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Renal Repair and Recovery
Christine Kinggaard Federspiel and Kathleen D. Liu

OBJECTIVES
This chapter will:
1. Review the pathogenesis of AKI, including mechanisms 

of cell death and the cell types that restore renal tubular 
function after an episode of AKI.

2. Briefly review the role of other cell types (endothelium, 
inflammatory cells) and of growth factors in the patho-
genesis of AKI and recovery from AKI.

3. Determine the impact of renal replacement therapy on 
renal recovery.

For many years it was accepted that acute kidney injury 
(AKI) was a reversible process that was followed by renal 
recovery in survivors. However, with the recognition that 
even mild AKI is associated with an increased risk of 
subsequent chronic kidney disease (CKD), this concept has 
become more controversial. Recovery from AKI is as of yet 
a poorly understood process that involves a variety of 
complex mechanisms, and despite a significant interest in 
therapeutics, it is not clear which factors determine whether 
functional recovery or progressive kidney fibrosis occurs 
after AKI.

This chapter reviews common elements of the patho-
physiology of different types of AKI and the effects on 
normal renal architecture. This is followed by a discussion 
of what is known about the mechanisms of repair and 
recovery, including updates on progenitor cells, cellular 
stress responses, growth factors, and the interaction with 
adjacent cells, extracellular matrix, and endothelium. Most 
of our understanding of renal injury and recovery is based 
on experimental animal models, which have had significant 
limitations when translated to human studies. Many explana-
tions have been proposed, including differences in the 
nature of the injury (human AKI is often multifactorial, 
whereas most animal models of AKI focus on either ischemic 
or septic AKI; furthermore, in general, rodent models are 
relatively resistant to sepsis) and differences in the timing 
of therapy (in animal models, therapy can be administered 
before or at the time of the injury, which is usually not 
practical in humans). Nonetheless, animal and cell-based 

models give us the best opportunity to understand in detail 
specific mechanisms that may play a role in renal repair 
and recovery. Finally, we will summarize what is known 
about renal recovery from AKI in human studies.

NORMAL RENAL ARCHITECTURE

Under normal conditions, renal tubule cells are highly 
polarized epithelial cells.1 The apical side is characterized 
by microvilli that contain bundled F-actin filaments. The 
actin cytoskeleton is a dynamic structure characterized  
by a highly regulated, steady-state equilibrium between  
F-actin filaments and G-actin monomers. Cells are connected  
one to another near the apical surface by a junctional 
complex that is made up of tight junctions and adherens 
junctions. The tight junction forms the border between the 
apical and basolateral surfaces of the cell and segregates 
proteins and phospholipids to the appropriate cell surface 
(gate function) as well as blocks paracellular permeability 
(fence function).

The basolateral surface of the cell also is characterized 
by distinct proteins and phospholipids. For example, the 
Na+/K+ ATPase is localized to the basolateral side of the 
cell and is critical for Na+ transport to the interstitium. 
Transmembrane integrins bind to extracellular matrix (ECM) 
proteins. Epithelial cells also have specialized protein 
complexes at ECM binding sites called focal adhesion 
complexes. Together, these interactions cause the renal 
tubular epithelial cell to firmly adhere to the basement 
membrane.

ACUTE KIDNEY INJURY: COMMON 
PATHOPHYSIOLOGIC MECHANISMS  
OF INJURY

Cellular damage in AKI involves two forms of injury: 
sublethal damage resulting in depolarization of cells (and 
therefore loss of appropriate cellular functions), as well as 
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AKI, neutrophils and T cells are recruited to the injured 
tissue and modulate injury.17

In renal biopsies from patients with ischemic kidney 
injury (e.g., after cadaveric kidney transplantation), the 
majority of tubules may appear fairly normal, with limited 
overt cellular shedding or death. However, in animal models 
of either toxin or ischemia-mediated kidney injury, cellular 
shedding and death are typically widespread, leading to 
denuded areas, where the tubular epithelium is no longer 
intact. These differences may be due to the fact that in 
animal models, severe ischemia is induced by exposure to 
high doses of a nephrotoxin or by cross-clamping of the 
renal artery. In animal models of septic AKI, cellular 
morphology often appears relatively normal.18 These dif-
ferences highlight important distinctions between the clinical 
entity of AKI and animal models19–21 and may explain 
partially why many of the successful interventions for AKI 
in animal models have not been efficacious in clinical trials.

RECOVERY FROM ACUTE KIDNEY INJURY: 
MECHANISMS OF MALADAPTIVE REPAIR

The mechanisms involved in regenerating normal renal 
architecture after AKI are complex and involve recruitment 
of inflammatory cells, as well as proliferation and differentia-
tion of surviving cells to form polarized epithelial tubules.22 
In some cases the recovery process becomes maladaptive, 
and not much is known about the molecular switch that 
differentiates adaptive tissue repair from an impaired repair 
process that results in fibrosis. Clinical factors associated 
with maladaptive repair include increasing age, baseline 
renal function, and the duration and type of kidney injury.23

Normally tubular epithelial cells divide at a very slow 
rate. After mild tubular injury, the rate increases, leaving 
surviving epithelial cells to enter cell cycle and proliferate 
and thereby restore the injured areas. A study in three 
different mouse models of ischemic, toxic, and obstructive 
AKI showed that the proximal tubular cells arrested in the 
G2/M stage of the cell cycle after AKI; this G2/M stage cell 
cycle arrest was associated with activation of a profibrotic 
phenotype with high levels of secreted cytokines, including 
transforming growth factor-β1 (TGF-β1).24 Thus an injury 
of sufficient severity to cause arrest cells in the G2/M 
phenotype may contribute to maladaptive repair; modulation 
of this pathway may prevent progression to CKD.

Macrophages appear to play an important role in deter-
mining kidney outcomes after injury, and the balance of 
macrophage response may contribute to maladaptive repair.25 
Macrophages are recruited the kidney in response to injury. 
The M1 macrophage is believed to have proinflammatory 
effects, and if this signal persists, the M1 macrophages 
amplify the injury and may contribute to fibrosis develop-
ment.26 In contrast, M2 macrophages are believed to have 
beneficial effects and promote proliferation and kidney 
repair through secretion of growth factors.27 The M2 mac-
rophages can be recruited from the circulation or by M1 
macrophages to adopt an M2 phenotype.

Another vital part of restoring normal architecture is 
removal of dead tubular epithelial cells after injury. If not 
removed, these cells can result in renal tubular obstruction, 
induce inflammation, and impair tissue repair. The clearance 
of cellular debris is carried out by phagocytosis by a variety 
of cell types, including macrophages, dendritic cells, and 
dedifferentiated epithelial cells. Kidney injury molecule-1 
(KIM-1) is a marker of kidney injury and is known to promote 

lethal damage resulting in cell death.2–4 Although there has 
been controversy regarding which segment of the tubule 
is the most affected, it is clear that the proximal tubule, 
and in particular the S3 segment, undergoes significant 
morphologic changes and therefore has been the subject 
of much study.5

Sublethal cellular injury has been described in animal 
models and in human studies. In animal models, short 
ischemic times lead to loss of and fusion of the apical 
microvilli, whereas longer ischemic times result in shedding 
of microvilli into the tubular lumen, loss of integrity of the 
actin cytoskeleton, and ultimately cell death.6 Junctional 
complexes are disrupted after AKI, leading to increased 
paracellular permeability resulting from loss of the “gate” 
function as well as loss of cell polarity resulting from loss 
of the “fence” function. For example, the Na+/K+ ATPase 
that typically is localized exclusively on the basolateral 
surface can be found on the apical surface after ischemic 
injury. Mislocalization of these channels contributes to the 
inability of the proximal tubule to reabsorb Na+, as is 
commonly seen in AKI.7 Thus the recovery process must 
result in reestablishment of polarity of sublethally injured 
cells, as well as establishment of polarity in the de novo 
epithelial cells. Reestablishment of polarity appears to 
require signaling cues from adjacent cells as well as from 
the extracellular matrix.

At the other end of the spectrum, AKI can cause lethal 
damage of renal cells, resulting in loss of tubular integrity. 
Different forms of tubule cell death have been identified, 
depending on the nature and severity of the injury. Apoptosis 
is a form of programmed cell death that is characterized 
by cell shrinkage, nuclear condensation and fragmentation, 
and rapid clearance by phagocytosis. Most normal cells 
constitutively express the machinery necessary for apoptosis 
but are prevented from undergoing apoptosis by the presence 
of survival factors. Loss of these survival, or growth, factors 
leads to triggering of apoptosis via a “default” pathway.4 
Apoptotic cell death can occur from extrinsic and intrinsic 
pathways as well as endoplasmic reticulum (ER) stress.8 It 
has been shown that cellular contact with adjacent cells 
and with the ECM appear to protect cells from apoptosis. 
After injury, major structural components of the basement 
membrane including laminin and fibronectin III as well as 
the cell surface receptors for these basement membrane 
proteins (e.g., integrins) are upregulated.9,10 Integrins also 
are mislocalized after renal injury; this may allow epithelial 
cells to migrate as part of the recovery process.11 Normal 
cell-cell contact via cadherins also provides an antiapoptotic 
signal in proximal tubular cells.12

Depending on the nature and duration of injury, cells 
also may undergo necrosis, where the release of unprocessed 
cellular contents into the extracellular space can cause 
inflammation and creates further damage. A future thera-
peutic target could be the transformation of cell death by 
necrosis into apoptosis, which may decrease AKI severity 
or accelerate recovery. More recently, the process of necrop-
tosis, a form of regulated necrosis,13 has been described. 
Necroptosis can be inhibited by RIP1-targeting chemical 
necrostatin-1 (Nec-1), and treatment with Nec-1 has been 
shown to partially protect from ischemic AKI.14

In addition, AKI frequently is characterized by damage 
to other cellular compartments. Microvascular injury plays 
a critical role in septic and ischemic AKI.15,16 Given the 
enormous oxygen tension gradient within the normal kidney, 
small changes in oxygen delivery may greatly exacerbate 
tissue hypoxia. Furthermore, endothelial cell damage may 
lead to leukocyte activation and sludging within the capil-
laries and to release of inflammatory mediators. In ischemic 
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double-blinded, placebo-controlled clinical trial in patients 
undergoing cardiac surgery, there were no significant dif-
ferences in time to renal recovery.43a Currently there is an 
ongoing phase 1 trial to test the efficacy and safety of 
mesenchymal stem cells in cisplatin-induced AKI.43b

RECOVERY FROM ACUTE INJURY:  
THE CELLULAR STRESS RESPONSE

In response to injury, cells have an adaptive response to 
restore normal function. However, if the injury is very severe 
or prolonged, the cells may tip toward a maladaptive 
response that can lead to impaired repair.44,45 Thus targeting 
the unfolded protein response (UPR), improving protein-
folding capacity, and reducing ER stress may be novel 
mechanisms to prevent impaired recovery.

Autophagy is a cellular stress response that is activated 
in injured cells to maintain intracellular homeostasis and 
that at its extreme can lead to cell death. It is characterized 
by vacuolization of damaged organelles that then are 
eliminated.46 Autophagy can be induced in tubular cells 
in response to injury from AKI. For example, when renal 
tubular epithelial cells are injured, mitochondrial swelling 
and fragmentation can occur. The injured mitochondria 
release reactive oxygen species, cytochrome C, and mito-
chondrial DNA that can amplify cell injury and promote 
cell death.47 Recovery after injury requires the safe removal 
of fragmented mitochondria (mitophagy) along with mito-
chondrial biogenesis. Peroxisome proliferator-activated 
receptor-γ coactivator 1-α (PGC1-α) is a major mediator of 
mitochondrial biogenesis and has been suggested to play 
a key role in accelerating renal recovery in mouse models.48–50 
Autophagy may have renoprotective effects by preventing 
cell death, but the processes are poorly understood.

RECOVERY FROM ACUTE INJURY:  
ROLE OF ENDOTHELIUM

At present, specific mechanisms of endothelial repair and 
recovery remain unclear. However, it is clear that endothelial 
injury plays a critical role in the pathogenesis of AKI.15 
Furthermore, the endothelium regulates leukocyte recruit-
ment to areas of injury and T-helper cell stimulation through 
upregulation of adhesion molecules, including E-selectin, 
P-selectin, and ICAM-1.11 However, immune cell recruitment 
to the injured tissue may lead to chronic inflammation and 
maladaptive repair processes after AKI. Multiple strategies 
to block ICAM-1 have shown that ICAM-1 blockade is 
protective in the setting of AKI. Interestingly, in a study 
in which statins ameliorated ischemic renal damage in  
an animal model, upregulation of ICAM-1, inflammatory 
cell infiltration, and increased iNOS production were 
attenuated.51

Along the same lines, modulation of the coagulation 
cascade by activated protein C (APC) may reduce renal 
injury; APC has been shown to downregulate iNOS and to 
ameliorate lipopolysaccharide (LPS)-induced AKI52 as well 
as ischemic AKI through the ubiquitin-proteasome system, 
providing evidence that APC also has potent antiinflam-
matory effects that may limit the extent of tubular damage.53

Sphingosine-1-phosphate (S1P) is a bioactive phospho-
lipid that serves as a key regulator in vascular development 

phagocytic removal of debris by dedifferentiated epithelial 
cells. The balance of KIM-1 expression is complex because 
chronic expression of KIM-1 is thought to be maladaptive 
and to induce kidney fibrosis, whereas acute upregulation 
of KIM-1 is believed to be beneficial because of its phagocytic 
properties.28,29 Apoptosis inhibitor of macrophage (AIM) 
has been identified as a ligand to KIM-1 and is expressed 
on cellular debris. By binding to KIM-1, it promotes the 
clearance of intraluminal debris and promotes resolution 
of AKI. Mice with a deficiency of AIM have renal dysfunction 
and impaired recovery, whereas administration of recom-
binant AIM was shown to have a beneficial effect on debris 
clearance and could be a future therapeutic target.30

RECOVERY FROM ACUTE KIDNEY INJURY: 
THE PROGENITOR CELL

One of the first steps in renal recovery is the dedifferentiation 
of surviving epithelial cells as well as migration of appropri-
ate epithelial cell precursors to the damaged tubules. In 
various model systems, multiple different types of cells 
have been implicated in this process: renal tubular epithelial 
cells, renal-specific progenitor cells, and bone marrow–
derived mesenchymal stem cells.

After ischemic injury, surviving renal tubular epithelial 
cells dedifferentiate.11 These cells express vimentin, an 
intermediate filament protein that is found in undifferenti-
ated mesenchymal cells but not differentiated kidney cells, 
and proliferating cell nuclear antigen (PCNA), a marker of 
mitogenic activity.31 In contrast, injured cells do not express 
either vimentin or PCNA. The molecular drivers of the 
intrinsic repair process have not been identified, but the 
transcription factor Sox9 has been suggested to be an 
important part of the cellular pathway of renal repair in 
surviving tubular epithelial cells.32

Renal-specific stem cells have been described by several 
independent groups. These cells can be identified using 
bromodeoxyuridine (BrdU) to label cells that are going 
through the cell cycle. These cells have been identified in 
the renal tubules as well as the papilla33,34 and are capable 
of expressing epithelial markers in vitro when subjected 
to appropriate extracellular cues.33,34 After ischemic renal 
injury, these cells proliferate and appear to contribute to 
repopulation of the tubule in animal models. However, 
study of the role of these cells in renal repair has been 
limited by the lack of markers that specifically identify this 
population.

A number of recent studies have examined the potential 
role of organ-specific stem cells as well as mesenchymal 
stem cells in renal repair (Fig. 28.1).35 Renal-specific or 
bone marrow–derived mesenchymal stem cells may acceler-
ate the repopulation of tubules by direct proliferation or 
through paracrine effects. Although transplantation studies 
originally suggested that recipient-derived cells may directly 
repopulate injured tubules,36,37 additional studies have 
suggested that mesenchymal stem cells may predominantly 
exert their beneficial effects via paracrine mechanisms.38–41 
In addition to the direct release of cytokines, mesenchymal 
stem cells may release microvesicles, which can allow 
cell-to-cell communication and protect against renal injury.42 
For example, modulated expression of miRNA in renal 
proximal tubular epithelial cells may lead to increased 
protection from apoptosis.43 Unfortunately, the beneficial 
effects of mesenchymal stem cells in animal models have 
not been confirmed in human studies. In a phase 2, 
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AKI shortens recovery time.56 This likely is due to down-
stream activation of cell survival pathways, including 
phosphoinositide 3-kinase (PI3K)/Akt and extracellular 
signal-regulated kinase. Renal epithelial cells and progenitor 
cells have been shown to proliferate in response to EGF.34,57 
Mice with a targeted mutation in the EGFR have delayed 
recovery from nephrotoxic AKI,58 suggesting that this 
pathway may play an important role in renal repair.

Insulin-like Growth Factor-1
Although insulin-like growth factor-1 (IGF-1) is minimally 
expressed in the adult human kidney, its receptor is 
expressed abundantly on proximal tubule cells. After renal 
injury, expression of IGF-1 is upregulated in surviving 
proximal tubule cells. In addition, recruited inflammatory 
cells such as macrophages produce IGF-1.59 Not only is 
IGF-1 mitogenic but also it induces expression of EGFR60 
and may enhance proliferation of remaining tubular cells 
through EGFR signalling. IGF-1 promotes renal blood flow 
and leads to an increase in glomerular filtration rate, likely 
via production of prostaglandins and nitric oxide. Finally, 
IGF-1 promotes anabolism and protein synthesis,61,62 which 
may aid in recovery from acute illness. Unfortunately, 
despite the promise of IGF-1 in animal models, clinical 
trials in humans failed to demonstrate a benefit of IGF-1.63

Alpha-Melanocyte Stimulating Hormone
Alpha-melanocyte stimulating hormone (α-MSH) is an 
antiinflammatory cytokine derived from pro-
opiomelanocortin.64 Endogenous α-MSH production is 
upregulated in inflammatory states, and α-MSH downregu-
lates leukocyte activation. α-MSH also appears to have direct 

and endothelial barrier integrity. S1P acts through binding 
to five different G protein coupled receptors (S1P1-5). 
Deletion of endothelial S1P1-receptor in a mouse model 
led to exacerbated kidney injury and inflammation and an 
overall increase in fibrosis. Thus S1P may be involved in 
renal recovery after AKI and mediate its beneficial effects 
through activation of endothelial S1P1.54

RECOVERY FROM ACUTE INJURY:  
ROLE OF GROWTH FACTORS

Growth factors may exert important antiapoptotic and 
proliferative effects on damaged cells. Thus the recovery 
process may recapitulate many aspects of renal develop-
ment.11 A number of growth factors enhance proliferation 
of tubular epithelial cells in animal models as well as cell 
culture systems.21,55 In animal models, administration of 
exogenous growth factors has been shown to accelerate 
renal recovery from injury. Although some of these poly-
peptide growth factors have been studied in clinical trials 
and not shown to have any significant benefit, these studies 
highlight important components of the process of renal 
recovery.

Epidermal Growth Factor
Epidermal growth factor (EGF) is a ubiquitous polypeptide 
growth factor capable of stimulating proliferation of many 
types of epithelial cells. EGF activates cellular signaling 
by engaging the EGF receptor (EGFR), a receptor tyrosine 
kinase. EGFR is expressed in the adult kidney, and admin-
istration of EGF to animals with ischemic or toxin-mediated 
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of AKI. Indeed, TGF-β appears to be an important mediator 
of renal fibrosis in many different contexts.

EMERGING RESEARCH AREAS: ROLE OF 
EPIGENETICS IN ACUTE KIDNEY INJURY

In epigenetic regulation, DNA methylation and histone 
modification modulate gene expression without changes 
in the DNA sequence. Epigenetic regulation may provide 
a novel way to enhance renal recovery through alternate 
expression of relevant genes. A recent study explored the 
epigenetics of important AKI-associated genes in ischemia/
reperfusion and endotoxin-induced AKI models and found 
significant heterogeneity in the transcriptional and epigenetic 
responses of important genes (including tumor necrosis 
factor [TNF], neutrophil gelatinase-associated lipocalin 
[NGAL], kidney injury molecule-1 [KIM-1], and intercellular 
adhesion molecule-1 [ICAM-1]) depending on the type of 
injury.79 This diversity, which was determined predomi-
nantly by the type of kidney injury, supports the theory 
that AKI is a multifactorial disease. There is still a long 
way before epigenetic regulation in AKI will be the thera-
peutic target, but research in this area could provide useful 
insight into transcriptional changes that are associated with 
impaired response signals and subsequent fibrosis.27

STRATEGIES TO ACCELERATE RENAL 
RECOVERY: HUMAN STUDIES

A number of clinical treatments have been proposed to 
enhance renal recovery from acute injury21 or are under 
active study,80 but none have shown efficacy. Thus dialysis 
is the primary supportive therapy for patients with severe 
AKI. The impact of renal replacement therapy on renal 
recovery has been the subject of significant interest and 
has been reviewed recently.81 The best established aspect 
of dialysis in the context of AKI is dose, where there appears 
to be a minimum accepted dose.82,83 However, the impact 
of several aspects of the dialysis prescription remain 
controversial or unknown. A number of studies have focused 
on the effects of dialyzer membranes on mortality and renal 
recovery because the original cellulose-containing mem-
branes activate complement and coagulation factors. Newer 
synthetic membranes including polysulfone as well as 
cellulose membranes containing synthetic sidegroups are 
more “biocompatible.” Although these membranes initially 
were shown to have a positive impact on renal recovery 
and mortality, subsequent studies did not support these 
results. Several meta-analyses have been published, with 
varying conclusions; nonetheless, at present, biocompatible 
membranes are used routinely and may have a modest 
effect on renal recovery.84

With regard to the impact of timing of dialysis initiation 
on renal recovery, a recent large randomized multicenter 
clinical trial and a multicenter pilot study suggested that 
among patients who are randomized to receive early versus 
standard dialysis, a substantial proportion of patients in 
the standard dialysis arm had renal recovery before initiating 
dialysis.85,86 In the larger AKIKI trial, there was no difference 
in the rate of dialysis dependence at day 28 or 60 between 
the two arms, but the rates of dialysis dependence were 
low.85 Not surprisingly, patients who were randomized to 
receive standard dialysis had fewer days of RRT than those 

effects on renal tubules, including downregulation of 
inducible nitric oxide synthase (iNOS), which may attenuate 
the extent of injury. However, recent clinical trials testing 
the benefit of exogenous α-MSH for AKI after high-risk 
surgical procedures were stopped because of lack of apparent 
benefit.64a,b

Erythropoietin
Erythropoietin (EPO) has been shown to accelerate recovery 
from ischemic AKI.65 It has been proposed that this is due 
to improved endothelial cell survival and function, as well 
as direct effects on tubular epithelial cell proliferation of 
tubular epithelial cells. However, the positive effect of EPO 
was not confirmed in a clinical trial from 2010, in which 
patients were randomized to receive either high-dose EPO 
or placebo.66

Hepatocyte Growth Factor
Hepatocyte growth factor (HGF) has been shown to have 
mitogenic, morphogenic, motogenic, and differentiating 
effects via c-met, a receptor tyrosine kinase.67,68 Injury leads 
to rapid activation of HGF and c-met within the kidney. 
In animal models of AKI, HGF therapy at the time of injury 
markedly accelerated functional and histologic recovery.69,70 
Not only does HGF have important effects on cellular 
proliferation, it may prevent tubule damage by promoting 
adhesion of tubular cells to the basement membrane71 and 
by activating antiapoptotic signaling pathways.72 In the late 
phases of recovery, HGF has antifibrotic effects that may 
have an important role in the prevention of long-term fibrosis 
and scarring.68 However, there have been no trials of HGF 
in human subjects, in part because of complexities of 
manufacturing and in part because of the potential for 
pleiotropic effects.

Bone Morphogenetic Protein-7
Bone morphogenetic protein-7 (BMP-7), also known as 
osteogenic protein-1, is a member of the TGF-β superfamily,73 
whose expression persists in the adult kidney, in particular 
in the collecting tubule, the glomeruli, and the renal arteries. 
Renal ischemia leads to decreased levels of BMP-7 mRNA, 
likely because of local tissue damage.74 Administration of 
exogenous BMP-7 at the time of ischemic injury attenuates 
the severity of the injury,75 perhaps via reduced ICAM-1 
expression and decreased inflammatory cell–mediated injury. 
In cell culture models, BMP-7 also appears to downregulate 
proinflammatory cytokines, including interleukin-6 and 
monocyte chemotactic protein-1, as well as endothelin-2, 
a potent vasoconstrictor.76 Like HGF, BMP-7 appears to 
have important antifibrotic effects in the recovering kidney.77

Transforming Growth Factor-β
TGF-β is a profibrotic growth factor that is a critical mediator 
of the epithelial to mesenchymal cell transition (EMT).77 
Although TGF-β receptor expression is upregulated after 
injury, TGF-β does not appear to play a critical role in early 
renal recovery because immediate treatment with TGF-β neu-
tralizing antibodies does not slow renal recovery.78 However, 
treatment with neutralizing antibodies results in reduced 
capillary dropout and interstitial inflammation, suggesting 
that TGF-β may play a critical role in the long-term effects 



Key Points

1. The pathogenesis of acute kidney injury (AKI) 
involves sublethal tubular cell injury and cell death 
(apoptosis, necrosis including necroptosis, and in 
extreme cases, autophagic cell death).

2. Tubular epithelial cells, renal specific progenitor 
cells, mesenchymal stem cells, and leukocytes 
appear to play a role in the recovery process.

3. Although the mechanisms of endothelial repair 
are not well understood, it is clear that endothelial 
injury is a critical mediator of AKI.

4. Growth factors appear to play a critical role in 
tubular repair/recovery.

5. The impact of renal replacement therapy on renal 
recovery is not well understood.
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