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CHAPTER 34 

Contrast-Enhanced Renal Ultrasound
Antoine Guillaume Schneider and Jean-Yves Meuwly

OBJECTIVES
This chapter will:
1. Present contrast-enhanced ultrasonography (CEUS) as an 

imaging modality.
2. Describe current clinical indications for renal CEUS.
3. Describe renal perfusion quantification with CEUS, its 

technique, validation, and limitations.

BACKGROUND

Given the intimate relationship between perfusion and 
function in renal physiology, alterations of renal perfu-
sion are thought to play a role in the pathophysiology of 
acute kidney injury (AKI). However, the frequency, impor-
tance, and clinical relevance of such alterations in critical 
illness remain largely unknown.1 This knowledge gap is 
explained largely by the inaccuracy or lack of applicability 
of currently available tools to measure renal perfusion 
(para-aminohippurate [PAH] clearance, Doppler ultrasound, 
magnetic resonance imaging [MRI] or scintigraphy) in the 
context of critical illness.1–6

Contrast-enhanced ultrasound (CEUS) is a recent, 
ultrasound-based imaging modality, which makes use of 
dedicated contrast agents.6,7 CEUS is applicable at the 
bedside, is minimally invasive, and could represent an 
ideal technique to evaluate renal perfusion in critical illness. 
In addition, CEUS is not associated with renal toxicity and 
therefore is not contraindicated in AKI.

This chapter presents technical aspects of CEUS, possible 
clinical indications, current level of validation in critical 
care nephrology and related settings, and the limitations 
and pitfalls of CEUS.

CONTRAST-ENHANCED ULTRASONOGRAPHY

Ultrasound Contrast Agents
The first reported ultrasound contrast agent (UCA) was 
based on air microbubbles created by agitating saline. Such 
technique still is used widely to detect cardiac right-to-left 
shunt. Gases represent ideal contrast agents for ultrasound 
because they are highly compressible and their density is 
1000 less than the blood; thus the large difference in imped-
ance generates high ultrasound contrast. Technical progress 
has enabled the production of stable gas microbubbles, 
which are small and uniform in size. These microbubbles 
(Fig. 34.1) consist of inert, poorly soluble perfluorinated 
gases embedded in phospholipids or albumin shells.8 They 
behave as pure blood agents because their size (1–6 µm) 
prevents them from diffusing through the endothelium  
(Fig. 34.2).9 After intravenous injection, UCA microbubbles 
can cross the pulmonary circulation and be visualized in 

arteries or capillary beds. Their half-life in the circulation 
is a few minutes, and the gas present in the microbubbles 
is excreted totally by the lungs.10 Several UCA preparations 
have been developed and licensed for use throughout the 
world (Table 34.1).

Ultrasound Equipment and Settings
To optimize UCA visualization, dedicated imaging modes 
must be used when performing CEUS. UCA have the unique 
property of emitting an acoustic signal enriched with new 
harmonic frequencies when insonated. Harmonic B mode, 
power modulation, phase or pulse inversion, coherent pulse 
sequencing, and power pulse inversion are some of the 
contrast-specific imaging modes (also designated as “non-
linear” imaging modes) available in modern ultrasound 
equipment.11 These dedicated modes aim at minimizing 
microbubble destruction by high acoustic pressures and 
make use of low mechanical index (MI) imaging or intermit-
tent imaging (e.g., MI < 0.7). Today, contrast-specific modes 
are available on most mid- to high-end ultrasound devices.

Safety
As for any other drug, ultrasound contrast agents have been 
submitted to extensive clinical investigations for safety and 
efficacy, before approval by national health authorities. 
Postmarketing studies in more than 1 million patients12–14 
have established CEUS as a safe procedure. Wei et al.15 
reported a rate of severe reactions of 0.01% and no death 
in 78,383 patients, including 10,000 acutely ill patients (either 
in the ICU or with acute chest pain of possible cardiac origin) 
who had received UCA. As for any drug or contrast agent, 
the risk of anaphylactic reaction remains present, and the 
use of these products in unstable patients should be restricted 
to centers with full resuscitation capacities.

As discussed in the next paragraph, the blood flow 
quantification requires use of high mechanical index US 
for very short period of time (flashes). Some concerns have 
been raised about the safety of this procedure. Jimenez16 
showed in a porcine model that repeated insonification of 
the kidney at high MI did not produce any histologic change 
neither immediately after the procedure nor 4 hours later. 
There are, in particular, no signs of inflammatory response 
and no signs of extravasation of erythrocyte from the capil-
lary system.

CLINICAL APPLICATIONS FOR RENAL 
CONTRAST-ENHANCED ULTRASONOGRAPHY

Most clinical applications for CEUS are related to the liver17; 
however, there is growing interest for nonhepatic indications. 
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FIGURE 34.1 Schematic illustration of a microbubble contrast agent: 
Sonovue. SF, Sulfur hexafluoride. 
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FIGURE 34.2 See also color plates. Optical microscopic view of 
microbubbles in rabbit blood. (Courtesy of Bracco SpA.)

TABLE 34.1 

Commercially Available Ultrasound Contrast Agents

CONTRAST AGENT SHELL GAS REGISTERED IN

Optison Human albumin Perfluoropropane United States, Canada
Definity (Luminity) Phospholipids Perfluoropropane United States, Europe, Canada
Sonovue Phospholipids Sulfur hexafluoride Canada, Europe, China, India, Korea
Sonazoid Phospholipids Perfluorobutane Japan

The 2011 updated European Federation of Societies for 
Ultrasound in Medicine and Biology (EFSUMB) has edited 
guidelines and recommendations on the clinical practice 
of nonhepatic CEUS.18 The recommended renal indications 
are presented in Box 34.1, and those related to vascular 
problems are reviewed briefly in this chapter.

Vascular Imaging With Contrast-Enhanced 
Ultrasonography
CEUS enables vascular bed visualization with detailed 
granularity. After a bolus administration of UCA, kidneys 
enhance quickly and intensively (Fig. 34.3). Enhancement 

Modified from Piscaglia F, Nolsoe C, Dietrich et al. The EFSUMB 
Guidelines and Recommendations on the Clinical Practice of Contrast 
Enhanced Ultrasound (CEUS): update 2011 on non-hepatic applications. 
Ultraschall Med. 2012;33(1):33–59.

BOX 34.1 

Clinical Indications for Contrast-Enhanced Ultrasound 
as Recommended by the European Federation of 
Societies for Ultrasound in Medicine and Biology

Suspected vascular disorders, including renal infarction and 
cortical necrosis. (Recommendation Level: A)

Differential diagnosis between solid lesions and cysts 
presenting with equivocal appearance at conventional US. 
(Recommendation Level: B)

Differentiation between renal tumors and anatomic variations 
mimicking a renal tumor (“pseudo-tumors”) when conventional 
US is equivocal. (Recommendation Level: B) However, both 
CEUS and CECT have limitations in rare, very small isoenhanc-
ing tumors.

Characterization of complex cystic masses as benign, 
indeterminate, or malignant to provide information for the 
surgical strategy. (Recommendation Level: A)

Additional aid, when necessary, in the follow-up of nonsurgi-
cal complex masses. (Recommendation Level: C)

Identification of clinically suspected renal abscesses in 
patients with complicated urinary tract infection. (Recom-
mendation Level: C)

In patients undergoing renal tumor ablation under US 
guidance, CEUS may be used to improve lesion visualization 
in difficult cases and to detect residual tumor either immediately 
or later after ablation. When CEUS is planned, preablation 
assessment of lesion vascularity is important. (Recommendation 
Level: B)

CECT, Contrast-enhanced computed tomography; CEUS, contrast-
enhanced ultrasound; US, ultrasound.

occurs first in arteries, followed a few seconds later by the 
cortex. Medullary enhancement occurs next, first in the 
outer medulla, then the pyramids gradually fill in. The 
renal medulla eventually will appear nearly isoechoic 
relative to cortex. As microbubble concentration in the 
general circulation decreases, contrast enhancement fades 
within 3 to 6 minutes, depending on sensitivity of the 
equipment used and on the amount of microbubbles injected.

Renal Infarction
CEUS can help diagnose renal infarction. Such a condition 
is related most commonly to trauma but can be observed 
in nontraumatic situations, such as renal artery thrombo-
embolism, renal artery aneurysms and pseudoaneurysms, 
vasculitides, antiphospholipid syndrome, nephrotic syn-
drome, loin-pain hematuria syndrome, and cocaine abuse.

In such situations, CEUS can demonstrate absence of 
enhancement of the affected renal tissue (Fig. 34.4). Acute 
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Acute Cortical Necrosis
Prolonged renal ischemia as induced by hemorrhagic shock, 
major surgery, or as a complication of an endovascular 
intervention, may result in a necrosis restricted to the renal 
cortex. This condition is referred to as cortical necrosis. 
The process is often bilateral and can be either multifocal 
or diffuse. Acute cortical necrosis also can be caused by 
renal artery spasm, microvascular injury, and diffuse 
intravascular coagulation.

CEUS allows differentiation between cortical necrosis 
(Fig. 34.5) and renal infarction. In such cases, enhancement 
of interlobar and arcuate arteries is observed without 
enhancement of corresponding cortex. Again, a rim of 
subcapsular cortical enhancement can be seen resulting 
from collateral flow from the renal capsular vessels.

Cholesterol Emboli Syndrome
Acute renal failure in a context of recent invasive vascular 
procedure should prompt consideration of cholesterol emboli 
syndrome, particularly in the presence of arterial hyperten-
sion and signs of distal ischemia. This diagnosis is suggested 
further by the presence of livedo reticularis and cholesterol 
crystals on a dilated funduscopic examination. A definitive 
diagnosis may be made by visualization of cholesterol 
crystals in a biopsy specimen of the skin or kidney.

Imaging can be indicated to rule out renal infarction or 
other vascular disorders. Color Doppler ultrasound examina-
tion is not specific. After microbubble administration, 
patients with recent atheroembolic episodes usually present 
with multiple triangular cortical areas of delayed enhance-
ment. Enhancement is reduced only during the early  
phase and can be increased in later stages. Perfusion 
abnormalities usually are normalized within a few weeks 
of the embolization, despite clinically documented irrevers-
ible renal parenchymal damage. Although unproven, the 
progressive disappearance of perfusion defects is thought 
to be due to progressive volume reduction of the cortical 
ischemic areas.

FIGURE 34.4 See also color plates. Renal infarction. Longitudinal 
view of a renal allograft in the left iliac fossa in a 72-year-old man. 
Three years after the graft, sudden pain in the left lower quadrant, 
with fever and acute decrease of the renal function. The fundamental 
image on the right does not show any anomaly. The CEUS image 
on the left clearly depicts a triangular avascular region of the upper 
pole: infarct. 

FIGURE 34.5 See also color plates. Cortical necrosis. Longitudinal 
view of a renal allograft in the right iliac fossa in a 7-year-old boy 
with an allograft dysfunction in the first 24 hours after implantation; 
suspicion of cortical necrosis. The right part of the image shows 
fundamental imaging at low energy. The left part shows contrast-
enhanced ultrasound. An avascular rim is clearly visible at the 
periphery of the kidney, characteristic of cortical necrosis. 

FIGURE 34.3 See also color plates. Normal contrast-enhanced 
ultrasound (CEUS) perfusion image. Longitudinal view of the right 
kidney in a 39-year-old woman, investigated for suspicious renal 
mass at the upper pole. No mass is visible, neither on fundamental 
image (right) nor on CEUS (left). The CEUS image shows a homo-
geneous arterial perfusion of the kidney. In the arterial phase, 
because of predominant portal phase, the liver remains hypoperfused 
in comparison with the kidney. 

infarcts typically are seen as wedge-shaped, nonenhancing 
areas within an otherwise normal-appearing kidney. Renal 
shape is preserved. A thin subcapsular rim of viable, 
enhanced cortex can be preserved as a result of collateral 
blood supply from the renal capsule, equivalent to the 
cortical rim sign, frequently described as a sign of renal 
infarction on computed tomography CT. When unilateral 
infarction is detected in the context of AKI, arteries must 
be investigated with other imaging techniques to refute or 
confirm renal artery stenosis.

Although of interest, CEUS is not the recommended 
first-line imaging in trauma. Indeed, even under optimal 
conditions, major solid organ injuries may be missed, 
vascular injuries could be difficult to detect, and intestinal 
or mesenteric injuries cannot be identified. A CT scan 
remains the gold standard in such situations.
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Clinical Use of Contrast-Enhanced Ultrasonography 
to Quantify Renal Perfusion
Kishimoto et al.26 used CEUS to evaluate the effect of an 
infusion of dopamine on renal microcirculation in nine 
healthy subjects. They subsequently used the same tech-
nique27 to study to effect of valsartan on renal perfusion 
in seven healthy volunteers and found a significant increase 
in microbubble velocity after oral administration of valsartan, 
which correlated well with the increase in total renal blood 
flow determined by PAH clearance (p < .05). Kalantarinia 
et al.28 tested the utility of CEUS to monitor the expected 
increase in renal blood flow after a high protein meal in 
healthy adults. They found a statistically significant increase 
(by 42.8%) in renal blood flow (A × β parameter) compared 
with baseline (p = .002).

We performed a study in 10 healthy volunteers evaluating 
changes in perfusion index (PI: a variable that is proportional 
to blood flow) seen during intravenous infusion of angio-
tensin II and after oral captopril. We found a statistically 
significant and dose-dependent decrease in PI during 
increasing doses of angiotensine II (ATII) as compared with 
baseline. The decreases in PI were already detectable when 
the renal plasma flow (as estimated by PAH clearance) 
decreased by 15%.29

Our next study represented the first utilization of CEUS 
to quantify renal perfusion in critically ill patients.30 This 
study has demonstrated the feasibility and safety of CEUS 
in critically patients. Twelve patients intended for elective 
cardiac surgery underwent renal CEUS with destruction-
reperfusion sequences before the procedure and 6 and 24 
hours postprocedure. Despite occasional hemodynamic 
instability and invasive monitoring, no adverse event was 
recorded during or after the administration of Sonovue as 
UCA. Destruction-replenishment data were analyzed blindly 
by two independent radiologists whose analyses were in 
agreement.

Potential clinical uses of renal perfusion evaluation with 
CEUS was then evaluated in two clinical settings: circulatory 
shock30 and hepatorenal syndrome.31 The first study30 aimed 
at determining changes in CEUS-derived parameters induced 
by a noradrenaline-induced increase in mean arterial pres-
sure from 60 to 80 mm Hg in patients with circulatory 
shock. This study did not demonstrate an overall effect of 
a noradrenaline-induced increase in mean arterial pressure 
on perfusion parameters. However, on an individual level, 
such response was heterogeneous and unpredictable.

Renal Transplant
In renal transplant medicine, a detailed evaluation of blood 
flow in the subcapsular capillaries is highly desirable 
because the latter are involved primarily in acute rejection. 
Fisher et al.19 examined 32 patients 5 to 7 days after kidney 
transplantation and were able to show that a temporal 
difference in the contrast agent arrival slopes between two 
main territories allowed the differentiation of acute graft 
rejection from a normal clinical course (where the slopes 
were uniform).

Blood flow quantification with CEUS may help to dif-
ferentiate between acute tubular necrosis and acute rejection 
in the immediate postoperative period. This technique also 
has a high accuracy for the diagnosis of chronic allograph 
nephropathy.20,21

BLOOD FLOW QUANTIFICATION WITH 
CONTRAST-ENHANCED ULTRASONOGAPHY

Overview
Because microbubbles remain confined to the intravascular 
space and have a rheology similar to that of red blood cells, 
contrast uptake as a function of time can be used to estimate 
quantitative perfusion parameters. Techniques have been 
derived to make use of these properties and enable blood 
flow quantification with CEUS. Most of these rely upon 
the ability of a flash (a few frames of high mechanical index 
ultrasound) to destroy all UCA microbubbles in the scan 
plan. Indeed, if UCA is administered as a continuous infu-
sion, the organ reperfusion after microbubbles destruction 
can be observed and analyzed (Fig. 34.6). These perfusion 
quantification techniques are based on the works of Wei 
et al.,22,23 a technique further modified by Tiemann et al.24 
and Arditi et al.25 The latter approach was implemented 
in software enabling offline data processing. Using this 
software, video data are first linearized to compute an 
echo-power signal whose amplitude is proportional to the 
local contrast agent concentration. As described in the 
approach by Tiemann et al.,24 fitting of these signals after 
destruction allows perfusion quantification. Here, the 
perfusion parameters considered are relative blood volume 
(rBV), mean transit time (mTT), and blood flow (rBV/mTT). 
An example of data analysis output provided by VueBox 
(Bracco, Milano, Italy) is depicted in Fig. 34.7.

A B C

FIGURE 34.6 Example of destruction refilling sequences obtained in a 60-year-old male patient, 1 hour after coronary artery bypass surgery. 
Each part of the figure is divided in two; the left parts show contrast-specific images and the right parts show standard B mode images. 
After the destruction flash (4a left), no signal is detectable in the contrast specific image (i.e., all the microbubbles have been destroyed). 
Five seconds after destruction (4b left), partial replenishment of the main arteries with contrast can be noticed. Ten seconds after 
destruction, the kidney is replenished fully with contrast (4c left). No significant changes are observed in B-mode images (4a-c right). 
(Modified from Schneider A, Johnson L, Goodwin M, Schelleman A, Bellomo R. Bench-to-bedside review: Contrast enhanced ultraso-
nography—a promising technique to assess renal perfusion in the ICU. Crit Care. 2011;15[3]:157.)
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CEUS quantification of renal perfusion remains associated 
with high variability in results. Indeed, minute change in 
insonification angle or imprecise positioning of the US 
probe may result in dramatically modified results. Very 
strict anatomic landmarks must be identified to limit this 
variability. This may prove difficult in certain patients. The 
measurements can be made even more difficult in spontane-
ously breathing patients in whom renal incursion may be 
large during the respiratory cycle. This issue may be 
overcome in some sedated patients by using an inspiratory 
pause, provided it is tolerated.

Finally, CEUS enables only semiquantification of perfu-
sion. Indeed results are not expressed in flow units but in 
arbitrary units. Therefore only changes between values can 
be interpreted, and a patient needs to serve as its own 
control. With this in mind, reproducibility of measures is 
paramount.

Future Research
Further studies are required to establish the relative  
importance of flow parameters as evaluated by CEUS. For 
instance, the mTT parameters, an indicator of time to 
replenishment, may be associated with less variability than 
the RBV parameter, which could be more dependent on 
the angle of insonification. Perhaps, the use of 3D probes 
as suggested by some authors32 could overcome some of 
these limitations.

Technical issues limiting measurement reproducibility 
need to be sorted before clinical studies aiming to establish 
clinical indications for CEUS can be organized.

A similar study evaluated the effect of the administration 
of terlipressin; a potent vasoconstrictor with preferential 
effect on mesenteric vasculature on renal cortical CEUS-
derived parameters in patients with hepato-renal syndrome 
(HRS), a condition thought to be caused purely by renal 
perfusion alterations. Although of limited size, this study 
suggested that an increase in CEUS-derived parameters 
could be associated with clinical response in HRS.

Limits and Pitfalls
All together, these studies have demonstrated CEUS feasibil-
ity and safety in critically ill patients and suggested some 
potential indications. However, before renal perfusion 
quantification enters clinical practice, several issues must 
be resolved and several limitations clarified.

One of the most obvious limitations is related to cost 
and availability. UCA are currently relatively expensive 
and CEUS requires mid- to high-end equipment. In addi-
tion, a shortage of UCA was observed in some countries 
because of distribution issues. Equally, not all UCA are 
approved by regulating agencies throughout the world  
(Table 34.1).

On another level, given the pure intravascular properties 
of UCAs and their lack of urinary excretion, no data can 
be directly extrapolated from CEUS regarding kidney excre-
tory function. The relationship between perfusion and 
function is a largely unanswered question. CEUS may 
contribute to our knowledge in this field, but CEUS-derived 
parameters should not to be viewed as a surrogate for renal 
function evaluation.
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FIGURE 34.7 See also color plates. Renal perfusion index measurement using dedicated quantification software (Screenshot). Screenshot 
of SonotumorTM, shown as an example of software allowing perfusion quantification in CEUS sequences. The upper segments show the 
contrast-enhanced images (left) as well as the conventional ultrasound images (right). This is where the reader can draw an area of 
interest (AOI) that will be analyzed by the software. Replenishment curves (lower segment) then are generated for each AOI. These 
curves represent the intensity of the echo-power as a function of time after the flash. Bold lines are fitted curves of the actual measured 
data represented by the clear lines. The fitted curves allow the derivation of a perfusion index (PI) for each AOI. (Modified from Schneider 
A, Johnson L, Goodwin M, et al. Bench-to-bedside review: contrast enhanced ultrasonography—a promising technique to assess renal 
perfusion in the ICU. Crit Care. 2011;15(3):157.)



4. Techniques for renal perfusion quantification have 
been proposed but must be refined and validated 
before entering clinical practice.
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CONCLUSION

CEUS is a safe, noninvasive, and reliable technique with 
recognized indications in some forms of AKI and after renal 
transplant. In many ways, it is ideally designed to evaluate 
and monitor renal blood flow in ICU patients. Blood flow 
quantification with CEUS remains associated with important 
pitfalls. Further studies and technologic refinement are 
required to overcome these limitations.

Key Points

1. Contrast-enhanced ultrasound (CEUS) is a recent 
imaging modality making use of gas microbubbles 
as a contrast agent.

2. CEUS is safe, is feasible at the bedside, and enables 
renal vascular beds visualization.

3. CEUS can play a role in the diagnosis of renal 
infarction and cholesterol emboli syndrome and 
in the evaluation of renal transplant.
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