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CHAPTER 58 

Calcium and Phosphate Physiology
Mario Cozzolino, Francesca Elli, Paola Ciceri, Emerenziana Ottaviano, and Ferruccio Conte

OBJECTIVES
This chapter will:
1.	 Analyze calcium homeostasis, absorption, and excretion 

in healthy adult subjects.
2.	 Discuss phosphate homeostasis, absorption, and excretion 

in healthy adult subjects.
3.	 Describe the physiology of vitamin D and its central role 

in regulating calcium and phosphate physiology.

CALCIUM METABOLISM AND HANDLING

The calcium content in a healthy adult body is 1000 to 
2000 g (25,000 to 50,000 mmol). In particular, less than 
2% of calcium is present in the extracellular fluid (ECF), 
and more than 98% is part of the mineral component of 
bone.1 The calcium of the mineral phase at the surface of 
the crystals is in equilibrium with ECF calcium, even if 
only a minor fraction of the total pool (0.5%) is really 
exchangeable. In a given healthy individual, this value is 
remarkably stable over time, never deviating by more than 
2% from its set point. Under normal conditions, ECF calcium 
concentration and body calcium content are maintained at 
fixed values; however, under pathologic conditions, the 
maintenance of ECF calcium concentration may require an 
alteration in calcium balance and body calcium content.2 
Furthermore, the calcium in ECF is critical for different 
functions, and calcium ions inside the cell play a variety 
of cellular functions. Most intracellular calcium is found 
in insoluble complexes. In addition, intracellular calcium 
levels are very low (0.1 mmol/L). The gradient between 
intracellular and plasma free calcium levels is regulated 
constantly, playing a critical role in the functional regulation 
of the single cell. These tightly regulated processes keep a 
constant gradient between ECF and intracellular calcium 
ions (10,000 : 1).3

Extracellular calcium activates the extracellular calcium-
sensing receptor (CaSR), which is a plasma membrane-bound 
G protein–coupled receptor.4 This receptor is present in 
different tissues, such as parathyroid glands, thyroid, 
intestine, kidney, bone, bone marrow, brain, skin, lung, 
pancreas, and heart. Once the calcium-sensing receptor is 
activated by calcium, it couples to a complex array of 
intracellular signal transduction cascades.4

The normal plasma levels of calcium in healthy adults 
range from 8.8 to 10.4 mg/dL (2.2 to 2.6 mmol/L). Plasma 
calcium is present in three forms: free ions (50%), ions 
bound to plasmatic proteins (40%), and diffusible complexes 
(10% primarily with citrate, phosphate, and bicarbonate). 
Importantly, free calcium ion concentrations may influence 
many cellular functions, subjecting them to tight parathyroid 
hormone (PTH) and vitamin D (1,25[OH]2D3) control.5 
Because most calcium ions are bound to albumin, plasma 

protein concentration is a very important factor when 
calcium ion concentration is investigated. For each 1.0 g/L 
decrease in serum albumin, total serum calcium decreases 
by 0.8 mg/dL. For each 1.0 d/dL decrease in serum globulin 
fraction, total serum calcium decreases by 0.12 mg/dL. The 
pH of plasma influences the percent of protein-bound 
calcium.6 Acute alkalosis decreases the ionized calcium. 
For every 0.1 change in pH, ionized calcium decreases by 
0.12 mg/dL. In particular, to distinguish ionized calcium 
from the protein-bound calcium fraction, the National 
Kidney Foundation’s Kidney Disease Outcomes Quality 
Initiative (KDOQI) guidelines state that total calcium levels 
have to be adjusted for serum albumin concentration to 
better describe the free calcium.7 Usually, the following 
formula is used:

Corrected calcium mg dl mmol L Total calcium
mg dL mmol L

( , )
( , ) .

=
+ 0 002 40× −[ ( )]Serum albumin g L

Fig. 58.1 shows a schematic of calcium homeostasis in 
healthy adults. First, calcium goes into the plasma via 
absorption from the intestinal tract and resorption from 
the bone. Second, it leaves the ECF via secretion into the 
gastrointestinal tract, urinary excretion, deposition in bone, 
and losses in sweat.

Three organs create calcium flux into or outside the 
ECF: the intestine, the bone, and the kidney.
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Importantly, the bone system corrects deviations from 
the calcium set point. In the fasting state, the urinary calcium 
level increases and the serum calcium concentration 
decreases. The parathyroid cells enter in the cell cycle and 
immediately secrete great amounts of PTH, which stimulate 
release of calcium from bone tissue and resorption of calcium 
from the kidney, allowing the serum calcium value to return 
to the set point. Even if bone calcium release is so rapid 
that it creates a fast correction of serum calcium levels, 
bone remodeling is a slow process because it involves the 
entire skeleton.15,16

Calcium Handling in the Kidney
Urinary calcium excretion in healthy adults with a normal 
calcium intake is 0.1 to 0.4 g daily. Different amounts of 
calcium are filtered, reabsorbed, and excreted by the kidney, 
and in all situations, renal calcium reabsorption is more 
than 95% of filtered load. When the calcium intake is less 
than 0.2 g daily, urinary calcium excretion is less than 0.2 g 
daily.17 Moreover, the amount of calcium in the urine is 
usually very small compared with the quantity of calcium 
filtered by the glomeruli (from 6 to 10 g daily), because the 
rate of proximal tubular calcium reabsorption is generally 
high.18 The majority of calcium reabsorption takes place 
along the proximal tubule (60%) and THAL (thick ascending 
limb of the loop of Henle) (25%). The reabsorption of 
calcium in the proximal convoluted tubule is a passive 
transport by paracellular pathway and parallels that of 
sodium and water. In the TALH Ca reabsorption is regulated 
by the CaSR located basolaterally.19 In addition, 15% of 
the filtered load of calcium is reabsorbed in the distal 
convoluted tubule, the connecting tubule, and the initial 
part of the cortical collecting duct. Importantly, in this 
distal portion of the nephron, calcium reabsorption actively 
opposes the natural electrochemical gradient. The terminal 
nephron, although responsible for the reabsorption of only 
5% to 10% of the filtered calcium load, is the major site 
for regulation of calcium excretion.

This active transcellular transport is regulated by PTH, 
1,25(OH)2D3, calcium intake, estrogens, and calcitonin. 
Different genes have been found to be involved in trans-
epithelial calcium transport, of which TRPV5 and TRPV6 
seem to play a central role.20

The concentration of ECF calcium depends on the balance 
between the amount of calcium entering into the ECF (mainly 
from bone) and the amount of calcium leaving the ECF (in 
the urine). Clearly, an increase in the ECF calcium value 
may result from two processes, a decrease in the renal 
excretion of calcium entering into the ECF or an increase 
in the calcium flow into the ECF.

Table 58.1 summarizes renal calcium handling in a 
healthy subject.

PHOSPHORUS METABOLISM AND HANDLING

In healthy adult subjects, phosphorus represents a key 
component not only of bone tissue but also of many other 
tissues and is involved in many cellular processes. About 
1000 g (32 mol) of phosphorus is maintained in the body 
of a healthy adult, of which 850 g usually are stored in 
bone tissue.1

In a fasting plasma specimen, most of the phosphorus 
is present as inorganic orthophosphate in concentrations 
from 2.8 to 4.0 mg/dL (0.9 to 2.3 mmol/L). Serum Pi level 

Calcium Handling in the Gastrointestinal Tract
The average daily dietary calcium intake for most healthy 
adults in Western countries is about 0.6 to 0.8 g. The intake 
varies, depending on the amount of dairy food ingested 
with meals. Unfortunately, less than 50% of dietary calcium 
is absorbed, and an even smaller proportion with advancing 
age. In contrast, children and women during either preg-
nancy or breastfeeding usually have higher calcium absorp-
tion. However, intestinal calcium absorption after a meal 
does not contribute to maintenance of the serum calcium 
value at its set point. Nevertheless, adequate dietary calcium 
intake and normal intestinal calcium absorption are essential 
to maintaining normal calcium balance and normal bone 
metabolism.8

In the intestine, absorption efficiency can vary inversely 
with dietary calcium intake (chronic adaptation). Clearly, 
with 0.5 g of calcium intake, 50% absorption means 0.25 g; 
in contrast, with 1.5 g of calcium intake, the intestinal 
absorption will be 0.5 g (30%). Moreover, 0.1 to 0.2 g of 
calcium is secreted each day into the intestinal lumen 
constantly and independently by calcium intake and absorp-
tion. Thus, although intestinal calcium absorption cannot 
regulate serum calcium levels, it provides the calcium 
needed to keep bone calcium mass within the normal range.3 
Calcium absorption takes place almost exclusively within 
duodenum, jejunum, and ileum; each of these intestinal 
segments has an elevated absorbability capacity (i.e., function 
of the length of the segment and of the residence time of 
the food). Intestinal absorption across the gut epithelium 
takes place by two ways:

1.	 The paracellular pathway
2.	 The transcellular pathway
The first is a passive absorption and is the main way in 

the presence of high calcium concentration into the lumen, 
whereas the second is an active mechanism influenced by 
calcitriol (1,25 [OH]2 Vit D).9

Calcium Handling in the Bone
Bone, a dynamic tissue that is remodeled constantly through-
out life, controls serum calcium levels in the fasting state. 
In fact, to keep serum calcium levels constant, bone releases 
an amount of calcium identical to the amount excreted in 
the urine. The calcium set point is the value for which 
the net calcium inflow, from the bone pool to the ECF, 
matches the net outflow, from the ECF to the urine. This 
mechanism is regulated primarily by PTH, which increases 
the release of calcium from the bone and limits the renal 
loss of calcium through increased tubular resorption of 
filtered calcium in the ascending loop of Henle and the 
distal tubule.10,11 In addition, bone provides storage for 
calcium and other ions necessary for homeostatic functions. 
In bone, the deposition of inorganic mineral is controlled 
by an orderly organic matrix. Importantly, the mineral 
phase is composed of calcium phosphate, so the serum 
concentration of calcium and phosphate regulate the bone 
formation rate.12 Nevertheless, bone mineralization does not 
occur when ECF concentrations of these two ions reach 
a limit value and a solubility product for bone formation 
reaches a steady state that depends on proteins that promote 
or inhibit calcification. In fact, when serum calcium and 
phosphate values are elevated and levels of inhibitory 
proteins, such as fetuin-A, matrix Gla protein, osteopro-
tegerin, osteopontin, and pyrophosphate, are reduced, as 
happens in uremia, an extraskeletal process of mineralization  
occurs.13,14
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phosphate load decreases. In contrast, phosphate clearance 
and renal tubular reabsorption increase if the filtered 
phosphate load increases. Basically, urinary phosphate 
excretion reflects dietary phosphate intake (Table 58.2).

In contrast to intestinal calcium absorption, phosphate 
is reabsorbed primarily by the gut. In fact, at levels of 
phosphate intake of about 2 mg per kg of body weight 
daily, 85% of ingested phosphorus is absorbed. Further-
more, phosphate is a key regulatory factor in parathyroid 
function. In fact, elevated serum phosphorus levels induce 
secondary hyperparathyroidism through direct (inhibition of 
1,25[OH]2D3 production) and indirect (subsequent reduction 
of calcium levels) mechanisms. Furthermore, phosphorus 
regulates PTH messenger RNA stability, controlling para-
thyroid function at a posttranscriptional level.15 Finally, the 
physiologic role of phosphorus in regulating parathyroid 
cell growth has been well demonstrated.16

PHYSIOLOGY OF VITAMIN D

Vitamin D is not a “vitamin” but rather a hormone. Vitamin 
D plays a pivotal role in calcium homeostasis and skeletal 
metabolism throughout life. Classical vitamin D deficiency 
causes rickets in children and osteomalacia in children 
and adults. Vitamin D is also important for the functioning 
of many other systems, such as the immune, cardiovascular, 
and reproductive systems.22,23,24 Classically, the metabolic 
control for activation of vitamin D is regulated by liver and 
kidney, and the target tissues for vitamin D are the bone 
and the gut. Calcium, phosphate, PTH, and other peptides 
regulate renal vitamin D handling (Fig. 58.2).

The vitamin D precursors, cholecalciferol, typical of 
animal life (vitamin D3), and ergocalciferol, typical of vegetal 
life (vitamin D2), derive from dietary sources (animal and 
fish liver, eggs, fish oils). However, cholecalciferol also is 
produced in the skin from 7-dehydrocholesterol (pre-vitamin 
D3), through the nonenzymatic effect of the ultraviolet B 
rays of sunlight (UVB; wavelengths 295–305 nm). Chole-
calciferol and ergocalciferol are hydroxylated enzymatically 
at carbon 25 in the liver and at carbon 1 in renal tubules.21

The monohydroxylated metabolite, 25-hydroxycholecal-
ciferol (25[OH]D3), is 500 times less active than 1,25(OH)2D3, 
but its serum concentration is the best indicator of vitamin 

is crucial for several important cellular processes (energy 
metabolism, bone formation, signal transduction) and as a 
constituent of phospholipids and nucleic acids. Contrary 
to calcium, of which approximately 50% is bound, only 
about 12% of phosphorus is bound to plasma proteins. 
Free dihydrogen phosphate (H2PO4

−) normally accounts for 
about 10% of the total phosphorus, whereas free hydrogen 
phosphate (HPO4

2−) and sodium phosphate (NaPO4
−) account 

for 75%. Phosphate has a pKa of 6.8, but at normal physi-
ologic pH (7.4), it exists primarily as a divalent ion.2 Different 
forms of phosphorus are present in plasma, depending on 
pH and other factors. In fact, children and postmenopausal 
women have higher phosphorus levels than the general 
population. Importantly, elevated total phosphorus values 
do not seem to depend on higher intake of phosphorus 
with meals. In addition, a circadian variation in levels of 
phosphorus during a 24-hour fast, in part mediated by the 
adrenal cortex, has been demonstrated. A low-phosphorus 
diet clearly decreases the morning fasting levels and prob-
ably reduces the enhancement and the plateau typically 
seen in the afternoon. Serum ionized calcium levels do not 
change even when serum phosphorus increases twofold.3 
Gastrointestinal absorption of phosphate takes place in 
the small intestine mainly in jejunum and duodenum 
with a minimal activity in ileum. Absorption occurs by 
passive (paracellular) and active (intracellular) mechanisms. 
Intestinal absorption of P is mediated by NaPi2b (sodium 
dependent P transporter), which is regulated by phosphorus 
intake and 1,25VitD. Phosphatonin FGF23 indirectly reduces 
phosphate absorption.19 A low phosphate intake promotes 
a reduction in renal phosphate excretion, preventing 
hypophosphatemia. Clearly, renal tubular cells retain the 
ability to increase the phosphate tubular transport, with 
variability among different portions of the proximal tubules. 
Hypophosphatemia stimulates 25(OH)D-1α-hydroxylase, 
which is modulated critically by renal tubular phosphate 
fluxes.21 Contrarily, hyperphosphatemia and increased renal 
tubular fluxes result in reduced phosphate reabsorption, 
increased clearance of phosphate, and suppressed activity 
of 25(OH)D-1α-hydroxylase.

The kidney is the major organ for control of phosphate 
losses. Phosphorus filtered through the glomerulus usually 
is reabsorbed in the proximal tubule, resulting in only 10% 
to 15% excretion of the filtered load. Physiologically, the 
proximal tubular reabsorption increases if the filtered 

TABLE 58.1 

Renal Calcium Handling

SEGMENT TRANSPORT MECHANISMS REGULATION

Glomerulus Free filtration Glomerulotubular feedback
Proximal tubule Paracellular passive transport mediated by Na+,K+- ATPase; 

Na+/calcium symport
ECF variations cause changes in Na+ and 
calcium reabsorption

Loop of Henle:
  Thin loop Permeable to calcium only in thin ascending limb, with no 

active transport
In thin descending limb, calcium depends 
on water and urea reabsorption

  Thick ascending 
limb

Paracellular passive transport on basolateral membrane: Na+ 
reabsorption

Na+,K+-ATPase

On apical membrane: Calcium links to Na+ reabsorption Na+-K+-2Cl− symport regulated by 
basolateral located CaSRs

Distal tubule Transcellular active transport on apical membrane, calcium 
does not link to Na+ reabsorption

PTH increases and acidosis reduces 
calcium reabsorption

Collecting tubule Transcellular active transport against chemical and electrical 
gradient on apical membrane, calcium does not link to Na+ 
reabsorption

PTH increases and acidosis reduces 
calcium reabsorption

ATPase, Adenosine triphosphatase; CaSR, calcium-sensing receptor; ECF, extracellular fluid; PTH, parathyroid hormone.
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biologic effects, because its serum concentrations are 1000 
times higher than those of 1,25(OH)2D3, thus compensating 
for the low affinity for VDR.2 Furthermore, lower 25(OH)
D3 serum concentrations are associated with higher risk of 
fracture and low bone mineral density at different bone 
sites in young and elderly healthy individuals of both 
genders. Conversely, excessively high 25(OH)D3 levels are 
associated with low bone turnover. The need to maintain 
normal vitamin D stores suggests that an unknown vitamin 
D metabolite in addition to 1,25(OH)2D3 may have a benefi-
cial effect on bone and parathyroid metabolism.26

The α-hydroxylation of 25(OH)D takes place in the kidney 
and in extrarenal tissues via the 1α-hydroxylase enzyme 
CYP27B1 to 1,25(OH)2D. The 1,25(OH)2D produced in the 
kidney and transported bound to DBP to tissues involved 
in Ca-P metabolism acts as an endocrine modulator of 
calcium and phosphate homeostasis.27 The final product, 
1,25-dihydroxycholecalciferol (1,25[OH]2D3), is the active 
metabolite of vitamin D, although its serum concentra-
tion does not correlate with vitamin D stores. It has been 
demonstrated that 1,25(OH)2D3 promotes active and passive 
intestinal absorption of calcium and phosphate and, conse-
quently, bone mineralization. The actions of 1α,25(OH)2D3 
on the osteoblast (bone formation) and cross-talk with 
the osteoclast result in bone resorption and overall bone 
remodeling.22 Conversely, 1,25(OH)2D3 suppresses PTH syn-
thesis and parathyroid cell proliferation through a genomic 
activity.28 The genomic effect of 1,25(OH)2D3 is modulated 
by specific cytosolic vitamin D receptors (VDRs) in target 
cells. VDR forms a heterodimer with the retinoid X receptor 
that enables the complex 1,25(OH)2D3–VDR to bind with 
high affinity to the vitamin D response element (VDRE) on 
the transcription promoters of vitamin D–sensitive genes. 
VDR has been detected in vitamin D–sensitive tissues (bone, 
intestine, kidney, and parathyroid glands) and even in tissues 
in which vitamin D activity is still unclear (myocardium, 
brain, pancreas, and testis). In addition to the genomic 
effect, a rapid nongenomic effect of 1,25(OH)2D3 has been 
found in intestinal cells.2 This rapid effect is mediated 
with the interaction with the classic VDRs associated with 

D body stores. Optimal levels of 25(OH)2D3 are not defined 
unanimously; most experts agree that values below 20 
ngL(50 nmol/L) indicate deficiency, values between 21 and 
30 ng/L indicate insufficiency, and levels above 30 ng/mL 
(75 nmol/L) indicate sufficiency.25 In spite of its low affinity 
for the vitamin D receptor (VDR), 25(OH)D3 maintains some 

TABLE 58.2 

Renal Phosphorus Handling

SEGMENT TRANSPORT MECHANISMS REGULATION

Glomerulus Free filtration Glomerulotubular feedback
Proximal tubule Na+,K+-ATPase; Phosphate transporters NaPi-2a and 

-2c are responsible for transepithelial transport
Na+ and PO4

− reabsorption

ECF variations cause changes in Na+ and PO4
− 

reabsorption
Transepithelial transport is regulated by P load, 
PTH, FGF23/Klotho: last two inhibit PT phosphate 
reabsorption

PTH induces PO4
− excretion

Loop of Henle
Thin loop Permeable to PO4

− only in thin ascending limb, 
with no active transport

In thin descending limb, PO4
− depends on water and 

urea reabsorption
Thick ascending 
limb

Extremely low PO4
− reabsorption —

Distal tubule On apical membrane, PO4
− reabsorption depends 

on PTH but does not link to Na+ reabsorption
Increased PTH inhibits PO4

− reabsorption and 
enhances PO4

− excretion
Reduced serum PO4

− levels suppress PTH and 
increase PO4

− reabsorption
Collecting tubule On apical membrane, PO4

− reabsorption depends 
on PTH but does not link to Na+ reabsorption

Increased PTH inhibits PO4
− reabsorption and 

enhances PO4
− excretion

Reduced serum PO4
− levels suppress PTH and 

increase PO4
− reabsorption

ATPase, Adenosine triphosphatase; ECF, extracellular fluid; FGF23, fibroblast growth factor 23 (phosphatonin produced by osteocytes and osteoblasts); 
Klotho, transmembrane protein of FGF23 for its receptors; PO4

−, phosphate; PTH, parathyroid hormone.
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overt abnormality in either serum calcium or phosphate 
concentration. Therefore simply measuring serum calcium 
and phosphate concentrations is not much help in predicting 
calcium and phosphate balance. Anyway, if treatment is 
initiated assuming an initial condition of low serum calcium 
or high serum phosphate levels, a subsequent increase in 
PTH synthesis and secretion, accompanied by a rapid 
parathyroid gland hyperplasia, occurs. Target tissues for 
PTH are bone, kidney, and gut. The effects on bone are to 
enhance bone to increase serum calcium and phosphate 
levels. The effects on the kidneys are to increase calcium 
reabsorption but produce phosphate excretion, with an 
enhancement in active vitamin D. Active vitamin D increases 
calcium and phosphate reabsorption from the gut. Finally, 
higher calcium levels suppress PTH secretion through 
negative feedback.

Key Points

1.	 Calcium and phosphate physiology is regulated 
by the intestine, bone, kidney, and the parathyroid 
gland.

2.	 Parathyroid hormone and vitamin D are the two 
key hormones that control calcium and phosphate 
handling.

3.	 Renal calcium and phosphate transport is regulated 
differently along the proximal and distal tubules.

4.	 Serum calcium and phosphate concentrations 
poorly predict calcium and phosphate balance.

5.	 Vitamin D receptors and calcium-sensing receptors 
are expressed widely in the body, and both types 
of receptors biologically regulate calcium and 
phosphate homeostasis.
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