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CHAPTER 37 

Multiple Organ Dysfunction
Nishkantha Arulkumaran and Mervyn Singer

OBJECTIVES
This chapter will:
1.	 Explain that multiple organ dysfunction syndrome is the 

complex interaction between cellular hypoxia, dysoxia, 
and a dysregulated host inflammatory and metabolic 
response.

2.	 Describe that the spectrum of the inflammatory response 
extends from the adaptive (beneficial) phase to the  
maladaptive phase in multiple organ dysfunction 
syndrome.

Multiple organ dysfunction (MOD) is characterized by a 
profound disturbance in global hemodynamics and organ 
perfusion and a marked and dysregulated inflammatory 
response. Clinical scenarios typically associated with 
multiorgan dysfunction syndrome (MODS) include sepsis, 
major surgery, major trauma, severe and prolonged hypoten-
sion, acute pancreatitis, and burn injury. The clinical 
syndrome encompasses a broad spectrum of clinical phe-
notypes ranging from a mild degree of organ dysfunction 
to a complete loss of organ function. The severity and 
duration of organ dysfunction usually correlates with illness 
severity and the probability of death.

Various illness severity scores have been developed based 
on population data to correlate organ dysfunction to the 
probability of mortality. Sequential measurements of organ 
dysfunction scores allow patient progress to be tracked. 
Commonly assessed organ systems include cardiovascular, 
respiratory, renal, liver, hematologic, and the central nervous 
system. The Sequential Organ Failure Assessment score 
(SOFA) score and Multi-Organ Dysfunction score are 
examples of such scores.1–3 Organ dysfunction scores allow 
risk-adjusted mortality comparisons between different ICU 
populations. Irrespective of the underlying cause of MODS, 
the associated mortality remains high. Mechanisms leading 
to MODS are described broadly, although poorly defined. 
This reflects the complex interplay between different 
overlapping biologic pathways. Central to the underlying 

pathophysiology are cellular hypoxia (lack of oxygen 
delivery resulting from impaired perfusion), dysoxia 
(impaired cellular oxygen use because of mitochondrial 
dysfunction), and a dysregulated host inflammatory and 
metabolic response.

MECHANISMS

Cellular Hypoxia
The hemodynamic instability associated with various critical 
illness states has led to the dogma that MODS is primarily 
a consequence of organ ischemia and ensuing cell death. 
However, experimental data have demonstrated that oxygen 
delivery varies markedly between individual organs and 
to any particular organ over the clinical course of sepsis.4 
Significant heterogeneity also exists in the degree of aci-
demia, lactatemia, and tissue O2 responses between organs 
in different causes of shock states.5 Local changes in O2 
supply and utilization is likely to underlie these differences 
in response. It is not possible to extrapolate organ perfusion 
from global oxygen delivery as “uncoupling” of regional 
oxygen delivery from global oxygen delivery occurs even 
in early sepsis.6 Despite relatively preserved global hemo-
dynamic variables, microvascular blood flow, using the 
sublingual microcirculation as a “window,” often is impaired 
in patients with sepsis.7 Early studies using indwelling 
renal vein catheters to measure renal blood flow in septic 
patients with acute kidney injury (AKI) revealed preserved 
or even elevated renal blood flow (RBF).8–10 Recent experi-
mental work has confirmed this. RBF may change over 
time, with an early rise in response to an infusion of E. 
coli.11 A threefold increase in cardiac output and RBF 
occurred in an ovine sepsis model,12 with the decrease in 
renal vascular resistance being proportional to the increase 
in RBF. Despite an increase in renal blood flow, renal func-
tion may be impaired.

Experimental models of sepsis demonstrate that creatinine 
clearance and RBF may not correlate11,13 and that oliguria 

SECTION 10

Clinical Syndromes and 
Acute Kidney Injury



206    Section 10 / Clinical Syndromes and Acute Kidney Injury

eventual outcome.22 Skeletal muscle antioxidant reserves are 
reduced within 48 hours of admission to critical care and 
are associated with mortality risk.23 At present, monitoring 
of mitochondrial function is limited to experimental work. 
Promising real-time in vivo techniques include tissue oxygen 
monitoring, reduced Nicotinamide adenine dinucleotide 
(NADH) fluorometry, magnetic resonance spectroscopy 
(MRS), and near-infrared spectroscopy.24 Such techniques 
have shown promise in animal models of different shock 
states and warrant further investigations in sepsis.

Inflammation
Although the precise mechanism of MODS is unclear, various 
related mechanisms are implicated. The host immune system 
is activated nonspecifically by pathogen-associated molecular 
patterns (PAMPs), as well as damage-associated molecular 
patterns (DAMPs) arising from the host. Well-characterized 
DAMPs include intracellular proteins and nucleic acids 
that are released into the extracellular space. Examples of 
DAMPs include proteins (heat shock proteins and HMGB1), 
nucleic acids (nuclear and mitochondrial deoxyribonucleic 
acid [DNA]), purines (ATP and adenosine), and hyaluronan 
fragments. PAMPs and DAMPs trigger a cascade of events 
culminating in systemic inflammation, altered cellular and 
organ function, and, eventually, organ dysfunction. Inflam-
matory mediators produce a cascade of events, including 
enhanced neutrophil chemotaxis and phagocytic activity, 
increased capillary leak, complement activation, cellular 
stress, and activated coagulation factors. These are associated 
with organ dysfunction in sepsis, although direct cause-
and-effect remains uncertain.25 DAMPs and PAMPs activate 
a series of pattern recognition receptors (PRRs) that can 
discriminate “self” from “non-self” antigens. Several classes 
of PRRs have been identified, including transmembrane 
Toll-like receptors (TLR), C-type lectin receptors (CLRs), 
retinoic acid inducible gene-I (RIG-I) receptors, intracellular 
NOD-like receptors (NLRs), and HIN-200 receptors.26–28 
Extracellular PAMPs and DAMPs are recognized by TLRs 
and CLRs, whereas NLRs and RIGs recognize intracellular 
molecular patterns.

PRRs are expressed primarily by innate immune cells 
but also by endothelial and epithelial cells. The innate 
immune system is “primed” by activation of PRRs by PAMPs 
and/or DAMPs, leading to activation of proinflammatory 
transcription factors; the best characterized is nuclear factor 
kappa-B (NF-κB). There is a consequent increase in transcrip-
tion of genes encoding multiple mediators (e.g., cytokines 
and chemokines) and receptors. An excessively dysregulated 
host response results in detriment to the host (critical 
illness). In many circumstances it remains unclear why 
some patients develop such a response to infection. Some 
bacterial toxins, including Staphylococcus aureus entero-
toxin A, may result in a life-threatening toxic shock syn-
drome secondary to nonspecific polyclonal T cell activation.29 
However, in the vast majority of septic patients, there is 
no single identifiable cause. Within the kidney, intrinsic 
renal cells, especially tubular epithelial cells, express 
components of the inflammasome pathway, including 
TLRs,30,31 which are upregulated in sepsis. Renal tubular 
epithelial cells produce various proinflammatory cytokines 
and chemokines (e.g. IL-6, IL-18, and monocyte chemotactic 
protein [MCP-1]).32 The kidney also contains resident 
antigen-presenting cells (dendritic cells and macrophages) 
that modulate the local immune response to DAMPs and 
PAMPs filtered from the circulation.33 The expression and 
activity of channels responsible for solute reabsorption are 

may occur with a fall in creatinine clearance despite an 
increase in RBF.14 Changes in intrarenal circulation subse-
quent to modification in efferent arteriolar function and 
intrarenal shunting are more likely than a global reduction 
in RBF to be responsible for septic AKI.11 A key paradigm 
of MODS in sepsis is the finding of relatively preserved 
organ histology despite significant functional perturbations. 
Sepsis-induced cardiac dysfunction is clinically evident 
despite the lack of histologic evidence of cell death.15 
Similarly, despite significant functional impairment, his-
tologic evidence of tubular cell injury is relatively 
minimal.15–18 Although renal tubular cell injury is focal and 
common, most renal tubular cells appear normal.15 Cellular 
hypoxia leading to cell death does not appear to be causal 
in the loss of cellular and organ function, particularly in 
sepsis. This discordance between preserved structural 
integrity and impaired function raises important questions 
about the underlying pathophysiologic mechanisms. Alterna-
tives such as inflammation and mitochondrial dysfunction 
are implicated.

Mitochondrial Dysfunction and Cellular Dysoxia
In health, “mitochondrial function” typically is associated 
with oxidative phosphorylation and adenosine triphosphate 
(ATP) production as an energy substrate to fuel metabolic 
processes. However, mitochondria also have multiple other 
homeostatic, biosynthetic, and immunologic functions, 
including calcium regulation and cell signaling, primarily 
via reactive oxygen species (ROS). Many of these functions 
are central to the host response to infection. These include 
the regulation of hypoxia-inducible factor (HIF) and vascular 
endothelial growth factor (VEGF), regulation of the NOD- 
like receptor protein-3 (NLRP3) inflammasome, signaling 
intermediates for cytokines and Toll-like receptors (TLRs), 
and autophagy. These initial responses may have an adap-
tive, protective function. However, if prolonged or excessive, 
collateral damage (including ROS-induced oxidative stress 
and cell death) may be inevitable.

In resuscitated septic patients skeletal muscle oxygen 
tension is elevated, suggesting availability of oxygen but a 
decrease in consumption.19,20 Decreased oxygen consump-
tion (VO2) may represent, at least in part, an adaptive 
mechanism.21 Mitochondria, the primary consumer of O2 
within the body, can regulate metabolism by determining 
the availability of energy substrate (i.e., ATP). A prolonged 
inflammatory result can result in decreased mitochondrial 
activity through several mechanisms including (1) inhibition 
of mitochondrial respiration by increased production of 
nitric oxide and other mediators such as carbon monoxide 
and hydrogen sulfide, (2) damage from an excess of nitric 
oxide and other ROS, overwhelming intrinsic mitochondrial 
antioxidant defenses, and (3) downregulation of transcription 
of respiratory protein subunits.22,23 The subsequent reduction 
in energy availability may divert the body from its normal 
activities and direct its efforts toward dealing with the acute 
stressor of infection. However, with overwhelming inflam-
mation, this response may become exaggerated, resulting 
in decompensation with organ dysfunction and, ultimately, 
death in many cases. A clear association has been reported 
between the degree of mitochondrial dysfunction, organ 
failure, and mortality.22 Understanding the time course of 
changes in mitochondrial function in sepsis and how these 
changes relate to recovery is important when consider-
ing any potential therapeutic intervention. Alterations to 
respiratory protein subunits and transcripts occur within 
the first 24 hours of admission to the ICU and correlate with 
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intrarenal circulation subsequent to modification in efferent 
arteriolar function and intrarenal shunting allow a reduction 
in GFR can be achieved without a reduction in global renal 
blood flow.11 However, if prolonged, the effects of oliguria 
itself may become detrimental to the host.

REVERSAL OF MULTIORGAN DYSFUNCTION 
SYNDROME AND RECOVERY

After a period of MODS, recovery often is identified by 
improving organ functional parameters toward “normal” 
physiologic ranges. Underlying this improvement is a restora-
tion of global and regional oxygen delivery, recovery of 
mitochondrial function, increased oxygen consumption and 
cellular metabolism,38 and a transition from an overall 
proinflammatory immune phenotype to one that is pre-
dominantly antiinflammatory. However, this immunosup-
pression may increase the risk of secondary infection, 
particularly because the patient is far less mobile, has 
multiple drains, tubes, and catheters breaching body barriers, 
and is receiving drugs such as sedatives, corticosteroids, 
catecholamines, and antibiotics that may accentuate this 
immunosuppressive effect.

The recovery phase, with an increased requirement for 
ATP availability requires the generation of new, healthy 
and active mitochondria (biogenesis) to meet cellular 
metabolic energy demands and to fulfill other roles, includ-
ing calcium homeostasis, maintenance of cellular redox 
state, and cell signaling. The onset of mitochondrial bio-
genesis in sepsis corresponds with the restoration of normal 
mitochondrial oxidative respiration.42 The course of sepsis 
and recovery is characterized by an increment in markers 
of mitochondrial biogenesis with increased mitochondrial 
number and density.43 The roles of resident immune cells 
include cell recruitment, regeneration and repair, and 
fibrosis. Resident renal macrophages assume a proinflam-
matory M1 phenotype (classically activated) or an antiinflam-
matory M2 phenotype (alternatively activated),44 depending 
on the local environment. In the early stages of sepsis, 
resident macrophages and dendritic cells may have impor-
tant proinflammatory roles in antigen presentation and 
phagocytosis. During the resolution phase of MODS, renal 
macrophages may play a role in repair and regeneration. 
Similarly, in trauma, the balance between ratios of Th1/
Th2 and Th17/Treg is altered from initial presentation to 
recovery to reflect a transition from a pro- to an antiinflam-
matory phase.45

FUTURE THERAPIES

Understanding the natural history of MODS in critical illness 
is a fundamental part of designing trials to evaluate potential 
therapeutic agents. Evolution has ensured that we can adapt 
to adverse situations, such as mounting an appropriate 
immunologic and physiologic response to survive. However, 
if the insult is prolonged and severe, the same host response, 
albeit exaggerated, may have a detrimental effect. There is 
likely to be a complex interplay between the multiple 
interventions required for immediate lifesaving treatment 
and intrinsic adaptive changes. Because medical interven-
tions have evolved far quicker than biology, critical illness 
is no longer an adaptive state determined by evolution 
alone. This makes it very challenging to extrapolate findings 

downregulated during inflammation. Tumor necrosis factor-
alpha (TNF-α) downregulates the renal Na+-K+ pump and 
the Na+-K+.2Cl− cotransporter in vivo,34 while interleukin-1β 
(IL-1β) inhibited, in a dose-dependent manner, Na+/K+-
ATPase activity in medullary and cortical renal cells.35 
Lipopolysaccharide (LPS) significantly downregulated ion 
transporters, including the Na+/H+ exchanger 3 (NHE3), Na+/
K+-ATPase, renal outer medullary K+ channel (ROMK), 
epithelial Na+ channel (ENaC), Na+–K+,2Cl−-cotransporter 
2 (NKCC2), Na+–Cl−-cotransporter (NCC), and kidney-specific 
chloride channels -1 and -2 (CLCK-1 and -2).36,37 This effect 
also was seen in mice given lower doses of LPS where 
blood pressure was maintained. Similar effects were seen 
with injection of proinflammatory cytokines (IL-1β, TNF-α, 
Interferon gamma INF-γ) and ischemia-reperfusion injury, 
but not with hypoperfusion.36 Alteration of renal sodium 
transporters during LPS-induced AKI thus appears mediated 
by cytokines rather than ischemia. Studies using knockout 
mice for TNF-α, IL-1β, and INF-γ show that, even in the 
absence of these cytokines, renal tubular epithelial cells 
still can downregulate ion transport channels in response 
to LPS. This suggests that multiple pathways are present.36

AN ADAPTIVE STATE?

It has been proposed that MODS may represent an adaptive 
and protective response during critical illness.21 During 
extreme stress, including critical illness, it may be advanta-
geous to reprioritize energy expenditure in an attempt to 
improve chances of survival, especially when oxygen 
delivery is compromised by cardiac and macro- and micro-
vascular perturbations and the local milieu is heavily 
proinflammatory. Metabolism is dependent upon an adequate 
supply of substrate. If metabolism continues normally in 
the face of an insufficient availability of energy, ATP levels 
fall and cell death pathways are activated. The cell can 
increase its glycolytic activity to partially offset this fall  
in aerobic respiration as well as decreasing its metabolic 
rate and reducing oxygen consumption. Although this 
hibernation-type process will protect the cell, it occurs at 
the expense of reduced organ functionality, which is rec-
ognized as biochemical and/or physiologic “organ failure.”21 
As mitochondria are the primary source of O2 use, pre-
dominantly for ATP generation, this strongly implicates 
mitochondrial dysfunction in the pathophysiology of MODS. 
However, this response may become maladaptive with 
inadequate cellular functionality to sustain life. There is a 
clear association between the degree of mitochondrial 
dysfunction, organ failure, and mortality.22 Whole-body VO2 
is elevated in mild sepsis in patients but falls with increasing 
severity.38 During recovery, there is a rebound increase in 
VO2. However, attempted augmentation of VO2 by increasing 
global O2 delivery (DO2) in the established phase of septic 
shock was associated with an increase in mortality.39 
Eventual nonsurvivors have reduced cardiac reserve and 
fail to increase VO2 after resuscitation; when DO2 is enhanced 
with inotropic support, oxygen extraction falls.40 This 
iatrogenic harm offers further evidence, albeit indirect, that 
the natural reduction in VO2 may in fact be adaptive.

Functionally, a reduction in organ function may confer 
a survival benefit. For instance, in hypovolemic states, a 
reduction in urine output helps to conserve circulating 
blood volume.41 In this context, oliguria is adaptive. “Physi-
ologic oliguria” may be achieved by a decrease in glomerular 
filtration, with a net reduction in the need for tubular 
resorption and therefore energy conservation. Changes in 
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failure in critical illness. Clinical trials in various shock 
states have been highly disappointing: multiple drug and 
interventional strategies all fail to show consistent outcome 
benefit in large randomized controlled trials. These repeated 
failures highlight the major complexities presented by criti-
cal illness in which multiple pathways are simultaneously 
affected and marked fluctuations occur over time. Many of 
the biologic and physiologic alterations previously viewed 
as pathologic actually may be adaptive and protective, and 
our well-meaning but misguided attempts to normalize or 
overcorrect perceived abnormality actually may be injurious.

Key Points

1.	 An excessively dysregulated immune response 
results in detriment to the host (multiorgan dysfunc-
tion syndrome [MODS] and critical illness).

2.	 Central to the underlying pathophysiology of MODS 
are cellular hypoxia, dysoxia, and a dysregulated 
host inflammatory and metabolic response.

3.	 Cellular hypoxia leading to cell death does not 
appear to be causal in the loss of cellular and 
organ function, particularly in sepsis. A prolonged 
inflammatory result can result in decreased mito-
chondrial activity through several mechanisms.

4.	 Critical illness represents a dynamic process in 
which multiple pathways are affected simultane-
ously, and marked fluctuations occur over time.
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from a simplistic preclinical model to the complex clinical 
setting. Most research on pharmacologic interventions in 
sepsis has focused on attenuating the proinflammatory 
phase. This includes the use of monoclonal antibodies 
against IL-146 and TNF-α,47 TLR4 antagonists,48 inducible 
nitric oxide synthase (iNOS) inhibitors,49,50 antioxidants,51 
and modulation of the coagulation system.52 Despite initial 
promise in preclinical studies and early clinical studies, 
no immunomodulatory therapy has yet demonstrated 
conclusively any benefit in sepsis. The assumption that 
sepsis simply represents a proinflammatory state has been 
laid bare. Many patients, even on admission to intensive 
care, are in a state of immunosuppression. Thus the addition 
of an immunosuppressive therapy may compromise further 
the host response, increasing the risk of secondary infection 
and a poor outcome.53,54 Some small studies have shown 
that immunostimulatory therapies may be beneficial in the 
right patient subset.55 A personalized medicine approach 
in which patients can be targeted individually by relevant 
biomarkers to receive appropriate therapies given at optimal 
dose and duration will lead to better patient selection and, 
hopefully, improved outcomes.

Emerging nonpharmacologic therapies to limit and 
potentially reverse MODS include the use of mesenchy-
mal stem cells and bone marrow–derived stromal cells. 
Preclinical studies have demonstrated the potential role of 
mesenchymal stem cell therapy in experimental sepsis.56–58 
Apoptotic adipose-derived mesenchymal stem cell therapy 
(A-ADMSC) was superior to healthy ADMSC (H-ADMSC) 
therapy in preventing acute lung injury and AKI in rats 
with CLP-induced sepsis.59 Animals treated with H-ADMSC 
had higher levels of cellular antioxidants and significantly 
greater mitochondrial integrity (as measured by cytochrome 
C) compared with untreated animals or animals treated with 
H-ADMSC. This may relate to the immunosuppressive effect 
of apoptotic cells.60 Further data are required regarding 
the long-term effects of mesenchymal stem cell therapy, 
the potential of delayed treatment, the optimal dose, and 
potential side effects.

Another exciting area of research is the use of bone 
marrow-derived stromal cells (BMSCs) as a means of 
transferring healthy mitochondria to damaged cells. 
BMSCs are able to form connexin 43 (Cx43)–containing 
gap junctional channels with alveolar epithelia, releasing 
mitochondria-containing microvesicles that epithelia engulf. 
A mouse model so treated was protective in the treatment 
of LPS-induced lung injury in mice.61

SUMMARY

Organ failure is a hallmark of critical illness. Yet little 
is understood about the evolutionary drive behind organ 
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