SECTION 12

Fluid and Electrolztes

CHAPTER 54

Blood Biochemistry: Measuring Major

Plasma Electrolytes

Davide Giavarina

OBJECTIVES

This chapter will:

1. Outline relevant principles of physical chemistry.

2. Describe the assays used to measure sodium chloride and
potassium in blood.

3. Examine the reliability of such assays.

In clinical work, the most commonly measured electrolytes
in plasma are sodium, potassium, and chloride. These
variables are assessed in their own right and are used to
derive other variables, such as tonicity, water balance, anion
gap, strong ion difference, and strong ion gap.' To measure
electrolytes, flame photometry” remains one of the oldest
direct potentiometric methods®: a sample diluted with a
known concentration of a reference ion (usually lithium
or cesium) is aerosolized and passed through a flame, which
excites the cations. They reemit the energy as light of dif-
ferent frequencies; the amplitude of this emission is pro-
portional to the ion concentration in the sample. Nevertheless,
this method has drawbacks, such as having a low throughput,
requiring manual operation, and being a time-consuming
procedure. Recently, inductively coupled plasma (isotope
dilution) sector field mass spectrometry (ICP [ID] SFMS)
has been proposed as a new reference method.*
However, ion-selective potentiometry remains the cur-
rently used method in clinical medicine for the determina-
tion of electrolytes in various body fluids. With regard to
potassium, sodium and chloride, this technique has almost
completely displaced flame photometry and other previously
proposed techniques, such as atomic absorption spectro-
photometry and coulometry. Sodium and potassium are
positive ions (cations), whereas chloride is a negative ion
(anion).*® An ideal ion-selective electrode (ISE) consists of
a thin membrane across which only the intended ion can
be transported. The transport of ions from a high concentra-
tion to a low one through a selective binding with some
sites within the membrane creates a potential difference
that is proportional to the concentration. The results for
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these electrodes are reported as mmol/L of total plasma,
although the electrodes actually measure a different quantity,
known as the activity.® To understand the fundamentals of
these electrodes and some of their shortcomings requires
an understanding of some of the underlying physical
chemistry. The electrolytes are present in the plasma water
only, and the body is responding to that. Thereby, it is
actually only the plasma water that is of interest for the
measurement of electrolytes. Moreover, ISEs are involved
with electrochemical reactions with their designated
ions—for this discussion, one of sodium, potassium, or
chloride. When an ion interacts with its ISE, not all of the
ions present can take part. The reason is the interactions
between the measured ion and other ions in the solution;
in the clinical situation, the solution is plasma.’ These
interactions depend on the types of other ions present and
their concentrations. For example, less sodium interacts
with a sodium ion-specific electrode if more chloride is
present.”

This type of interaction results in an effective concentra-
tion known as the activity. The electrical potential of the
ion-specific electrode is related directly to the activity
(effective concentration) of the electrolyte rather than to
the actual concentration.

To estimate the total plasma concentration of an elec-
trolyte, the first step is to convert the measured activity to
the concentration in plasma water.” The activity is related
to the molar concentration of the electrolyte by means of
the activity coefficient of that electrolyte, as follows:

Activity = Concentration x Activity coefficient

The activity represents the effective concentration of a solute
in the solution, that is, the actual number of particles that
take active part in a given phenomenon. The value of the
activity coefficient depends on several factors, including
the specific ion, the chemistry of the surrounding solution,
and the temperature. Clinical assays measure at 37°C. One
variable for the activity coefficient is the ionic strength,
the sum of the charge effects of the electrolytes in the
solution. Plasma has particularly complex chemistry with
many types of ions, fully dissociated ions and partly dis-
sociated ions such as phosphate.’ In addition are other very
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FIGURE 54.1 Effects of the predilution and calculation performed
by the indirect estimation of sodium. ISE, ion-selective elec-
trode. (Modified from Fortgens P, Pillay TS. Pseudohypona-
tremia revisited: a modern-day pitfall. Arch Pathol Lab Med.
2011;135:516, with permission. Copyright 2011 College of American
Pathologists.)

complex charged molecules, such as albumin.'’ Furthermore,
particularly in critical illness, the concentrations of many
of these constituents may change. Because of these factors,
the variation of activity coefficients for electrolytes in plasma
is unclear. The final step in converting the activity to the
concentration in total plasma is to account for the proportion
of plasma volume that is solid rather than water. The solid
phase, usually about 7% of plasma volume, is a combination
of lipids and proteins, with much of the protein being
albumin.”® Therefore 93% of plasma volume is usually
water (Fig. 54.1). Unlike calcium and magnesium, sodium,
potassium, and chloride do not form significant bonds with
plasma proteins.®”'" Therefore the solid phase is assumed
not to contain sodium, potassium, or chloride.® It follows
that the total plasma concentration of an electrolyte is about
93% of the plasma water concentration.

For example, the measured activity for sodium is 112
(no units). The activity coefficient for sodium in plasma at
37°C is 0.737. The plasma concentration is calculated as
follows:

Concentration = Activity + Activity coefficient

Therefore the plasma water concentration is 112 + 0.737,
or 150 mmol/L. Multiplying the plasma water concentration
by the proportion of plasma that is water (93% x 150 mmol/L)
yields the total sodium plasma concentration, 140 mmol/L.

When a blood sample is processed by a blood gas
machine, such as those in intensive care unit (ICU) labo-
ratories, the software process is identical to the calculations
just described.® The ISE are known as direct electrodes
because there is no predilution of the sample. Direct ISE
actually measures the electrolyte activity in the plasma
water (mmol/kg H,O) rather than concentration in the plasma
(mmol/L). The electrochemical activity of the ions in the
water is converted to the readout concentration by a fixed
(ion-specific) multiplier, the activity coefficient. This is
accurate only for a given ionic strength, usually chosen to
equal 160 mmol/L for plasma. The use of this fixed factor
ensures that direct ISE reflects the actual, clinically relevant
activity, regardless of the level of proteins and/or lipids.
This is not changed by the fact that the result traditionally
is termed concentration. This conversion is based on recom-
mendations from the IFCC Expert Panel on pH and blood
gases."'

However, central laboratories often use indirect assays.’
The indirect assays use ISE, but before analysis the sample
is diluted with a solution with high ionic strength. The
high ionic strength means that the activity coefficient for
each electrolyte is 1. Therefore the measured activity
effectively equals the concentration of the electrolyte
(Concentration = Activity/Activity coefficient) in total
plasma. The indirect assays use smaller volumes of plasma
than direct assays, allowing more assays per sample in
multicomponent analyzers and faster automated processing
of multiple samples. Although direct ISEs respond to the
the electrolyte content in the plasma water, the indirect
ISEs respond to the electrolyte content in the volume of
total plasma.

A safe and unambiguous medical interpretation of sodium
and chloride ion concentration in serum is not possible
without knowledge of the water concentration or of the
lipid and protein concentration of the individual sample.
The use of undiluted samples and a fixed factor ensures
that direct ISE reflects the actual, clinically relevant activity,
irrespective of the level of proteins and/or lipids. The use of
undiluted samples is preferred, because changes in plasma
solids may lead clinicians to misinterpret changes in total
plasma concentration for parallel changes in the plasma
water concentration. The plasma water concentration of an
ion has a stronger relationship with its physiologic effect
than the total plasma concentration.’

For the clinician, it is possible that electrolyte measure-
ments in plasma could be derived from either direct or
indirect assays, or both, depending on the equipment used
at a given site in a given hospital. Usually, point-of-care
testing (POCT) instruments, such as blood gas analyzers,
use direct ISE, whereas results produced by big autoanalyzers
from central laboratories derive from indirect ISE. Because
of differences in the methodology between direct and
indirect ISE, the reported electrolyte concentrations in total
plasma can differ considerably even with paired samples
from the same patient.'”” The desirable and maximum
acceptable errors in the assays are related to biologic varia-
tion and instrument error.”**

However, there is a great discussion about the definition
of analytic performance specifications."” Particularly, biologic
variation and instrument error for sodium, potassium, and
chloride are so little that desirable total error and acceptable
maximum error would be too narrow. Other references
usually are used by laboratories to define their analytic
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TABLE 54.1
Plasma Electrolytes and Analytic Goals
ANALYTE REFERENCE RANGE CLIA DESIRABLE BIOLOGIC GOAL RCPA RiliBAK
Sodium 136—145 mmol/L + 4 mmol/L + 0.73 mmol/L + 3 mmol/L < 150 mmol/L; £ 2% > +5.0%
150 mmol/L
Potassium 3.5—4.5 mmol/L + 0.5 mmol/L +5.61% + 0.2 mmol/L < 4.0 mmol/L; + 5% > + 8.0%
4.0 mmol/L
Chloride 98—107 mmol/L +5 % +1.5% + 3.0 mmol/L < 100 mmol/L; + 3% > +4.5%
100 mmol/L

CLIA, Clinical Laboratory Improvement Amendments (USA); RCPA, Royal College of Pathologists of Australasia; RiliBAK (Richtlinien der
Bundesidrztekammer), literally, the guidelines (“Rili”) of the German Federal Medical Council (BAK).

goal, such as peer specification from proficiency testings
(PT), manufacturer claims, predefined specification from
regulatory institutions, such as Clinical Laboratory Improve-
ment Amendments (CLIA) PT goals from the United States, '
German RiliBAK specifications,"”” and Royal College of
Pathologists of Australasia (RCPA) allowable limits of
performance' (Table 54.1).

Previous and more recent studies have examined the
agreement for plasma electrolyte measurements between
indirect hospital (central laboratory) assays and direct ICU
laboratory blood gas machine (ICU) assays, finding differ-
ences between the two methods that exceeded some of the
proposed analytic goals'*'?*° (see Table 54.1).

One phenomenon associated with the disagreement
between direct and indirect sodium assays is pseudohy-
ponatremia.”’ In this situation, increased plasma solids (see
Fig. 54.1) lead to a decreased total plasma sodium estimate
from the indirect sodium assay (central laboratory) when
plasma water sodium is unchanged.?" This is called pseu-
dohyponatremia because there is hyponatremia without
hypotonicity."* In contrast, because direct assays use a fixed
value for plasma solids, the direct assays maintain a fixed
relationship with plasma water concentration in the presence
of increased plasma solids (see Fig. 54.1). What is little
recognized is that decreases in plasma solids also should
alter the relationship between the total plasma concentration
and plasma water concentration of sodium with indirect
assays, leading to possible pseudonormonatremia and
pseudohypernatremia.”* Because of reported morbidity with
psuedohyponatremia,'* much of the published research and
commentary has focused on sodium assays, with far less
attention on other ion assays.

The effect of protein concentration on plasma sodium
and chloride measurements in critically ill patients was
investigated by Story et al." in 2007 and more recently by
Goldwasser et al.*” They found that as the plasma albumin
(a plasma solid) value fell, the direct estimate for sodium
was increasingly greater than the indirect estimate, and for
each 10 g/L rise or fall in total protein, clinicians may find
it useful to adjust indirect ISE by 0.7-1.6 mmol/L in the
same direction, to correct indirect ISE for nonwater bias.
Importantly, changes in proteins are likely to be only one
of several causes for the differences between direct and
indirect sodium assay results. These findings also highlight
the complexity of plasma chemistry and its measurement.

When a clinician assesses plasma chemistry, it is
important to know what kind of assay has been used. The
frequently used indirect assays for sodium represent plasma
water sodium concentration in critically ill patients less
reliably than the direct assay. Previously, clinical chemists

have recommended that direct assays should be used to
measure plasma sodium in patients with increased plasma
solids to avoid the risk of pseudohyponatremia, pseudonor-
monatremia, and pseudohypernatremia.®*' These differences
could be not significant, according some analytic goals, but
it should be taken into account in the management of the
patients. In critically ill patients, decreased plasma albumin
is almost universal®*’; therefore direct sodium assays are
preferred. The situation for potassium and chloride is less
clear, but purely for convenience, the easiest path is to use
the direct assay results available with sodium.

Key Points

1. Plasma physical chemistry of ions is complex.

2. Assays measure activities but report concentration
in total plasma.

3. Direct and indirect assays can have important
differences.

4. Actual analytic goals for ions measurement based
on biologic variability could be too narrow.

5. Direct assays are preferable to indirect assays.
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