, 
without access to indirect calorimetry equipment, adopt 
the simple approach of providing 25 to 30 kcal/kg body 
weight. The American College of Chest Physicians consensus 
statement44 recommends 25 kcal/kg usual body weight 
for ICU patients, with the additional caveats that caloric 
requirements may have to be increased 10% to 20% in 
such patients with SIRS and, for overweight (i.e., body 
mass index greater than 25) patients, usual body weight 
should be replaced by ideal body weight. It can be seen 
from Table 72.2 that over the first week of intensive care 
for sepsis and posttrauma patients on mechanical ventila-
tion, TEE was 25 to 30 kcal/kg measured body weight, 
which increased to approximately 50 to 60 kcal/kg in the 
second week when many of the patients were taken off 
ventilation. For these patients, it remains to be determined 
whether provision of more than 25 to 30 kcal/kg is of  
benefit.45

Key Points

1.	 Hypermetabolism is a characteristic feature of 
critical illness.

2.	 Wide variation is seen in the degree and duration 
of hypermetabolism among individual patients.

rather than energy requirement or need. It cannot be assumed 
that providing energy intake to match energy expenditure 
is optimal for the management of critically ill patients.34,35 
A typical indirect calorimetric measurement of RME or 
REE in a sedated, ventilated critically ill patient provides 
a “snapshot” measure of energy consumption, assumed to 
approximate TEE, which reflects metabolism of endogenous 
(and possibly exogenous) nutrient substrates. The effect of 
brief nursing interventions, such as chest physiotherapy 
and dressing changes, may increase TEE by little more 
than 5%.13 Energy requirement encompasses this objective 
measure of energy use but also includes other aspects, such 
as the effect of the route of feeding, problems with nutrient 
tolerance and assimilation, and whether energy intake should 
be adjusted to promote tissue gain or loss.

In critically ill patients with multiple injury, Frankenfield 
et al.36 found that achievement of energy balance, compared 
with moderate energy deficit, led to fat deposition but did 
not improve nitrogen balance. Nitrogen loss did not cor-
relate with energy balance. In these mechanically ventilated 
patients, energy intake was matched to REE to achieve energy 
balance. They concluded that high-protein, hypocaloric 
nutrition support is preferable for these patients. Underfeed-
ing for a period of time may result in improved clinical 
outcome.37,38 However, large cumulative energy deficits are 
associated with adverse outcomes.39 With enteral feeding, 
gastrointestinal intolerance is the primary mechanism for 
protecting the patient from substrate excess. Mechanically 
ventilated patients receiving narcotic sedation, muscle relax-
ants, or both, will have reduced splanchnic circulation and, 
as a consequence, compromised gut motility, which will 
limit effectiveness of nutrition by this route.

Overfeeding exacerbates the hyperglycemia that 
accompanies the catabolic stress response, causes excess 
CO2 production that potentially prolongs the need for 
mechanical ventilation, may result in hepatic steatosis and 
hypertriglyceridemia, and, with excessive protein intake, 
may produce azotemia and metabolic acidosis.40 Increased 
ventilator dependence and length of ICU stay have been 
associated with high-energy intake.41 Critically ill patients 
fed parenterally are vulnerable to overfeeding because of 

TABLE 72.3

Equations for Prediction of Resting Energy Expenditure in Mechanically Ventilated Critically Ill Patients

EQUATION REFERENCE PREDICTED ENERGY EXPENDITURE (kcal/day) R2

Swinamer 23 RME = 945 (BSA) − 6.4 (A) + 108 (T) + 24.2 (RR) + 817 (VT) − 4349 0.75
Ireton-Jones 1992a 24 REE = 5 (W) − 10 (A) + 281 (sex) + 292 (trauma) + 851 (burns) + 1925 0.34
Ireton-Jones 2002a 25 REE = 5 (W) − 11 (A) + 244 (sex) + 239 (trauma) + 804 (burns) + 1784 0.34
Frankenfieldb 26 REE = 1.5 (RMEHB) + 250 (T) + 100 (VE) + 40 (dobut) + 300 (sepsis) − 11000 0.77
Penn State 1998c 27 REE = 1.1 (RMEHB) + 32 (VE) + 140 (Tmax) − 5340 0.70
Penn State 2003ad 28 REE = 0.85 (RMEHB) + 33 (VE) + 175 (Tmax) − 6433 0.67
Penn State 2003be 28 REE = 0.96 (RMEMifflin) + 31(VE) + 167 (Tmax) − 6212 0.69
Faisy 30 RME = 8 (W) + 14 (H) + 32(VE) + 94 (T) − 4834 0.61

aFor sex, 1 = male, 0 = female; for trauma, 1 = present, 0 = absent; for burns, 1 = present, 0 = absent.
bRMEHB calculated using actual or adjusted (if greater than 120% of ideal) body weight. For sepsis, 1 = present, 0 = absent based on clinical evidence of 
presumed infection, systemic inflammation, and organ dysfunction.
cRMEHB calculated using actual or adjusted (if greater than 120% of ideal) body weight.
dRMEHB calculated using actual body weight if less than or equal to admission weight, otherwise admission weight. RMEHB is calculated using the 
Harris-Benedict equations (see Table 72.2).
eRMEMifflin calculated using actual body weight if less than or equal to admission weight, otherwise admission weight. RMEMifflin is calculated using the 
Mifflin-St. Jeor equations29:

RME men W H A( ) ( ) . ( ) ( )= + − −10 6 25 5 161
RME women W H A( ) ( ) . ( ) ( )= + − +10 6 25 5 5

A, Age; BSA, body surface area (m2); dobut, dobutamine dose (µg/kg/min); H, height (cm); R2, coefficient of determination; REE, resting energy 
expenditure; RMEHB, resting metabolic expenditure by Harris-Benedict equations19; RMEMifflin, resting metabolic expenditure by Mifflin-St. Jeor 
equations29; RR, respiratory rate (breaths/min); T, temperature (°C); Tmax, maximum temperature (°C); VE, minute ventilation (L/min); VT, tidal volume 
(L); W, weight (kg).
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3.	 Predicting energy expenditure for individual 
patients is difficult.

4.	 Indirect calorimetry is the preferred approach for 
assessing energy expenditure in individual patients.

5.	 Matching energy requirement to energy expenditure 
may not be optimal for nutritional management.
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