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CHAPTER 44 

Acute Kidney Injury in Heart Failure
Peter A. McCullough and Claudio Ronco

OBJECTIVES
This chapter will:
1. Review the epidemiology of acute kidney injury in the 

setting of acute heart failure.
2. Discuss the clinical implications of cardiorenal 

syndromes.
3. Present emerging information on the determinants of 

cardiorenal syndromes in acute heart failure.

over time have more comorbidities such as hypertension, 
diabetes mellitus, chronic kidney disease (CKD), and older 
age, there are increasing risks for acute kidney injury (AKI) 
with every HF hospitalization. In this scenario, AKI in 
the setting of acute HF (AHF), the term type 1 cardiorenal 
syndrome has been applied.2

PATHOPHYSIOLOGY

Although the differential diagnosis of AKI in HF includes 
type 1 cardiorenal syndrome, interstitial nephritis, subclini-
cal sepsis, and prerenal azotemia, the most likely cause is 
type 1 cardiorenal syndrome after the other possibilities 
are ruled out or determined to be sufficiently unlikely to 

Heart failure (HF) is a leading cause of adult hospitalization 
in developed countries with an expanding prevalence pool 
of patients because of survival after myocardial infarction 
and advancements in the treatment of HF that prolong 
survival.1 Thus with greater numbers of HF patients who 
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reduced eGFR or albuminuria. This scenario has been termed 
type 2 cardiorenal syndrome.6 Thus there is a considerable 
interface between cardiac and renal function in health and 
disease. This chapter provides a framework to understand 
the kidney in HF from a graphical and pictorial perspective.

Hemodynamics, Renal Blood Flow,  
Glomerular Filtration
A normal human body has approximately 5 L of blood 
volume and at rest a cardiac output of 3 to 5 L per minute. 
Cardiac output can increase to approximately 35 L per 
minute with aerobic exercise such as running. There is an 
important Frank-Starling relationship between end-diastolic 
volume and forward stroke work, which is analogous to 
the volume per contraction that would partially perfuse 
the kidneys. At rest the parasympathetic system via acetyl-
choline release predominates over the sinoatrial node and 
maintains heart rate in the 50 to 100 beats per minute range. 
In athletes, parasympathetic tone can be more pronounced 
and result in even lower sinus rates. With exercise the 
sympathetic nervous system via the release of norepineph-
rine predominates and the sinus node rate increases. In 
addition, contractility of the myocardium becomes more 
forceful resulting in greater ventricular systolic pressures. 
The mechanisms by which cardiac output increase are driven 
by the sympathetic nervous system and include increases 
in heart rate, end-diastolic volume, and stroke volume. For 
these responses to occur there must be increased venous 
return to the heart.

At rest approximately 60% of blood volume is in the 
venous system at any given time (Fig. 44.2). The veins 
have much thinner walls than arteries and thus have a 
much greater capability to dilate, resulting in pooling of 
blood volume. The tunica media in veins is innervated by 
the sympathetic nervous system and stains intensely for 
norepinephrine from sympathetic neuromuscular terminals, 
which works to control venous tone in minute-to-minute 
regulation of venous return to the heart, which does have an 
important pressure relationship to the overall cardiovascular 
system. The right-sided chambers, pulmonary circulation, 
and then left-sided systemic chambers are highly dependent 
on venous return dynamically in terms of their hemodynamic 
performance.

The kidneys receive arterial blood flow through the renal 
arteries, which arise from the abdominal aorta just distal 
to the superior mesenteric artery. Each kidney receives 
approximately 600 mL/min of flow, and together RBF 

further consider. Because most patients have considerable 
evidence of volume expansion, it is unlikely that there has 
been enough volume loss to have caused prerenal azotemia. 
There is considerable evidence of elevated central venous 
pressure, which is the strongest hemodynamic determinant 
of type 1 cardiorenal syndrome, as shown in Fig. 44.1. 
Although the kidneys may not be receiving enough forward 
output and there may transiently be a slowed plasma refill 
from the extravascular space, most AHF patients are very 
unlikely to be truly volume depleted. Interstitial nephritis 
can be suggested by urinary eosinophils and the presence 
of rash and fever; however, it is unlikely because common 
medications that induce this syndrome typically are not used 
in HF. In most cases, we are left with a working diagnosis 
of type 1 cardiorenal syndrome, in which the onset of 
AHF has led to an attempt at diuresis, which commonly 
is successful initially, and then a marked reduction in 
glomerular filtration and urine output follow over the next  
several days.3

Clinical Management
We are in the midst of an HF chronic disease pandemic with 
the aging of populations in the Western world.1 Survivorship 
in the settings of long-standing hypertension, myocardial 
infarction, valvular disease, and with myocardial disease 
has led to an increased prevalence pool of patients with 
established HF. Approximately half of patients with HF have 
reduced left ventricular ejection fraction (LVEF) or HFrEF 
and the other half as HF with preserved LVEF or HFpEF. 
HFrEF can be attributed to myocardial ischemia or prior 
infarction in two thirds of cases, whereas approximately 
half of those with HFpEF have a significant contribution 
to their illness because of ischemia as a result of coronary 
artery disease (CAD).4 Because of the considerable overlap 
among hypertension, diabetes, other risk factors, CAD, and 
myocardial disease with CKD, it is a common occurrence to 
find patients who have both HF (either HFrEF or HFpEF) 
with evidence of CKD manifest by a reduced estimated glo-
merular filtration rate (eGFR) < 60 mL/min/1.72 m2 or by the 
presence of albuminuria (≥30 mg/g albumin:creatinine ratio 
in spot urine) or by the detection of structural abnormalities 
in the kidneys or urologic tract (e.g., polycystic kidney 
disease, unilateral kidney).5 In addition, it is well known 
that in the setting of acute HF (AHF) decompensation, that 
AKI occurs in approximately 25% of hospitalized patients 
(type 1 cardiorenal syndrome).2 Finally, it is possible that 
HF itself sets up renal pathophysiology in a way to manifest 
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regulate blood flow into the glomerulus via the afferent 
arteriole. Angiotensin II is an important regulator of this 
function. The juxtaglomerular complex refers to the close 
proximity of the distal convoluted tubule and the afferent 
and efferent arterioles, where more densely staining distal 
tubular and interstitial cells are termed macula densa cells 
because of their dense cytosolic granules containing renin. 
Thus the anatomy and normal physiology of renal perfu-
sion and glomerular filtration is particularly responsive to 
changes in forward flow and venous return. In addition, 
the peritubular network is the site where renal tubules 
in close proximity to the tubular lumen and the blood 
capillary interface regulate sodium, chloride, ammonium, 
and bicarbonate in the urine. Each distal convoluted tubule 
is drained into a collecting duct, and thus each collecting 
duct services approximately 4 to 8 nephrons. The principal 
cell in the collecting duct has two major functions that 
are relevant in HF: (1) effector response to intranuclear 
signaling from aldosterone, which positions the cell in 
response to distal delivery of sodium in the urine to reclaim 
sodium and to dump potassium and (2) effector response 
to cell surface activation of vasopressin 2 receptors to 
arginine vasopressin, which activates aquaporin channels 
on the lumen surface to reclaim water. Because of the 
close proximity of the collecting ducts to the vasa recta, 
both of these systems work to deliver large amounts of 
sodium and water to the bloodstream when these hormonal 
systems are activated.

In summary, the kidneys are positioned to be the most 
hemodynamically and neurohormonally responsive to 
changes in blood volume, flow, perfusion, back pressure, 
sodium, water, and neurohormonal stimulation in the setting 
of HF. As a result, chronic and acute renal filtration function 

represents approximately 20% of cardiac output. The renal 
artery subdivides into segmental branches, then arcuate 
branches, and ultimately to afferent arterioles that deliver 
blood to the glomerular tuft and reconstitute as efferent 
arterioles, which go on to form the peritubular network, 
vasa recta, and then subsegmental and segmental renal 
veins, which converge on the main renal veins back to 
the inferior vena cava. This valveless system carries a large 
blood volume back to the heart and thus is vulnerable to 
changes in forward perfusion pressure, back pressure, or 
changes in organ fluid content. Because the kidneys are 
in the retroperitoneal space, unlike other viscera, there 
is lesser tolerance for organ expansion in the setting or 
organ edema. Multiple studies have shown that measures of 
central venous pressure, inferred renal venous pressure, and 
reduced outflow is a strong determinant of type 1 cardiorenal 
syndrome in patients with AHF.7

Intrarenal autoregulatory mechanisms maintain renal 
blood flow (RBF) and glomerular filtration rate (GFR) 
independent of renal perfusion pressure (RPP) over a broad 
range systemic arterial pressure (80–180 mm Hg).8 Such 
autoregulation is mediated largely by the myogenic control 
over tone in the afferent arteriole, which supplies blood to 
the glomerular tuft. The glomerulus is a unique vascular 
structure with multiple layers that constitute the filtration 
barrier between plasma and urine, including (1) glycocalyx, 
(2) fenestrated endothelium, (3) basement membrane, (4) 
foot of podocytes, (5) epithelial basement membrane, and 
(6) urogenital epithelial cells. The glomerulus also houses 
the mesangium, juxtaglomerular apparatus, and macula 
densa cells, which serve a variety of regulatory processes. 
The mesangial cells have cytosolic contractile proteins that 
enable the mass of mesangial cells to change shape and 
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there is a vicious cycle of multiple abnormalities that are 
caused by HF, which beget worsened HF symptoms and 
are associated with decompensation.

Endothelins (ET-1, ET-2, ET-2) are derived from ET 
precursor (big ET), which is produced by renal tubular 
cells, and to a lesser extent endothelial and most other 
cell lines in the kidney, and is a powerful paracrine factor 
that works on ET-A and ET-B receptors. ET-1 is a potent 
vasoconstrictor peptide involved in normal renal physiol-
ogy and pathology, including constriction of cortical and 
medullary vessels (ET-A), mesangial cell contraction (ET-A), 
stimulation of extracellular matrix production and fibrosis 
(ET-B), and inhibition of sodium and water reabsorption 
along the collecting duct (ET-B).9 Although endothelin 
receptor antagonists have not proven to be effective in the 
treatment of HF, they have found a role in the treatment 
of pulmonary hypertension and at very low doses may be 
effective in reducing the progression of CKD.10

Adenosine is another important paracrine substance in 
the kidney that is produced by multiple cell lines and 
acts on a family of receptors. Although short-lived in the 
circulation, adenosine can activate four subtypes of G 
protein-coupled adenosine receptors: A(1), A(2A), A(2B), and 
A(3). The adenosine A1 receptor on proximal tubular cells 
when stimulated results in reabsorption of salt and water 
and in addition, via tubuloglomerular feedback, increases 
afferent arterial tone and reduces glomerular blood flow 
resulting in a reduction in eGFR. Recently, adenosine 2B 
receptors have been associated with renal fibrosis in models 
after renal ischemia.11 Thus adenosine and its effects on 
receptors, as well as their differential expression, probably 
plays roles in hemodynamics, salt and water balance, as 
well as response to ischemic injury. Dual adenosine A1/
A2B inhibition may be a potential therapeutic target for 
HF in the future.12

are two of the most important parameters in the prognosis 
and management of patients with all forms of HF.

Neurohormonal Activation
It is beyond the scope of this chapter to discuss in detail the 
role of each neurohormone that is participating in normal 
physiology, as well as the pathophysiology of HF. In brief, 
multiple important regulatory systems are activated in HF 
that work toward preserving perfusion to the brain at the 
expense of the kidneys and direct the maximal amount of 
sodium and water reclamation as possible despite the adverse 
consequences of responses. The sympathetic nervous system 
via peripheral synapses at the neuromuscular junction within 
afferent and efferent renal arterioles, as well as mesangial 
cells, acts through the release of norepinephrine, which 
stimulates both α- and β-adrenergic receptors. These effects 
result in a decrease in RBF, an increase in intraglomerular 
pressure, and increased sodium retention. Norepinephrine is 
a stimulus for juxtaglomerular cells to release renin, which 
is the starting point for the renin angiotensin system. In 
addition to norepinephrine, epinephrine and dopamine as 
precursor molecules have effects on the kidneys primarily in 
the proximal and distal tubule with varying effects depend-
ing on the family of receptors. In general, epinephrine and 
norepinephrine stimulate the reabsorption of salt and water. 
However, dopamine, acting on a different family of recep-
tors, can stimulate natriuresis and diuresis. In general, the 
epinephrine and norepinephrine effects are more powerful, 
and the net effect of sympathetic stimulation to the kidneys 
is release of renin, reduction in RBF, increased salt and 
water retention, and a slightly reduced eGFR.

The renin angiotensin system is integral to renal 
physiology with not only the production and release of 
renin but also the direct effects of angiotensin II on the 
renal vasculature and renal tubular cells. The results of 
angiotensin II include efferent arteriolar vasoconstriction, 
salt and water retention, and reductions in RBF. Because 
intraglomerular pressure is elevated, angiotensin II results 
in maintenance or slight increases in eGFR.

Norepinephrine and angiotensin II stimulate the chromaf-
fin cells in the adrenal glands to synthesize and release 
aldosterone. Aldosterone has a powerful effect on the 
principal cells in the collecting ducts to reabsorb sodium, 
provided there is adequate delivery of urinary sodium to the 
distal nephron, as well as release potassium into the urine. In 
the setting of HF, the result of activation of the sympathetic 
nervous system and the renin-angiotensin-aldosterone axis 
is salt and water retention and over a long period of time, 
renal fibrosis, and drop out of nephrons with a reduction 
in eGFR.

Arginine vasopressin is secreted by the hypothalamus 
in response to cardiac afferent signaling to the brain in HF. 
Vasopressin stimulates V2 receptors on the principal cell 
(Fig. 44.3) in the collecting duct, thus stimulating aquaporin 
channel expression and activation, which work to reclaim 
free water from the collecting duct. This vasopressin effect 
raises urine osmolality, lowers plasma osmolality, and 
represents an inappropriate release of antidiuretic hormone, 
which can cause hyponatremia in HF patients. When this 
occurs, this is a poor prognostic sign indicating that systems 
that work to maintain the plasma concentration of sodium 
near 140 mEq/L have failed and that short-term cardiac 
compensation, as well as some degree of brain edema, 
is imminent. These changes are common in the setting 
of multiple hormonal dysregulation including a relative 
deficiency/resistance to erythropoietin and anemia. Thus 
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(Fig. 44.4). All available diuretics are tightly bound by 
albumin and do not undergo glomerular filtration. To work 
they must get secreted by the S2 segment of the proximal 
tubule into the urine. Hypoalbuminemia results in an 
increased volume of distribution of diuretics and lesser 
delivery to the kidneys and is one of many factors related 
to decreased diuretic responsiveness. Carbonic anhydrase 
inhibitors (e.g., acetazolamide) work in the proximal tubule 
and cause loss of sodium bicarbonate and thus create a 
metabolic acidosis. Because of these effects and the relatively 
large opportunity for upregulation of sodium absorption 
in the remaining nephron, carbonic anhydrase inhibitors 
are not a mainstay of therapy for either acute or chronic 
HF. However, loop diuretics (e.g., furosemide, bumetanide, 
torsemide, ethacrynic acid) are relied upon in most patients 
with HF at some time or another for the relief of congestion. 
These agents are the most powerful diuretic class, causing 
the excretion of 20% to 25% of filtered sodium load.17 Loop 
diuretics are secreted by organic anion transporters (OATs), 
which are expressed in proximal tubule cells and then 
work in the urinary lumen of the loop of Henle to impair 
sodium reuptake in the thick ascending limb, which is a 
major site of sodium reclamation from urine.18 Furosemide is 
catabolized by proximal tubular cells and can accumulate in 
the blood if there is CKD or AKI. Bumetanide and torsemide 
are broken down by the liver and do not accumulate in  
renal failure.

Use of bolus loop diuretics is equally as effective as 
continuous infusion for AHF, but with less adverse effects 
such as hyponatremia and hypotension.19,20 A principal 
mechanism of loop diuretic resistance is hypertrophy of 
thick ascending limb renal tubular cells with upregulation 
of sodium channel number and function that counteracts 
the inhibition of the loop diuretic.21 Thiazide diuretics exert 
their mechanism of action in the distal convoluted tubule, 
where they impair reuptake of sodium from the lumen. 
The thiazide group and metolazone are moderately potent 
diuretics, resulting in the excretion of 5% to 8% of filtered 
sodium.15 Chlorothiazide intravenously and metolazone 
orally are the most commonly used thiazide diuretics in 
HF, but usually in conjunction with loop diuretics and as 
part of “sequential nephron blockade” with pharmacologic 
agents. Diuretics that work proximal to the collecting duct 
have the potential for causing hypokalemia if distal urinary 
sodium delivery is increased, because this stimulates the 
epithelial sodium channel (ENaC) to reabsorb sodium and 
under the control of aldosterone, and causes the renal outer 
medullary potassium (ROMK) channels to excrete potassium 
in the principal cells. The “potassium-sparing” drugs are 
considered mildly potent, causing the excretion of only 2% 
to 3% of filtered sodium.15 They spare potassium because 
they work at the collecting duct and do not influence 
delivery of sodium to the principal cell as discussed above. 
Triamterene and amiloride block ENaC on the lumen side 
of the collecting ducts, whereas mineralocorticoid receptor 
antagonists work in the principal cells to partially block 
the effects of endogenous aldosterone, and as a result there 
is less ENaC and ROMK activity with lesser degrees of 
potassium excretion.

It is common in severe HF to deploy loop diuretics, a 
thiazide, and an MRA agent for control of congestion and 
for symptom relief in the same patient. As a consequence 
of sequential nephron blockade with diuretics, volume 
depletion can occur and electrolyte disturbances most 
commonly hyperkalemia are frequent and must be antici-
pated with prudent use of the laboratory.22 Hyperkalemia 
has multiple causes in the setting of HF including CKD, 
diabetes, and the use of drugs to treat HF. There is a clear 

There are several mediators of vasodilation of the peritu-
bular network in the renal medulla including nitric oxide, 
bradykinin, and prostaglandins.13 These substances may be 
produced by vascular, tubular, or interstitial satellite cells 
and appear to be important in maintaining the integrity of 
blood flow and tissue structure in the tubules and peritubular 
network. Nitric oxide synthase is present in renal tubular 
cells and appears to be important in maintaining normal 
salt and water homeostasis as it relates to blood pressure 
regulation.14 Bradykinin opposes the effects of aldosterone 
at the distal nephron epithelial Na channel (ENaC) and 
results in natriuresis.15 Prostaglandin E(2) is a major renal 
cyclooxygenase-derived metabolite of arachidonic acid and 
interacts with four G protein-coupled receptors: EP(1), EP(2), 
EP(3), and EP(4). EP(1) expression predominates in the 
collecting duct where it inhibits Na(+) absorption, contribut-
ing to natriuresis. The EP(2) receptor regulates vascular 
reactivity in the peritubular network. The EP(3) receptor 
also is expressed in vessels as well as in the thick ascending 
limb and collecting duct, where it partially antagonizes 
the effect of aquaporin channels in reclaiming water from 
the collecting duct. EP(4) may regulate glomerular tone 
and renal renin release. Thus PGE(2) can be thought of 
as a buffer, preventing excessive responses to physiologic 
perturbations in the setting of HF. As a result, the use of 
nonsteroidal antiinflammatory agents, which impair the 
production of PGE(2), has been associated with worsened 
outcomes in patients with HF.16

Cell Signaling in Cardiorenal Failure
It has been increasingly appreciated that beyond hemody-
namics and neurohormonal derangements (see Fig. 44.1), 
that HF is a condition in which production of cell signaling 
peptides (interleukins, tumor necrosis factor, intracellular 
transforming growth factor-β) may play a role in directing 
cell differentiation and proliferation of fibroblasts in the 
deposition of collagen and tissue fibrosis. In addition, 
some cell signaling molecules may mediate acute tubular 
dysfunction in the setting of AHF (IL-6, IL-18). The net result 
may be progressive and simultaneous renal and cardiac 
fibrosis termed type 4 cardiorenal syndrome. Although 
the production of cell signaling peptides from adipocytes, 
endothelial cells, hepatocytes, and immune cells has been 
termed “inflammation,” this term does not appropriately 
represent the processes observed in HF. Inflammation 
classically involves four elements: (1) white blood cells, 
(2) complement, (3) antibodies, and (4) cytokines. Thus 
“inflammation” probably does not describe the abnormal 
cell signaling that is occurring in the heart and kidney, 
as reflected in the measurement of cytokines or their 
downstream effects, including tubular and myocardial 
cell dysfunction, apoptosis, and replacement fibrosis. As 
the kidneys fail in the setting of HF, these effector actions 
can be partially lost, causing additional derangements that 
may become clinically relevant (e.g., hyperphosphatemia, 
hyperparathyroidism).

Renal Response to Diuretics
Diuretics are a mainstay in the treatment of HF for the 
relief of systemic congestion and to initiate plasma refill 
of salt and water from the interstitial space into the venous 
vasculature. There are a host of diuretics that have different 
and specific location of action along the nephron with key 
issues with respect to their physiologic response in HF  
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and has a four- to sevenfold increased risk for death, the 
need for renal replacement therapy, worsened CKD after 
discharge, and outpatient mortality.25

CONCLUSION

The renal system is integral to the cardiovascular system in 
health and disease. In the setting of HF, those patients with 
preserved renal function who do not develop significant 
reductions in the setting of AHF enjoy good responses 
to diuretics and optimal outcomes. Those patients with 
CKD at baseline and who develop AKI in the setting of 
hospitalization for HF have increased rates of in-hospital 
complications, including volume overload, hyperkalemia, 
and death. In addition, they face increased risks of readmis-
sions and longer-term mortality, including pump failure and 
arrhythmic death. Future research into novel diagnostic 
and therapeutic targets is likely to yield advances in the 
field of HF given the very close relationships between the 
cardiovascular and renal organ systems.

Key Points

1. In approximately 25% of patients with acute heart 
failure, acute kidney injury develops during the 

relationship between the development of hyperkalemia 
and mortality in patients with critical illness including 
HF. The drug class most commonly implicated is the 
MRAs; however, many drugs in combination work to 
sufficiently suppress the release of aldosterone from the 
adrenal gland and or antagonize its effects at the collecting 
ducts to result in insufficient elimination of potassium 
from the body.23 Thus there is a risk-to-benefit equation 
that must be balanced in patients with HF, CKD, and 
hyperkalemia. Novel strategies employing agents to enable 
greater gastrointestinal elimination (patiromer calcium, 
sodium zirconium cyclosilicate) may play a role in the 
future in the enablement of drugs that antagonize the 
renin-angiotensin-aldosterone axis.

PROGNOSIS

Our patient had several clinical features that predict a 
poor prognosis. Her baseline renal filtration function was 
moderately impaired and as a result was at risk for inpatient 
and short-term postdischarge death or rehospitalization.24 
In multivariate modeling, reduced eGFR or stage of CKD 
is in general the most important prognostic variable in the 
setting of HF and is more important than LVEF, type of car-
diomyopathy, and treatment received in terms of prognosis 
for death or hospitalization.25 The development of type 1 
cardiorenal syndrome, which occurs in approximately 25% 
of patients with AHF, is an additional poor prognostic sign 
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