
148  Section 6 / Clinical Course of Acute Kidney Injury and Biomarkers

CHAPTER 27 

Kidney Stress Biomarkers
Kianoush Kashani and Xiaoyan Wen

OBJECTIVES
This chapter will:
1. Demonstrate that Acute kidney stress is associated with 

activation of event cascades that result in excretion of 
IGFBP7 and TIMP2, stress biomarkers of AKI.

2. Reviews the literature to show stress biomarkers of AKI 
are able to detect patients at high risk for AKI and predict 
their long-term outcomes with high reliability and accuracy 
at least 12 hours before its clinical presentation.

3. Describes the two cutoffs defined for [TIMP-2]*[IGFBP7] 
– a high sensitivity cutoff at 0.3 and a high specificity 
cutoff at 2 (ng/mL)2/1,000.

Acute kidney injury (AKI) is a common complication of 
critical illnesses, and it is associated with significantly high 
mortality, morbidity, and healthcare cost.1–3 Incidence of 
AKI has been reported between 20% and 67% among ward 
and intensive care unit (ICU) patients.4–6 Despite the growing 
knowledge regarding the impact of AKI on the outcomes 
of critically ill patients, the number of therapeutic options 
that have been tested in humans is limited, and the majority 
of them have been found to be ineffective.7 Delay in the 
diagnosis of AKI contributes to this lack of success. Current 
functional biomarkers of AKI, including serum creatinine 
levels, are often nonspecific and late in the detection of 
AKI. Often this delay results in missed opportunities to 
provide appropriate treatment while the therapeutic window 
is open. In addition, the inability to identify the site and 
intensity of injury by current biomarkers prevents investiga-
tors from testing novel therapeutic and preventive strategies 
in patient populations with specific causes and a varying 
range of AKI severity. Therefore improving the outcomes 
of AKI patients will require sensitive, cause-specific, and 
early biomarkers of kidney injury.8

In recent years, several sensitive biomarkers of AKI have 
been studied. Kidney injury molecule-1 (KIM-1), neutrophil 
gelatinase-associated lipocalin (NGAL), urinary interleukin-18 

(IL-18), and liver-type fatty acid binding protein (L-FABP) 
are among these new discoveries.9–12

These biomarkers are able to identify patients who will 
develop AKI within the next 12 to 24 hours based on serum 
creatinine levels. Despite this progress, a recent systematic 
review concluded that these biomarkers are effective only 
in a well-defined timed injury in the pediatric population. 
In adult patients with multiple comorbid conditions and 
nebulous time-course of injury, however, these biomarkers 
were found to be significantly less robust for early recogni-
tion of AKI.13

Recently, two novel biomarkers of kidney stress (insulin-
like growth factor binding protein-7 [IGFBP7] and tissue 
inhibitor of metalloproteinase-2 [TIMP-2]) were validated 
in the clinical setting for prediction of AKI among critically 
ill patients.14,15 This chapter reviews the physiology of kidney 
response to stress, the role of stress biomarkers in the 
pathophysiology of AKI, and then examines the current 
literature on their clinical applications.

STRESS RESPONSE

Stress refers to an environmental stimulus that disturbs 
homeostasis of the body and causes illness.16 Upon disrup-
tion of physical equilibrium, the body responds by multi-
organ systemic reactions. These responses cause a number 
of physiologic or pathologic changes involving intracellular 
signal transduction and gene regulation, with short- and 
long-term effects.17 Vulnerability to the pathogenic effects 
of stress differs among individuals because of genetic factors 
and age at which the stress is experienced.18 The body’s 
response to the stress could be at the systemic, cellular, or 
organ (e.g., kidney) level.

Systemic Stress Response
Stress may prompt neuroendocrine reactions represented 
by the hypothalamic-pituitary-adrenocortical axis activity.19,20 
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Kidney Stress Response
The term “acute kidney stress” (AKS) is defined as the 
preinjury phase that leads to AKI.42 After exposure to stress, 
depending on its intensity and type, the kidney reacts in 
several different ways. Mild stimulus, such as a brief episode 
of hypovolemia, does not generate significant stress at the 
cellular level in the kidney. In this case, after appropriate 
management of the underlying cause, kidney function 
recovers without any sequelae. When the intensity of stressor 
is higher but not injurious, cells enter a dormant phase by 
downregulating their metabolism, solute transport, and 
protein synthesis. In addition, they enter a cell cycle arrest 
phase to preserve their energy supplements.43 When the 
stressor is more intense, cells remain in cell cycle arrest 
and develop a senescent phenotype, which can result in 
fibrosis.44 Finally, when the stimuli are injurious, cells 
commence the necrosis, apoptosis, and autophagy cell death 
processes.45

The cell cycle arrest biomarkers IGFBP7 and TIMP-2 
can quantify the stress imposed on the renal epithelial cells 
during critical illnesses and therefore can be used clinically 
to identify patients who have risk of AKI well before its 
clinical and laboratory manifestations.

Cell Cycle Arrest
The majority of renal tubular epithelial cells are in a qui-
escent phase during normal physiologic conditions (Gap 
0 [G0]).46 After kidney stress, tubular cells start their cell 
cycle to replace any lost cells. Interphase is the first stage 
of the active cell cycle. In this phase, cells prepare them-
selves for the metaphase (mitosis). The interphase includes 
three distinct stages: gap 1 (G1), synthesis (S), and finally 
gap 2 (G2). During G1 or the growth phase, cell biosynthesis 
increases significantly to prepare cells for doubling their 
chromatin content. Cells gather supplements required for 
replication of deoxyribonucleic acid (DNA) content, includ-
ing proteins and organelles such as ribosomes and mito-
chondria. During the S phase, cell DNA content replicates. 
Before entering the mitosis phase, cells continue their growth 
within the G2 phase. Mitosis is divided into four stages: 
condensation of chromatin to chromosomes (prophase); 
alignment of chromosomes at the equator of the cell (meta-
phase); splitting sister chromosomes to the opposite pole 
of the cell (anaphase); and finally formation of two daughter 
cells (telophase).47–49

Eukaryotic cells are able to perform a rigorous self-
examination to ensure the fidelity of DNA content before 
and during replication. This process happens at cell  
cycle arrest checkpoints. There are at least three check-
points that are well recognized in each cell cycle. The first 
checkpoint, also known as the restriction point, happens at  
G1/S immediately before cells enter the S phase. Cyclin-
dependent protein kinase (CDK) inhibitors, including 
P21, P16, and P53, halt the progression of the cell cycle 
from G1 to S phase by inhibiting the CDK complexes 
(CyclD-CDK4 and CyclE-CDK2).50–53 The second check-
point is prior to the beginning of mitosis at G2 phase. The 
inability to pass this checkpoint is a known promoter of 
fibrogenesis, which occurs during “maladaptive” recov-
ery after AKI.44 The final checkpoint is at the metaphase 
to evaluate the tension in bipolar attachments among  
chromosomes.

The outcome of self-evaluation of cells in checkpoints 
could be summarized as (1) transient arrest, repair, and 
return to cell cycle; (2) defective repair typically leading 

During the stress process, the neuroendocrine alteration 
increases mobilization of the oxygen metabolism chain and 
promotes reactive oxygen species (ROS) generation.21 
Regardless of the type of stimuli, neuroendocrine stress 
responses have a direct impact on metabolism and energy 
production.

The immune system is affected greatly by these neu-
roendocrine responses, mostly manifested as increased 
susceptibility to a variety of viral infections.22,23 Studies 
show that plasma interleukin 6 (IL-6) rises simultaneously 
with the elevation in plasma corticosterone. This observa-
tion may suggest the response by neuroendocrine systems 
would regulate the release of IL-6 into the plasma during  
stress.24

Cellular Stress Response
As a consequence of stress induced by environmental factors, 
a series of adaptations to cellular proteins, lipids, and DNA 
occurs, mainly through triggering specific signaling path-
ways. These pathways include the extracellular signal–
regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), 
and p38 mitogen-activated protein kinase (MAPK) signaling 
cascades, the phosphoinositide 3-kinase (PI3K)/Akt pathway, 
the nuclear factor (NF)-κB signaling system, p53 activation, 
and the heat shock response.25 In general, the heat shock 
response and ERK, PI3K/Akt, and NF-κ B signaling pathways 
exert a prosurvival influence during oxidant injury, whereas 
activation of p53, JNK, and p38 more commonly is linked 
to apoptosis. The degree to which a given pathway is 
activated is highly dependent on the cell type, as well as 
the nature and duration of the stress.21

Cells have evolved an extensive reorganization of the 
gene expression program that can produce dynamic outcomes 
in response to stress. These gene expressions are tightly 
regulated and reversible, achieved by different molecular 
mechanisms that are highly dependent on the particular 
stress and the organism.26 Depending on the nature of a 
specific stress and its severity, the amount of gene regulation 
may involve from 30% to 80% of all genes, with extremes 
of stress usually leading to greater changes in gene  
expression.27,28 These stress responsive gene expressions 
encompass almost all general cell features, including 
metabolism regulation, mRNA synthesis, cell-type differentia-
tion, cellular transport, and cytoskeleton organization.29–32 
The p53 tumor suppressor protein is one of the potent 
adaptive genes that has a robust transcriptional function. 
p53 activation plays a pivotal role in the cellular response 
to a range of environmental and intracellular stresses.33–36 
One of the biologic endpoints of p53 induction is growth 
arrest, which can be transient or permanent (senescence or 
differentiation). The other possible outcome of p53 activation 
is apoptosis.37

Individual variation in responses to stress result 
from interaction among genes, developmental plasticity, 
phenotypic flexibility, and the current environment.38 A 
major part of personal variability may rest on variation 
in the genetic background.39 Epigenetic changes also can 
constrain or limit immune responses in future generations 
based on each distinctive experience. Several studies also 
show that aging cells and organisms accumulate increased 
levels of oxidant-damaged nuclear DNA.40,41 In addition, 
evidence suggests that flexibility in immune responses 
becomes constrained with age through the accumulation 
of memory cells at the cost of naive cells and decreased 
cellular functions involved in adaptive and innate  
immunity.39
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IGFBP7
IGFBP7 is a 27 kDa protein that is expressed in the renal 
epithelial cells.60,61 p53 enhances IGFBP7 expression after 
DNA injury induced by retinoic acid, transforming growth 
factor-β (TGF-β), glucocorticoids, or ROS.62–64 After expres-
sion, it regulates insulin-like growth factors, cell adhesion,65 
and cell repair. In the kidney, IGFBP7 is induced in 
microvasculature after ischemia66 and is involved in cell 
senescence.67–69

In an in vitro experiment with human melanoma cell 
lines, recombinant IGFBP7 decreased cell proliferation and 
increased apoptosis.70 In MCF-7 breast cancer cells, trans-
fecting cells with IGFBP7-induced senescent phenotypes 
including decreased cell proliferation, increased the G1/S 
cell cycle arrest cells, altered cell morphology, and increased 
senescence-associated beta-galactosidase (SA-β-gal) activity.71

Tissue Inhibitor of Metalloproteinase-2
TIMP-2 is a 21 kDa protein expressed in melanoma and 
renal tubular cells. TIMP-2 irreversibly inactivates metal-
loproteinases (MMP) by binding to their catalytic zinc 
cofactor.72,73 TIMP-2 expression is induced by cytokines 
and chemokines and proliferation (βFGF and EGF) and 
differentiation (retinoic acid and NGF) factors.74 TIMP-2 
induces G1 cell cycle arrest by binding to human endothelial 
cells through integrin α3/β1 (ITG α3 β1).75–79 TIMP-2 is 
induced by ROS, differentiation signals (retinoic acid), and 
proliferation signals (EGF). The involvement of TIMP-2 in 
AKI includes its role in the innate immunity, such as 
structural changes influencing leukocyte transmigration 
from the capillaries to areas of injury in the renal tubule,80,81 
changes in endothelial permeability,82 and modulation of 
the inflammatory response,83,84 apoptosis (cell death),85,86 
and finally loss of cell-cell adhesion and sloughing of tubular 
epithelial cells.82,83,87 TIMP-2 decreases endothelial cell 
proliferation via a mechanism that is independent of MMP 
inhibition.88

Kidney Stress Biomarkers: Clinical Studies
Recently, IGFBP7 and TIMP-2 were validated as predictors 
of AKI in studies involving more than 2000 patients.14,15 
As the result, on September 5, 2014, the US Food and Drug 
Administration (FDA) approved [TIMP2]•[IGFBP7] for 
assessment of AKI risk in adult (≥21 years old) critically 
ill patients under the brand name NephroCheck.89 Neph-
roCheck showed the coefficient of variation of 10% at the 
0.3 (ng/mL)2/1000 cutoff, and its limit of quantitation was 
0.002. Albumin, conjugated bilirubin, and methylene blue 
interfered with test results when their levels were higher 
than 1250 mg/L, 72 mg/L, and 0.49 mg/L, respectively. 
These biomarkers were found to be stable for 6 hours at 
room temperature, 24 hours refrigerated, and not affected 
by sample centrifugation temperature.90 The technical aspects 
of the stress biomarkers clinical implementation and its 
cost have been discussed elsewhere.91

Discovery and Validation
The Sapphire trial included 522 high-risk patients who did 
not have AKI at the time of enrollment. After timed blood 
and urine sample collection, more than 340 proteins were 
identified and measured in these samples.14 Among the 

to apoptosis or cell senescence; or (3) direct apoptosis when 
the damage is very severe.54

Cell Cycle Arrest and Acute Kidney Injury
AKI is a clinical syndrome that results from a combination 
of inflammatory injuries to endothelial and epithelial cells.55 
When stimuli damage DNA, the DDR (DNA damage response) 
network and P53 are activated to determine the ultimate 
fate of an injured cell.

In a cecal ligation and puncture (CLP) murine model, 
G1 cell cycle arrest preceded the development of AKI.56 
Within 6 hours of insult, the number of cells in G1 signifi-
cantly increased, and those in S phase decreased. High 
G1:S ratio subsided after 24 hours, and 72 hours later the 
number of cells in S phase increased. This was followed 
by clinical recovery of kidney function. Significant upregula-
tion of the cell cycle arrest indicators (p53 and p21) during 
the first 24 hours, the S phase indicators (CDK) after the 
first 24 hours, and proliferation indicator (retinoblastoma) 
after 72 hours were noted in this study. In the renal arteries 
ischemic murine model, investigators found successive 
changes of injury (clusterin), G/S transition (proliferating 
cell nuclear antigen [PCNA]), and differentiation markers 
(vimentin) in the S3 segment of proximal tubules.57 In the 
cisplatin, ischemia-reperfusion, and ureteral obstruction 
models of AKI, rapid induction of p21 in proximal and 
distal tubular cells is demonstrated, which are involved 
heavily in the G1/S cell cycle arrest.58 The current evidence 
indicates that cell cycle arrest happens early during the 
process of AKI; therefore biomarkers of cell cycle arrest 
may be able to predict the impending development of AKI.

In early phases of AKI, ROS, pathogen-associated 
molecular pattern (PAMP) and damage-associated molecular 
pattern (DAMP) molecules induce initiation of the cell cycle 
in renal epithelial cells. Before completion of the cell cycle, 
these cells enter a temporary phase of arrest in the check-
points, which are highly regulated by several factors 
including IGFBP7 and TIMP-2. Expression of p53 and p21 
is directly induced by IGFBP7 and p27 by TIMP-2. The 
cell cycle promotion complexes CyclD-CDK4, and CyclE-
CDK2 are directly blocked by p-proteins, which results in 
the initiation of a transient G1/S cell cycle arrest.

The role of cell cycle arrest in the outcomes of AKI is not 
very well known. Although prolonged cell cycle arrest is 
associated with maladaptive repair of AKI, CKD, and 
senescence of tubular cells, in the early phases of kidney 
stress it plays a protective role. Cell cycle arrest can not only 
help cells avoid the disastrous consequences of entering 
cell division with damaged DNA but also assist in preserving 
energy during stress when there are insufficient bioenergetic 
resources. In a recent randomized trial using remote ischemic 
preconditioning to prevent AKI after cardiopulmonary bypass 
surgeries, patients within the intervention arm showed a 
significant postintervention, preoperation increase in the 
cell cycle arrest biomarkers. This group had a significantly 
lower incidence of AKI. Conversely, in the control group 
for whom there was no increase in the urinary level of stress 
biomarkers in the postintervention, preoperation period, 
authors found a significantly higher incidence of AKI.59

Kidney Stress Biomarkers
In this section, we describe characteristics of these two 
proteins and their relationship with the cell cycle arrest 
during AKI.
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multivariate model.96 In a similar analysis of Sapphire and 
Topaz study cohorts, AUC of [TIMP-2]•[IGFBP7] with a 
cutoff of more than 0.3 (ng/mL)2/1000 among patients with 
chronic kidney disease and chronic heart failure were found 
to be 0.91 and 0.89, respectively.97 In the same collated 
cohort, among 232 patients with sepsis the AUC of 
[TIMP-2]•[IGFBP7] with a cutoff of more than 0.3 (ng/
mL)2/1000 was 0.84 (0.73–0.92) and 0.85 (0.76–0.94) in 
patients with low and high nonrenal sequential organ failure 
assessment (SOFA) score subgroups, respectively.98 In 
validation studies and follow-up subgroups analyses adding 
[TIMP-2]•[IGFBP7] to the clinical models of AKI prediction, 
improved their performances significantly.

Follow-Up Studies in Different Cohorts
Among patients who underwent cardiac surgery, serial 
urinary samples of [TIMP-2]•[IGFBP7] were found to be 
predictive of postoperative AKI. In this cohort of 50 post-
cardiac surgery patients, 52% developed AKI. The maximum 
urinary [TIMP-2]•[IGFBP7] concentration in the first 24 
hours after cardiopulmonary bypass was predictive of AKI 
with an AUC of 0.84, sensitivity of 92% and specificity of 
81% at a cutoff of 0.5 (ng/mL)2/1000.99

In a cohort of 298 emergency room patients, one measure-
ment of [TIMP-2]•[IGFBP7] was predictive of AKI develop-
ment in the hospital, and patients with [TIMP-2]•[IGFBP7] 
more than 2 (ng/mL)2/1000 compared with less than 0.3 
(ng/mL)2/1000 had an odds ratio of 2.5 to develop AKI. As 
had been observed in previous studies, in this cohort adding 
the stress biomarkers improved performance of the clinical 
AKI prediction model (AUC 0.67 [95% CI, 0.61 to 0.78] to 
0.77 [95% CI, 0.72–0.86] for clinical model vs. clinical 
model with added [TIMP-2]•[IGFBP7], respectively [p = 
.001]).100

In the pediatric age group with AKI, the [TIMP-2]•[IGFBP7] 
was found to have an AUC of 0.79 (95% CI, 0.61–0.97), 
0.84 (95% CI, 0.67–0.99), and 0.67 (95% CI, 0.50–0.84) for 
prediction of 30-day and 3-month mortality and dialysis, 
respectively.101

In a study of 56 postkidney transplant patients, TIMP-2 
significantly enhanced the delayed graft function prediction 
when it was measured 4 and 12 hours after the 
operation.102

Although in the overwhelming majority of the studies 
the performance of these biomarkers in prediction of AKI 
was found to be excellent, a few investigations indicated 
the need for cautious use of these biomarkers in the patients 
who were stratified clinically in the low AKI risk striae.103,104

KIDNEY STRESS BIOMARKERS: CLINICAL 
APPLICATIONS AND SUMMARY

The kidney stress biomarkers, as outlined above, are able 
to identify adult (≥21 years old) critically ill patients at 
risk to develop AKI within the next 12 hours. These biomark-
ers, with a more than 0.3 (ng/mL)2/1000 cutoff, are approved 
by the FDA for such indication. This cutoff provides sensitiv-
ity of 92% and specificity of 46% (95% CI, 41%–52%). 
Therefore the negative test result (≤0.3 [ng/mL]2/1000) has 
a very high predictive value of being low risk for AKI. By 
using the test in the patient population that has higher 
pretest probability of AKI (higher incidence of AKI), clini-
cians can expect improvement in the performance of the 

measured biomarkers, IGFBP7 and TIMP-2 exhibited superior 
performance in the early detection of AKI.14 Subsequently, 
these biomarkers were validated in animal and human 
studies. In a study of 60 Sprague-Dawley rats undergoing 
CLP, area under the receiver operating characteristic curve 
(AUROC) of [TIMP2]•[IGFBP7] for moderate-to-severe AKI 
was 0.89 (95% CI, 0.80–0.98).92 The human clinical valida-
tion phase involved a large-scale multicenter study of 728 
patients from 35 medical centers in North America and 
Europe. These patients were critically ill adults more than 
21 years of age who were admitted to the ICU. Patients 
with AKI stage II or III were excluded from the screening 
process. In comparison with previously known AKI biomark-
ers such as KIM-1 and NGAL, IGFBP7 and TIMP-2 performed 
better in the early detection of AKI. It also was noted that 
IGFBP7 performed better in surgical patients, whereas 
TIMP-2 had a superior performance in patients with sepsis. 
The product of these two markers ([TIMP-2]•[IGFBP7]) was 
selected as a biomarker panel for AKI risk stratification.14

In the follow-up validation study (Topaz trial), investiga-
tors enrolled 420 patients in 23 centers in the United States 
within the first 24 hours of ICU admission. Investigators 
excluded patients with AKI stage II or III. A panel of three 
independent clinical experts adjudicated AKI within 12 
hours of enrollment. Investigators used 0.3 (ng/mL)2/1000 
for the [TIMP-2]•[IGFBP7] cutoff. In this study, the perfor-
mance of a clinical model to predict AKI (AUC 0.70 [95% 
CI, 0.63–0.76]) significantly improved when the urinary 
[TIMP-2]•[IGFBP7] was added to the model (AUC 0.86 
[95% CI, 0.80–0.90]).15

Cutoff Levels
Cutoffs for [TIMP-2]•[IGFBP7] for clinical use were validated 
in another follow-up investigation (Opal trial). In this study 
154 patients from six sites in the United States were enrolled. 
Unlike the previous studies that used a central laboratory 
and ELISA, each site used the commercial platform Neph-
roCheck (Astute Medical, Inc.) to measure the urinary 
[TIMP2]•[IGFBP7] levels locally. Eligibility criteria for 
enrollment were similar to the earlier studies. Two previ-
ously determined thresholds from the Sapphire trial (0.3 
and 2 [ng/mL]2/1000) were validated as the sensitivity and 
specificity cutoffs, respectively. Investigators found a 
sensitivity of 89% for 0.3 (ng/mL)2/1000 and a specificity 
of 90% for 2 (ng/mL)2/1000 as the cutoff. The lower cutoff 
could be used for screening and risk stratification processes, 
whereas the higher cutoff could be used to identify patients 
with the very high likelihood of developing AKI.93 A 
subsequent analysis of data from the Sapphire trial revealed 
that these cutoffs were able to accurately predict 9-month 
death or dialysis in ICU patients developing AKI.94

Subgroups Analyses of Validation Studies
In a posthoc analysis of Sapphire trial data, among 375 
postsurgical patients, the performance of [TIMP-2]•[IGFBP7] 
in prediction of postoperative AKI within 12 hours remained 
excellent (AUC 0.84, 95% CI, 0.76–0.90; p < .0001). In 
addition, these stress biomarkers improved the performance 
of AKI clinical models.95 In a separate study of 107 postsurgi-
cal patients, the [TIMP-2]•[IGFBP7] with a cutoff of more 
than 0.3 (ng/mL)2/1000 was found to have an AUC of 0.85 
for the risk of any AKI, 0.83 for early use of dialysis, and 
0.77 for 28-day mortality. The authors also showed that 
these biomarkers were the strongest predictor of AKI in a 
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patients on the incidence of AKI within 3 postoperative 
days. The results of this trial along with similar studies 
can delineate how these markers could be used in the clinical 
setting in the near future.

SUMMARY

In conclusion, AKI is a deadly syndrome that affects millions 
of patients around the world. Damaged renal epithelial 
cells enter the cell cycle shortly after injury. There is a cell 
cycle arrest immediately before S phase, and IGFBP7 and 
TIMP-2 are among the mediators of this process. These two 
proteins are sensitive and specific markers for the prediction 
of AKI and have now been validated in several large-scale 
investigations. [TIMP-2]•[IGFBP7] is currently FDA approved 
for clinical use to allow accurate assessment of the risk of 
developing AKI.

Key Points

1. Acute kidney injury (AKI) is common among 
critically ill patients and is associated with higher 
mortality, morbidity, and cost.

2. Early diagnosis of AKI and its causes can assist 
clinicians to provide appropriate preventative 
measures and allows investigators to test novel 
therapeutic interventions for this lethal syndrome.

3. Acute kidney stress is associated with activation 
of event cascades that result in excretion of IGFBP7 
and TIMP-2, stress biomarkers of AKI.

4. Stress biomarkers of AKI are able to detect patients 
at high risk for AKI and predict their long-term 
outcomes with high reliability and accuracy.
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No functional
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loss of function

Loss of function
without stress

Damage with loss
of function

Functional biomarker
Positive

Functional biomarker
Negative

FIGURE 27.1 Incorporating stress biomarkers in conjunction with 
functional biomarkers. (Modified from Murray PT, et al. Potential 
use of biomarkers in acute kidney injury: report and summary of 
recommendations from the 10th Acute Dialysis Quality Initiative 
consensus conference. Kidney Int. 2014;85[3]:513–521.)
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• Consider invasive
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FIGURE 27.2 Clinical decision tree using cell cycle arrest biomarkers. 

test positive predictive value. In addition, this test should 
be used in conjunction with functional biomarkers of AKI 
(serum creatinine, cystatin C, urine output) to assist with 
clinical decision-making trees (Figs. 27.1 and 27.2). Based 
on the Opal trial results, the cutoff of more than 2 (ng/
mL)2/1000 could be used to identify patients who have a 
very significant chance of moderate to severe AKI mainly 
to be steered toward more invasive/expensive AKI thera-
peutic or investigative interventions.93

The impact of interventions based on kidney stress 
biomarkers on clinical outcomes are not very well described. 
There are, however, studies to test hypotheses that using 
kidney stress biomarker-guided interventions can affect 
patient outcomes. In one of these studies (http://apps.who.int/
trialsearch/; DRKS00006139), authors included patients 
with [TIMP-2]×•[IGFBP7] ≥ 0.3 (ng/mL)2/1000 in a random-
ized clinical trial to evaluate the impact of standard of care 
versus goal-directed management of postcardiac surgery 
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5. Studies to evaluate AKI preventive and therapeutic 
measures based on kidney stress biomarkers are 
ongoing.

6. Kidney stress biomarkers (i.e., cell cycle arrest 
biomarkers) can predict moderate to severe AKI 
at least 12 hours before its clinical presentation.

7. There are two cutoffs defined for [TIMP-2]•[IGFBP7]: 
a high sensitivity cutoff at 0.3 and a high-specificity 
cutoff at 2 (ng/mL)2/1000.
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