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CHAPTER 35 

Traditional Radiology, Computed Tomography, 
and Magnetic Resonance Imaging in Critical 
Care Nephrology
Roberto Pozzi Mucelli and Matteo Catania

OBJECTIVES
This chapter will:
1.	 Explain indications and contraindications for computed 

tomography and magnetic resonance imaging in critical 
care nephrology.

2.	 Describe the technique of examination in renal computed 
tomography and magnetic resonance imaging.

3.	 Analyze the development of functional magnetic 
resonance.

Diagnostic imaging modalities in critical care nephrology 
include traditional radiology, ultrasonography, computed 
tomography (CT), and magnetic resonance imaging (MRI). 
Among these modalities, ultrasonography plays a major 
role in the initial workup of acute renal failure. The role 
of ultrasonography is illustrated and discussed in another 
chapter of this book.

Traditional radiology has a minor role in acute renal 
failure because intravenous urography has been replaced 
today, after the introduction of modern multislice CT scan-
ners, by CT urography. Therefore this chapter is dedicated 
primarily to CT and MRI.

COMPUTED TOMOGRAPHY

Unenhanced CT is, in many cases, the only possible 
examination in patients with AKI, unless immediate dialysis 
is performed after the contrast-enhanced CT examination. 
In unenhanced studies, morphologic features to assess are 
the long axis (measured on coronal reconstruction) and the 
anteroposterior axis (visible on axial scans) of the kidney, 
the presence of calcifications (vascular, lithiasis-related, 
parenchymal), the parenchymal width (mean value calcu-
lated from at least three measurements), the presence of a 
mass (solid or cystic), and the condition of the urinary 
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FIGURE 35.1  Retroperitoneal fibrosis. Computed tomography with 
Multiplanar Recostruction (MPR): axial plane (A) and coronal 
plane (B) shows extrinsic obstruction of both ureters with bilateral 
ureteric dilation because of a mass surrounding the aorta and 
the inferior vena cava: on the right, the calyces, pelvis, and 
ureter are still filled with contrast material because the obstruction 
is incomplete. On the left no contrast is seen in the urinary 
tract because of complete obstruction. 
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tract. Basal CT adds clinically important information in 
the majority of patients with indeterminate sonograms: in 
acute kidney injury (AKI) patients being screened for 
obstruction, it can be sensitive as ultrasonography (US) in 
detecting hydronephrosis and much more sensitive in 
detecting ureteral calculi. Dilated ureters usually can be 
traced to the point of obstruction. Regular greyscale US is 
not accurate in the minimally dilated obstructive situation, 
such as retroperitoneal metastatic tumor or idiopathic 
retroperitoneal fibrosis (Fig. 35.1), in which the ureter 
encasement interferes with peristalsis.1 Thus, if US cannot 
determinate the cause of the obstruction, nonenhanced CT 
can be obtained.2 CT can show other causes of obstruction, 
such as neoplastic condition at the level of retroperitoneum 
and in the pelvis, although these are not common causes 
of acute kidney injury (AKI).

Nephrotoxicity of iodinated contrast agents is an impor-
tant clinical problem in a patient with renal insufficiency. 
AKI induced by iodinated contrast media accounts for about 
10% of hospital cases of renal failure, especially in azotemic 
patients. Indeed, excretory urography, contrast-enhanced 
CT, and angiography should be performed in azotemic 
patients only when US, unenhanced CT, and MRI are not 
available or their results are questionable. Nonionic, low-
osmolarity or iso-osmolarity contrast media must be used 
because they have been demonstrated in randomized studies 
to be statistically less nephrotoxic than ionic contrast media 
in patients with normal renal function and with renal 
insufficiency.3 However, the problem of contrast-induced 
nephrotoxicity is less critical today than in the past because 
the availability of modern multislice CT allows the use of 
less amount of contrast media to be injected. Furthermore, 
contrast media in CT are injected intravenously, and this 

route is associated rarely with contrast-induced nephrotoxic-
ity compared with the arterial route of injection.

Contrast administration allows delineation of the main 
renal arteries from the point of origin up to that of secondary 
branching, in the cortical phase during the passage of 
contrast within the glomerular and peritubular capillaries, 
and of the main veins; in the parenchymal phase during 
the diffusion of contrast within interstitial extracapillary 
tissue and filtration through the glomerular membrane with 
opacification of renal tubules; and finally, the excretory 
system that is depicted, in normal functioning kidneys, at 
3 to 4 minutes after contrast administration, the peak being 
reached after 10 to 15 minutes.4

Contrast-enhanced CT is much more reliable than excre-
tory urography in detecting structural deformities of the 
nephrogram and requires less contrast material. In spite of 
a few differences, all the urographic signs have their 
counterpart in contrast-enhanced CT. For these reasons 
excretory urography is no longer performed, and it has 
been replaced by CT urography. However, excretory urog-
raphy and CT urography have a limited role in patients 
with AKI because iodinated contrast agents may exacerbate 
the existing renal failure.

In acute renal obstruction an early cortical nephrogram 
develops followed by gradual opacification of the medulla. 
Delay in opacification of the pyelocalyceal system and 
hydronephrosis are appreciable. The cause of obstruction, 
either intrinsic or extrinsic, usually is identified (Fig. 35.2).

In acute bacterial nephritis wedge-shaped lesions, focal 
mass-like lesions, or diffuse, multifocal mass-like lesions 
leading to abscess formation are appreciable depending on 
the severity of the disease (Fig. 35.3). In patients with cortical 
necrosis, opacification of the renal cortex is lacking. They 
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FIGURE 35.2  Computed  tomography with Multiplanar Recostruc-
tion (MPR): coronal plane (A) and axial plane (B). Bladder cancer 
with bilateral ureteral dilation. On the left a nephrostomy tube 
has been positioned. In the axial scan, the bladder tumor appears 
as a diffuse increase of bladder wall thickness. 
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present subcapsular, juxtamedullary, and medullary enhance-
ment without excretion of the contrast medium.3

MAGNETIC RESONANCE IMAGING

MRI produces comparable image quality of the kidney to 
CT. Magnetic resonance (MR) sequences provide information 
about tissues, including T1 and T2 relaxation times, lipid 
or fat content, and enhancement characteristics of tissues. 
MRI provides versatile and unique soft tissue contrast and 
allows the evaluation of a wide range of urinary tract 
disorders. This result can be obtained by the intensity of 
the static magnetic field (actually from 1.5 to 3 Tesla), 
gradient quality and intensity, multichannel phased-array 
coils, advance pulse sequences, parallel imaging techniques, 
fast sequences, and gadolinium-based contrast agents. MRI 
in AKI allows evaluation of morphologic and functional 
changes and, in contrast with CT, can be performed without 
contrast or with smaller amounts of contrast with less 
nephrotoxicity. However, development of systemic neph-
rogenic fibrosis after gadolinium administration in a patient 
with renal failure is a well-known problem, which has 
limited this clinical application in patients with renal failure, 
acute and chronic.5

Usually, MRI of the kidneys is obtained on the axial and 
the coronal planes with breath-hold sequences. Another 
way to reduce respiratory motion artifacts is to use a respira-
tory triggering technique. This technique allows use of 
shorter echo train length, more signal averaging, and higher 
spatial resolution, without being restricted by breath-hold 
time. This approach can result in a higher signal-to-noise 
ratio (SNR) in comparison with breath-hold approaches.

The renal parenchyma is composed of two distinct zones, 
the cortex and medulla. Because the renal cortex presents 
lower T1- and T2- relaxation times in comparison with the 
renal medulla, the two zones can be distinguished. Anyway, 
renal corticomedullary image contrast is usually more 
conspicuous on T1-weighted images. On T1-weighted 
sequences, the renal cortex appears brighter than the renal 
medulla, whereas on T2-weighted sequences, the renal 
cortex appears slightly less intense than the renal medulla. 
The renal pelvis containing fat appears hyperintense on 
T1- and T2-weighted sequences. When fat-suppressed MRI 
sequences are employed, the fat appears hypointense on 
T1- and T2-weighted sequences.

T1 sequences without contrast provide more structurally 
defined morphologic information than that obtainable using 
unenhanced CT, although spatial resolution is lower with 
MRI. T2 sequences are used only without contrast, because 
gadolinium, at low concentration, does not affect T2 
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FIGURE 35.4  Magnetic Resonance Imaging: Half-Fourier-Acquired Single-shot Turbo spin Echo (HASTE):  axial plane (A) and coronal 
plane (B). Bilateral pyelonephritis. Axial and coronal contrast-enhanced computed tomography in a female patient with acute pyelonephritis 
and reduced renal function. The kidneys are bilaterally enlarged with wedge-shaped or round hypodense areas and decreased density 
of the renal parenchyma. 

FIGURE 35.3  Computed tomography with Multiplanar Recostruc-
tion (MPR): axial plane (A) and coronal plane (B). Bilateral 
pyelonephritis. Axial and coronal contrast-enhanced computed 
tomography in a female patient with acute pyelonephritis and 
reduced renal function. The kidneys are bilaterally enlarged 
with wedge-shaped or round hypodense areas and decreased 
density of the renal parenchyma. 
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relaxation time. They provide less anatomic details than 
is possible with T1 sequences but present better definition, 
allowing evaluation of the normal and pathologic structure 
of the kidney. With dedicated T2-weighted sequences, it 
is possible to examine the urinary tract, especially if dilated, 
allowing the generation of images from static fluid (by means 
of magnetic resonance urography performed without 
contrast) (Figs. 35.3 and 35.4).6

The kidneys are represented optimally in the different 
acquisition planes: transverse, coronal, and sagittal. The 
coronal plane allows good visualization of both kidneys 
and the relationships with the adjacent anatomic structures. 

Morphologic evaluation consists of definition of the long 
diameter of both kidneys and the parenchymal width, with 
visualization of the cortex, as well as a corticomedullary 
differentiation. It is also possible to differentiate the 
peripheral from the central cortex.

Altered corticomedullary relationship is recognized 
frequently in patients with AKI and acute renal diseases 
by using T1-weighted sequences. However, these changes 
are not specific.

In suspected postrenal AKI, MR urography is valuable in 
assessing hydronephrosis and detecting the cause and the site 
of obstruction. MR angiography is also useful in assessing 
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AKI, and alteration of the signal intensity curve was 
demonstrated in the pyelocaliceal system of patients with 
renal failure. However, these findings are nonspecific and 
can be observed in a wide series of patients with acute and 
chronic renal impairment.3

Although DCE-MRI with low Gd dose is capable of 
measuring single-kidney GFR with higher accuracy than 
serum creatinine, it is typically not used for assessing AKI 
because lowered GFR in severe AKI patients potentially 
could increase the risk of NSF. In fact, the gadolinium-related 
nephrogenic systemic fibrosis has limited clinical applica-
tions of DCE-MRI.8

Blood Oxygen Level–Dependent Magnetic  
Resonance Imaging
BOLD MRI measurements are based on changes in the 
magnetic properties of hemoglobin that accompany its 
conversion from oxyhemoglobin to deoxyhemoglobin. 
Deoxyhemoglobin generates a magnetic moment because 
of its unpaired iron electrons. Increased deoxygenated 
hemoglobin concentrations lead to alterations in the mag-
netic spin properties of neighboring water molecules, which 
speeds up magnetic spin dephasing and decreases signal 
intensity on apparent spin–spin relaxation time-weighted 
(T2) MRIs. The rate of magnetic spin dephasing, R2* (=1/
T2), is a measure of the tissue content of deoxygenated 
hemoglobin, which in turn reflects tissue oxygen partial 
pressure (pO2). A decrease in R2* implies decreased 
deoxygenated hemoglobin concentration and increased 
tissue pO2.9 A strong correlation has been proven between 
renal BOLD MRI to tissue oxygen pO2.11 The pathophysiology 
of AKI is not yet fully understood, but renal tissue hypo-
perfusion and hypoxia are well accepted to be closely related 
to the pathophysiology of all forms of AKI.

In pig models of AKI induced by acute renal ischemia, 
the R2* values of the cortex and medulla both increased, 
which demonstrated a reduction in intrarenal oxygenation 
in parallel with decreased intrarenal blood flow during 
acute ischemia. After reperfusion, the intrarenal oxygenation 
levels immediately return to baseline oxygenation, which 
demonstrated that some of the early changes in renal 
oxygenation resulting from AKI may reverse.12,13 Further-
more, the degree of ischemic reperfusion injury commonly 
influences the recovery of renal function.14

BOLD MRI also has been used to study the mechanisms 
of contrast-induced AKI. It is indicated that the administra-
tion of contrast agent caused an early and transient decrease 
in the medullary R2* followed by a sustained increase 
above the baseline in animal models of contrast-induced 
AKI, whereas minimal changes were observed in the renal 
cortex.15,16 The differences in the variations in R2* between 
the renal medullary and cortex agree with the basis of renal 
pathophysiology. Specifically, most of the oxygen consumed 
by the kidney is due to the reabsorption of filtered sodium 
by the medulla thick ascending limb of the loop of Henle, 
but only approximately 5% of renal blood flow is supplied 
to the medulla, which makes it more susceptible to 
hypoperfusion and hypoxia. However, conflicting mecha-
nisms of the initial decrease in the medullary R2* after a 
contrast agent injection have been reported, and a consensus 
has not been reached.

Li et al.16 demonstrated that the immediate increase in 
R2* in the renal inner stripe of the outer medulla (ISOM) 
after the injection of a contrast agent may be the earliest 
biomarker of AKI. In addition, the effects of some interven-
tions to mitigate the adverse effects of contrast media have 

abnormalities of renal artery and vein. MR angiography 
usually is performed with contrast enhancement, following 
intravenous injection of gadolinium chelates. However, in 
recent years, a number of advanced non–contrast-enhanced 
“angiographic” pulse sequences have been introduced on 
modern equipment, which allow comparable image quality 
of renal arteries with the conventional contrast-enhanced 
MR angiographic images. These new sequences without 
the use of gadolinium are of interest mainly in patients 
with renal failure because the risk of nephrogenic systemic 
fibrosis is avoided completely.

FUNCTIONAL MAGNETIC  
RESONANCE IMAGING

In clinical practice, serum creatinine (SCr) levels are used 
for the routine diagnosis and staging of AKI because of the 
relative simplicity and convenience of the test. However, 
the SCr level has major limitations as a biomarker for AKI. 
First, it does not change until approximately 50% of kidney 
function is lost. Therefore it is not sensitive to the rapid 
changes in renal function induced by AKI. Moreover, the 
lag time between renal injury and the increase in the SCr 
level results in missed therapeutic opportunities, which 
may be responsible for the high mortality associated with 
AKI. Second, the SCr level depends on many other factors, 
such as muscle mass, age, sex, medications, and hydration 
status. Thus a better understanding and early detection of 
AKI are important for its treatment.7

With the development of MRI, use of functional renal 
MRI has grown rapidly and could be used to evaluate renal 
morphology and function noninvasively and simultaneously. 
A number of advanced MR techniques have been proposed, 
such as dynamic contrast-enhanced MRI (DCE-MRI), blood 
oxygen level–dependent (BOLD) imaging, arterial spin 
labeling (ASL), and diffusion-weighted imaging (DWI). These 
approaches can provide information on intrarenal oxygen-
ation, perfusion, and diffusion on a microstructural level, 
which may not only allow the noninvasive detection of 
the presence and severity of renal abnormalities associated 
with AKI in preclinical setting but also demonstrate the 
pathophysiology and progress of AKI.

Dynamic Contrast-Enhanced Magnetic  
Resonance Imaging
Paramagnetic contrast agents (based on gadolinium [Gd]) 
are used with T1-weighted sequences. With use of ultrafast 
techniques, they allow the acquisition of data to provide 
high-resolution anatomic detail and functional data. As 
with CT, it is possible to study the various phases of contrast 
passage of the vascular, parenchymal, and excretory levels: 
after the intravenous administration of gadolinium-based 
contrast agents, the vascular corticomedullary phase begins 
immediately after the contrast medium reaches the kidneys. 
The nephrographic phase begins 60 to 90 seconds after 
contrast administration. The excretory phase begins 2 minutes 
after contrast administration with evidence of contrast 
excretion in the collecting system. Fat saturation sequences 
eliminate the high-intensity signals from fat tissue that 
interfere with interpretation of the post–contrast-enhanced 
images, thereby improving the quality of the study.

Changes of the signal intensity curve measured in the 
medulla were detected in dogs with experimentally induced 
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enhance the image quality and provide a more accurate 
analysis of renal perfusion using the ASL technique.27

Diffusion-Weighted Imaging
DWI is a powerful technique that provides information on 
the renal microstructure and function by characterizing water 
motion on a molecular level.28,29 The apparent diffusion 
coefficient (ADC) is used as a quantitative parameter of 
diffusion, which is calculated from DWI images with a 
monoexponential decay model. Structural changes, such 
as interstitial fibrosis or tubular atrophy, could result in a 
decrease in the ADC value, which has been demonstrated to 
correlate with renal function. Renal diffusion in healthy and 
disease states has been evaluated using this technique.28 In 
a mouse model of ischemia-induced AKI, the ability of the 
DWI value to characterize acute and chronic pathology after 
unilateral AKI was investigated. The ADC value of the renal 
medulla was shown to be significantly decreased at every 
time point after AKI, and the renal ADC values changed with 
the severity of AKI and the degree of interstitial renal fibrosis 
4 weeks after AKI. This finding suggested that the decrease 
in renal diffusion is critical to the pathophysiology of AKI, 
which is associated with renal tissue edema, inflammatory 
cell infiltration, and subsequent development of interstitial 
renal fibrosis and tubular atrophy.10

Nevertheless, the ADC values, which derive from the 
conventional monoexponential model, provide a mix of 
information on capillary perfusion and water diffusion in 
the extravascular space.30

In summary, capabilities and parameters of major MRI 
techniques are
•	 Dynamic contrast-enhanced MRI (DCE MRI): tracer transit 

through vascular space and tubules; it values GFR, 
perfusion, vascular and tubular mean transit times (MTT)

•	 Blood oxygen level–dependent (BOLD): direct measure 
of deoxyhemoglobin, and reflects blood and tissue pO2; 
it values spin-spin relaxation rate (R2* = 1/T2*), medulla-
cortex R2*ratio (MCR =R2*Med/R2*Cx)

•	 Arterial spin labeling (ASL): perfusion without injecting 
tracer; it values perfusion

•	 Diffusion-weighted imaging (DWI): water diffusion in 
interstitial space, capillary flow; it values apparent dif-
fusion coefficient (ADC), anisotropy, perfusion fraction
In summary, functional renal imaging is a growing field 

of interest with great potential, particularly the BOLD, 
ASL, and DWI techniques, which assess the oxygenation, 
perfusion, and diffusion properties of the kidney. Moreover, 
because these techniques do not require the administration 
of exogenous contrast agents, they also can be applied in 
patients with impaired renal function. Although the lack 
of standardized sequences, postprocessing software, and 
models hinders the widespread use of these techniques in 
clinical settings, numerous published papers have demon-
strated the feasibility of the techniques for assessing the 
renal pathophysiology of AKI triggered by different causes. 
Further improvements in the hardware and postprocessing 
software are essential to improve our understanding of the 
renal pathophysiology and progress of AKI.7

Key Points

1.	 Unenhanced computed tomography is often the 
only possible examination in patients with acute 

been evaluated using BOLD MRI, and the results showed 
that the rate of increase in R2* in the renal ISOM can be 
reduced by treatment with furosemide (diuretic) or 
N-acetylcysteine (NAC; antioxidant) before contrast media 
injection, but the optimum dose of furosemide and NAC 
for mitigating the negative effects of contrast media has 
not yet been determined.17

Renal oxygenation in AKI resulting from other causes, 
such as sepsis-associated AKI and other nephrotoxin-induced 
AKI, also has been studied in several experimental animal 
models and humans using BOLD MRI.18,19

In conclusion, BOLD MRI not only can noninvasively 
assess changes in renal oxygenation resulting from AKI by 
measuring the R2* levels of the renal cortex and medulla 
but also can investigate the role of hypoxia in the patho-
genesis and progress of AKI.7 In recent years, this strategy 
has been used to assess AKI, but currently its clinical 
application in AKI is still marginal because of the limited 
availability of MRI scanners, already employed in other 
fields. Moreover, further studies are necessary to establish 
the cutoff R2* values for the diagnosis of AKI and evaluate 
the specificity of R2* for the renal oxygenation status.7

Arterial Spin Labeling
ASL is a novel, noninvasive MRI technique used to measure 
tissue perfusion, that is, tissue blood flow,20 by magnetically 
labeled water protons in the blood as an endogenous contrast 
agent. First, the water in the blood is labeled before it enters 
the tissue of interest. The labeled water then flows into 
tissue and is exchanged with tissue water, thereby altering 
its magnetization. The perfusion-weighted image is obtained 
by subtracting the labeled image from a control image with 
unlabeled blood water to obtain the difference, and the 
signal intensity is proportional to perfusion. Finally, a kinetic 
model is used to directly quantify perfusion if other 
parameters, such as the tissue T1 relaxation time, blood-
tissue partition coefficient, and transit time of the blood 
water to tissue water, are known.7

Dong et al.21 performed a pilot study to demonstrate the 
feasibility of ASL perfusion MRI in the detection of AKI 
and found that the cortical, medullary, and global kidney 
blood flows were significantly lower in AKI patients than 
in healthy volunteers. This finding suggested that the 
decrease in renal perfusion is critical to the pathophysiology 
of AKI, which is in agreement with previous reports on 
the basis of the evaluation of renal blood flow of AKI.22-24 
Furthermore, ASL also was shown to be able to noninva-
sively detect the severity of AKI and monitor renal perfusion 
impairment over time in a mouse model of ischemia-induced 
AKI. The degree of perfusion impairment measured using 
ASL is related to kidney volume loss, the severity of his-
topathologic alterations of renal tissue, and the impairment 
of renal function. In addition, renal perfusion measured 
by means of ASL also may serve as a noninvasive biomarker 
to predict the extent of subsequent histologic alterations 
of the kidney early after the organ is damaged. Thus ASL 
may be very valuable for the clinical follow-up of patients 
who are at risk for AKI and for drug development in 
experimental renal disease models.25

Zimmer et al.26 reported that ASL is a valid alternative 
to DCE-MRI, and ASL may be preferred for patients with 
impaired kidney function because the injection of Gd-based 
contrast agents may cause nephrogenic systemic fibrosis.

However, the relatively low SNR and short signal decay 
rate of the ASL technique will delay its clinical application. 
A high-field MR scanner (at least 1,5 T) is necessary to 



kidney injury (AKI) because of nephrotoxicity of 
iodinated contrast agents; basal computed tomog-
raphy is highly sensitive in detecting hydrone-
phrosis and ureteral calculi.

2.	 Functional magnetic resonance imaging could be 
used to evaluate simultaneously and noninvasively 
renal morphology and function.
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