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CHAPTER 20 

Cell Death Pathways: Apoptosis 
and Regulated Necrosis
Nahmah Kim-Campbell, Hernando Gomez, and Hülya Bayir

OBJECTIVES
This chapter will:
1.	 Present a summary of the various known mechanisms of 

apoptosis and regulated necrosis.
2.	 Discuss the mechanism underlying regulated cell death in 

acute kidney injury (AKI).
3.	 List the evidence for regulated cell death in human AKI.
4.	 Consider potential therapeutic strategies to manipulate 

regulated cell death in human AKI.

The definition of acute kidney injury (AKI) has evolved 
over the past decade in an attempt to establish a standardized 
classification system for the purposes of clinical practice 
and research. This has been inherently challenging because 
AKI is a heterogenous condition that can result from multiple 
causes, and because with the exception of very recent 
advances that are not yet fully ingrained in clinical practice, 
available biomarkers such as urine output and creatinine 

are limited by lack of specificity to underlying mechanisms 
and by phase lag between onset of injury and clinical 
detection, respectively. However, current available classifica-
tion systems such as the risk, injury, failure, loss, and 
end-stage renal disease (RIFLE), AKI Network (AKIN), and 
Kidney Disease: Improving Global Outcomes (KDIGO) 
classifications continue to stage severity of AKI based on 
increased plasma creatinine and/or diminished urine 
output.1 One of the major limitations in the study and 
understanding of the mechanisms leading to AKI has been 
the lack of pathology specimens, because in the clinical 
setting, performing biopsies for diagnostic purposes poses 
an unjustifiable risk to the patient. However, studies using 
postmortem biopsies of renal tissue have started to provide 
some histopathologic evidence of what AKI in different 
clinical circumstances (but mainly sepsis) looks like. Because 
of the varying mechanisms of injury with potential different 
injury sites that can lead to AKI, advancements in our 
knowledge of cell death in AKI are necessary to truly 
understand the processes leading to kidney injury and 
develop therapeutic management strategies.
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(FADD), which in turn leads to the activation of the initiator 
caspase, caspase-8. Subsequently, caspase-8 activates the 
effector caspases, caspases-3 and -7, by proteolysis, leading 
to further caspase activation events that result in cell death. 
In the intrinsic (mitochondrial) pathway, caspase activation 
is initiated by intracellular stress or injury such as DNA 
damage, cytotoxic drugs, oxidative stress, or cytosolic Ca2+ 
overload among others and involves the permeabilization 
of the mitochondrial outer membranes.7 Cellular stress 
activates one or more members of the BH3-only protein 
family and, above a certain threshold, overcomes the 
apoptosis-inhibitory members of the B-cell lymphoma-2 
(Bcl-2) family. This leads to the assembly of Bax/Bak (Bcl-
2-antagonist/killer-1–Bcl-2-associated X protein) oligomers 
within the mitochondrial outer membranes, which allow 
the release of intermembrane space proteins, such as 
cytochrome c, into the cytosol through the mitochondrial 
outer membrane permeability pore (MOMP). Cytochrome c, 
together with apoptotic protease-activating factor-1 (Apaf-1), 
deoxyadenosine triphosphate (dATP), and procaspase-9 

MECHANISMS OF CELL DEATH

The Nomenclature Committee on Cell Death (NCCD) broadly 
classifies cell death into two distinct categories, accidental 
cell death (ACD) and regulated cell death (RCD), and last 
published their recommendations on classifications of cell 
death types in 2015.2 Severe mechanical, physical, or 
chemical factors such as trauma and extremes in temperature 
or pH can lead to ACD. Because this type of cell death 
results from harsh conditions, it is thought to be not 
amenable to modulation. However, dying cells release 
endogenous damage-associated molecular patterns (DAMPs), 
which can cause an innate inflammatory response and can 
lead to further injury and death of cells that had survived 
the original insult.3 Regulated cell death, on the other hand, 
refers to multiple genetically encoded pathways, summarized 
later, that are initiated in an attempt to maintain  
cell homeostasis; it includes a subtype called programmed 
cell death (PCD), which describes RCD that occurs as  
part of development or to preserve physiologic tissue 
homeostasis.2

REGULATED CELL DEATH

Early classifications of cell death were based on morphologic 
changes and included the distinct classification of cell death 
as apoptosis, autophagy, or necrosis.4 Apoptosis was viewed 
as synonymous with PCD and necrosis with accidental cell 
death. However, morphologic features cannot necessarily 
be used to determine the functional aspects of cell death, 
and modern classifications now also include molecular and 
biochemical measures.5 A summary of the morphologic 
and biochemical features of apoptosis versus necrosis is 
shown in Table 20.1.

Apoptosis
Apoptosis is a term used to describe an adenosine triphos-
phate (ATP)-dependent form of cell death characterized 
by shrinkage of the cytoplasm, chromatin condensation, 
nuclear DNA fragmentation, plasma membrane blebbing, 
and the formation of apoptotic bodies followed by elimina-
tion of the dead cells by phagocytes. It generally is not 
associated with inflammation. Biochemical criteria include 
phosphatidylserine (PS) exposure, a phagocytic signal 
on the cell surface, changes in mitochondrial membrane 
permeability, release of mitochondrial intermembrane space 
proteins, and caspase-dependent activation and nuclear 
translocation of a caspase-activated DNase, which results in 
internucleosomal DNA cleavage.6 Apoptosis is dependent on 
the activation of a number of cysteine proteases belonging 
to the caspase family. However, caspases also are activated 
in settings not related to cell death, such as proinflam-
matory cytokine production.7 There are several pathways 
to apoptosis-associated caspase activation. These include 
the extrinsic and the intrinsic pathways, designated based 
on the main origin of the first initiating signal, as well as 
the granzyme B-dependent pathway.6 These pathways are 
summarized in Fig. 20.1. Caspase activation by the extrinsic 
(death receptor) pathway involves the binding of extracel-
lular death ligands (FasL/CD95L, tumor necrosis factor-α 
[TNF-α], or TNF-related apoptosis-inducing ligand [TRAIL]) 
to various transmembrane death receptors.8,9 Activation of 
these death receptors leads to the recruitment of adaptor 
proteins, such as the Fas-associated death domain protein 

TABLE 20.1 

Differences in Morphologic and Biochemical 
Characteristics of Apoptosis and Necrosis

CHARACTERISTIC APOPTOSIS NECROSIS

Morphologic Characteristics
Cellular swelling 
(swelling of 
cytoplasm and 
mitochondria)

Absent Present

Plasma membrane 
integrity

Preserved Lost

Membrane 
blebbing

Present Absent

Chromatin Discrete, 
condensed

Preserved

Nuclear 
condensation

Present Absent

Cytosolic contents Preserved Released
Apoptotic bodies Present Absent
Phagocytosis Present Absent
Inflammatory 
response

Absent (to a 
large extent)

Present

Cell-cell adhesion Lost early Lost late
Pattern in tissues Discrete, 

individual cells
Contiguous, 
groups of cells

Biochemical Characteristics
Energy 
requirement

ATP dependent 
(active)

None (passive)

Adenosine 
triphosphate 
dependence

Yes No

Caspase 
dependence

Yes No

DNA cleavage 180 bp ladder 
pattern

Random, smear 
pattern

Cellular pH Acidification Unchanged
Mitochondrial 
permeability

Moderate loss Severe loss

Mitochondrial 
potential

Transient loss Permanent loss

Phosphatidylserine 
externalization

Yes No

Propidium iodide 
uptake

No (except in 
late apoptosis)

Yes

High mobility 
group box 1 
(HMGB1) release

No Yes

DNA, Deoxyribonucleic acid.



Chapter 20 / Cell Death Pathways: Apoptosis and Regulated Necrosis    115

mitochondrial cytochrome c release and formation of the 
apoptosome.6 In addition, the p53 tumor suppressor can 
modulate the extrinsic and intrinsic apoptotic pathways. The 
p53 gene is a potent transcription factor activated via DNA 
damage and cellular stress, which can regulate apoptosis 
by activating proapoptotic Bcl-2 family members as well 
as the Fas-dependent axis.10–12 The granzyme B-dependent 
caspase activation route is a method by which cytotoxic 
T lymphocytes (CTL) or natural killer (NK) cells induce 

form the apoptosome, a heptameric caspase-9–activating 
complex. Activated caspase-9 then propagates a proteolytic 
cascade of further effector caspase activation events and 
ultimate apoptotic cell death.There is potential for cross-talk 
between the extrinsic and intrinsic apoptotic pathways. 
Extrinsic death signals can cross-talk with the intrinsic 
pathway through the caspase-8–mediated proteolysis 
of the BH3-only protein, BID (BH3-interacting domain 
death agonist). Truncated BID (tBID) can then promote 
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FIGURE 20.1  Major apoptotic pathways. The extrinsic pathway (black) requires activation of plasma membrane receptors such as Fas, 
type 1 tumor necrosis factor receptor (TNFR1), and TRAIL with subsequent signal transduction via adapter molecules such as Fas-
associated death domain (FADD). This results in the activation of caspase-8 and formation of a death-inducing signaling complex (DISC), 
which propagates the death signal via three main pathways: directly through proteolytic activation of executioner caspases; by proteolysis 
of BCL2 homology-3 (BH3)-only protein BID, which induces the translocation of truncated BID (tBID) to mitochondrial membrane and 
provoke mitochondrial outer membrane permeabilization (MOMP); or by activation of the kinase RIP. In the intrinsic pathway (blue), 
cell stress results in activation of BH3-only proteins, which promote the oligomerization of Bax and Bak, producing channels that allow 
the release of components of the mitochondrial intermembrane space (such as Cytochrome c, Cyt c) and thus promoting MOMP. Transloca-
tion of cardiolipin (CL) to the outer mitochondrial membrane enables the interaction of CL with Cyt c. Binding of Cyt c to CL provokes 
the movement of the distal ligand of Cyt c (Met80) away from its baseline position close to the heme iron. This enhances the access of 
small molecules such as H2O2 to the catalytic site of Cyt c, thus enabling it to oxidize CL. Oxidation of CL facilitates further detachment 
of Cyt c from mitochondrial membrane and thus its release, which is key in further signaling of the intrinsic apoptotic pathway. Released 
Cyt c binds Apaf-1, which recruits and activates caspase-9 via formation of the apoptosome. DNA damage induces stabilization of p53 
tumor suppressor protein, which can result in transcriptional activation of BH-3–only proteins, and oligomerization of Bax/Bak. Cross-talk 
between these pathways is thus provided by two proapoptotic substances, Bcl-2 family protein BID and transcription factor p53. Bax 
translocation normally is prevented by cell survival promoter proteins Bcl-2 and Bcl-xL. Both caspases-8 and -9 activate caspase-3, 
which initiates the final morphologic cascades of apoptosis. The Granzyme B–dependent pathway involves the release of specialized 
granules from cytotoxic T lymphocytes or natural killer cells, and delivery to target cells. These granules contain perforins, pore-forming 
proteins that oligomerize and permit the entry of granzymes also contained in these granules. Once in the cytoplasm of the target cell, 
Granzyme B can induce apoptosis via cleavage of BID, or directly by cleavage of caspase-3 and -7. The arrow indicates activation, 
whereas the line with the flat end indicates inhibition. CTL/NK, cytotoxic T lymphocyte/natural killer); dATP, deoxyadenosine triphosphate; 
RIP, receptor interacting protein; TRADD, TNF receptor associated death domain; TEC, tubular epithelial cell. 
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includes TNF receptor–associated death domain (TRADD), 
RIPK1, cellular inhibitor of apoptosis proteins (cIAPs), TNF 
receptor–associated factor-2 (TRAF2), and TRAF5.13

Ubiquitination of RIPK1 by cIAP recruits transforming 
growth factor-β activated kinase 1 (TAK1), TAK1-binding 
protein 2 (TAB2) and TAB3, which then initiate the canonical 
nuclear factor-κB (NF-κB) activation pathway. Conversely, 
RIPK1 can exert apoptotic or necroptotic cell death after deu-
biquitination by cylindromatosis (CYLD), A20 (TNFAIP3), 
cezanne (OTUD7B), or ubiquitin-specific peptidase 21 
(USP21).13,15 Deubiquitination allows RIPK1 to dissociate 
from the plasma membrane and interact with TRADD, 
Fas-associated death domain (FADD), procaspase-8, and 
Fas-associated death domain-like interleukin-1β-converting 
enzyme (FLICE)-like inhibitory proteins (FLIPs) to form a 
TRADD-dependent complex IIa, which allows activation of 
caspase-8, subsequent activation of the effector caspases, 
caspase-3 and -7, and leads to apoptosis.17 The long isoform 
of FLIP (FLIPL), which is upregulated by NF-κB, can form 
heterodimers with procaspase-8 that can cleave and inac-
tivate RIPK1, RIPK3, and CYLD to prevent necroptosis. 
When caspase-8 is inhibited by caspase inhibitors or virally 
encoded proteins, phosphorylated RIPK1 and RIPK3 interact 
to form microfilament-like complexes called necrosomes.18 
CYLD deubiquitinates RIPK1 in the necrosome to facilitate 
its pronecrotic kinase activity.19 The recruitment and phos-
phorylation of MLKL initiates necroptosis and results in 
JUN N-terminal kinase (JNK) activation, reactive oxygen 
species (ROS) production, and translocation of oligomerized 
MLKL to the plasma membrane, where it mediates calcium 
and/or sodium influx-dependent necroptosis.20–22

When cellular cIAPs are depleted and RIPK1 is not 
ubiquitinated, the formation of complex I leads to the 
upregulation of NF-κB–inducing kinase (NIK), activation 
of the noncanonical NF-κB pathway, and the formation of 
a large TRADD independent cytosolic complex comprising 
RIPK1, RIPK3, FADD, and the FLIPL–caspase-8 heterodimer 
(RIPK1-dependent complex IIb or “ripoptosome”).15 Similar 
to complex IIa, RIPK1 and RIPK3 are cleaved and inactivated 
by caspase-8–FLIPL heterodimers, and the RIPK1-dependent 
complex IIb can induce apoptosis in the presence of 
caspase-8 activity or necroptosis when the function or 
recruitment of caspase-8 is defective.

Other Forms of Regulated Necrosis
Emerging pathways of specialized forms of regulated necrosis 
include cyclophilin D (CYPD)–mediated regulated necrosis 
involving the opening of the mitochondria permeability 
transition (MPT) pore, parthanatos, pyroptosis, ferroptosis, 
oxytosis, ETosis, NETosis, and pyronecrosis.15 These processes 
are morphologically consistent with regulated necrosis but 
occur independently of RIPK1 or RIPK3 or occur in the 
presence of RIPK1 or RIPK3 inhibitors. They represent various 
forms of genetically controlled cell death that follow a period 
of oncosis with the various terms reflecting the process 
occurring in different physiologic conditions or cell types. 
The role that several of these pathways may have in renal 
injury is discussed later in this chapter.

CELL DEATH IN ACUTE KIDNEY INJURY

Experimental and human studies indicate that tubular 
epithelial cells can suffer one of two distinct fates after 
AKI. The majority of cells remain viable,23–26 suggesting 

apoptosis. It involves the delivery of granzyme B, a serine 
protease, into the target cell through CTL or NK cell 
granules, which contain numerous granzymes as well as 
a pore-forming protein, perforin that facilitates the entry 
of the granzymes. Granzyme B cleaves its substrates after 
aspartate residues and can process BID as well as caspases-3 
and -7 to initiate apoptosis.

The downstream proteolytic targets of activated caspases 
include major cytoskeletal constituents (which lead to 
rounding of the cell and membrane blebbing in areas where 
the cytoskeleton has been weakened), nuclear envelope 
proteins such as lamins (which result in nuclear condensa-
tion and fragmentation), components of adhesion sites or 
complexes (which lead to cells retracting from neighboring 
cells and removal by phagocytes), proteins that function 
in transcription and translation, nucleases involved in DNA 
fragmentation such as caspase-activated DNase (CAD), 
substrates related to the fragmentation of the Golgi apparatus 
and disruption of mitochondrial function, and enzymes 
related to the generation of chemoattractants for phagocytes 
and translocation of the membrane phospholipid PS from 
the inner plasma membrane leaflet to the outer membrane 
leaflet.6

Regulated Necrosis
Necrosis is characterized by cytoplasmic granulation and 
cellular and organelle swelling (oncosis) and results in the 
rupture of the plasma membrane and organelle breakdown. 
It can lead to local inflammation secondary to the release of 
intracellular DAMPs and alarmins from dead cells, which 
are recognized by pattern recognition receptors (PRR)  
of the innate immune system. Necrosis has long been described 
as accidental and uncontrolled, a rapid cell death occurring 
as a consequence of extreme physical or chemical stress. 
However, it is now known that necrosis can exist as a highly 
regulated and genetically directed process. Over the past 10 
years a number of regulated necrosis pathways have been 
described; the most well-studied is necroptosis.

Necroptosis
Necroptosis is the term used to describe a caspase-inde-
pendent form of regulated necrosis that is dependent on 
receptor-interacting protein 1 (RIPK1) and RIPK3 activity.2 
It can be triggered by the ligation of death receptors in the 
presence of caspase inhibition, including TNF receptor 1 
(TNFR1), TNFR2, FAS/CD95, TRAILR1 and TRAILR2, as 
well as by members of the PRR family, which are expressed 
by cells of the innate immune system to sense pathogen-
associated molecular patterns (PAMPs).13 Necroptosis 
requires the formation of the RIPK1/RIPK3/mixed lineage 
kinase domain-like (MLKL)–containing necrosome.14 RIPK3 
is activated by phosphorylation and, in turn, phosphorylates 
the pseudokinase MLKL, which has been shown to interact 
with membrane phospholipids and permeabilize the plasma 
membrane, leading to the release of DAMPs.15 The same 
ligands (TNF-α, FasL, TRAIL) that can activate apoptosis 
also can activate necrosis. Cell death induced by the activa-
tion of death receptors thus may be executed through either 
apoptosis or necroptosis. The TNF signaling pathway is 
the most understood pathway leading to necroptosis and 
is a good example of this (Fig. 20.2).15,16 Upon stimulation 
of TNFR1 by TNF, a conformational change occurs and 
allows the formation of the (TNFR1-associated death 
domain)–dependent receptor-bound complex I, which 
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from AKI after IR or administration of cisplatin. However, 
RIPK3/caspase-8 knockout did not confer further protection 
to animals subjected to IR but did to animals exposed to 
cisplatin, suggesting that extrinsic apoptosis may be significant 
to cisplatin nephrotoxicity but not to IR injury.14 Importantly, 
the long-standing paradigm derived from animal models of 
IR that postulated necrosis as the pathophysiologic culprit 
of AKI has been challenged because the amount of necrosis 
that usually is observed during ischemic AKI is inconsis-
tent with the level of dysfunction and fails to predict the 
development, need for support, or recovery from AKI.28,29 
This suggests that other mechanisms may be at play. The 
presence of apoptosis has been shown to better explain the 
renal dysfunction in animal models of ischemic AKI, where 
strategies targeting apoptosis result in protection of renal  
function.30

that they either entirely escape injury or are only suble-
thally injured and undergo recovery. A small proportion of 
tubular epithelial cells (TEC) display cell death in a patchy 
distribution, resulting most commonly from a combination 
of apoptotic and necrotic mechanisms. Indeed, in several 
models of AKI, necrosis and apoptosis are evident in varying 
proportions, mostly depending on the initiating cause rather 
than the anatomic location (apoptotic and necrotic cells 
are found in proximal and distal tubules, in the loop of 
Henle, and in the cortical and medullary regions).27 For 
instance, regulated necrosis and apoptosis have been 
reported in ischemia reperfusion (IR), in nephrotoxic AKI 
secondary to cisplatin, and in sepsis. The contribution of 
these cell death mechanisms to renal functional impairment 
and recovery is equally variable depending on the cause 
of AKI. For example, RIPK3 knockout mice are protected 
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FIGURE 20.2  Tumor necrosis factor receptor (TNFR) activation. Tumor necrosis factor (TNF) binds to its receptor, TNFR1, and triggers the 
assembly of complex I (TNFR1, TNFR1-associated death domain [TRADD], receptor interacting serine/threonine-protein kinase 1 [RIPK1], 
TNFR-associated factor 2 [TRAF2], TRAF5, cellular inhibitor of apoptosis protein 1/2 [cIAP1/2], and linear ubiquitin chain assembly 
complex [LUBAC]). RIPK1 then undergoes Lys63-linked ubiquitylation by cIAP1/2 and linear ubiquitylation by LUBAC and leads to 
the docking of transforming growth factor-β-activated kinase 1 (TAK1) in complex with TAK1-binding protein 2 (TAB2), TAB3, and the 
inhibitor of NF-κB kinase (IKK) complex, and the subsequent activation of the canonical nuclear factor-κB (NF-κB) pathway. Cylindromatosis 
(CYLD) removes Lys63-linked polyubiquitins from RIPK1, allowing RIPK1 to dissociate from the plasma membrane and lead to the forma-
tion of the cytosolic TRADD-dependent complex IIa, where the interaction between TRADD, FAS-associated death domain (FADD), 
procaspase-8, and FLICE-like inhibitory proteins (FLIPs) leads to the activation of caspase-8, effector caspases 3/7, and apoptosis. 
Necroptosis is prevented by the heterodimeric caspase activity of the long isoform of FLIP (FLIPL) and procaspase-8, which cleaves and 
inactivates RIPK1, RIPK3, and CYLD. Complex IIb is formed upon inhibition of cIAP1/2, TAK1, or NEMO. It is a TRADD-independent 
cytosolic complex consisting of RIPK1, RIPK3, FADD, and the FLIPL-caspase-8 heterodimer often referred to as the RIPK1-dependent 
complex IIb or the “ripoptosome.” Apoptosis is induced by the release of caspase-8, and the heterodimeric caspase activity of FLIPL 
and procaspase-8 again inhibits necroptosis by cleaving and inactivating RIPK1 and RIPK3. Complex IIc, also known as the necrosome, 
is formed when there is RIPK3 expression with concurrent decrease in expression or inhibition (by chemical caspase inhibitors or 
virally encoded proteins) of procaspase-8 and FLIPL. The association and auto- and transphosphorylation of RIPK1 and RIPK3 leads to 
the recruitment of mixed lineage kinase domain-like protein (MLKL) by activated RIPK3. This leads to the formation of a supramolecular 
protein complex at the plasma membrane and subsequent necroptosis. LUBAC, linear ubiquitin chain assembly complex; NEMO, nuclear 
factor-κB essential modulator. 
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role for mitochondrial fragmentation has been established 
in in vivo rodent models of ischemia.47 Another mitochon-
drial pathway of apoptosis is the oxidation of the 
mitochondria-specific phospholipid, cardiolipin, by the 
cytochrome c/cardiolipin complex.48 A mitochondria-
targeted compound SS-31, which is in clinical trials for 
heart failure, was reported to interact with cardiolipin and 
attenuate IR-induced TEC apoptosis in rats.49 Finally, 
administration of exogenous growth factors such as epi-
dermal growth factor, insulin-like growth factor, and vascular 
endothelial growth factor has been shown to decrease TEC 
apoptosis after ischemia.40,50 The phosphatidyl-inositol 
3-kinase/Akt pathway controls these protective effects by 
inhibiting the action of proapoptotic Bax.

Nephrotoxic Injury
Apoptotic cell death also has been demonstrated in neph-
rotoxic AKI. Cisplatin has been one of the most studied 
nephrotoxins given its widespread use as a chemotherapeutic 
agent for cancer. Cisplatin produces significant injury primar-
ily in the S3 segment of the proximal tubule. It inhibits 
mitochondrial F1F0-ATPase, thereby limiting oxidative 
phosphorylation and altering mitochondrial membrane 
potential. This all precedes release of cytochrome c and 
the activation of the apoptotic machinery. Cisplatin also 
activates the p38 mitogen-activated protein kinase-mediated 
apoptotic pathway. These pathways function as an upstream 
signal for TNF-α mediated inflammation and injury, which 
has been identified as a significant mediator of tubular 
injury after exposure to cisplatin. Indeed, TNF-α–deficient 
mice are resistant to cisplatin toxicity,51 although it remains 
unclear if TNF-α induces injury and alters renal function 
through inflammation or by directly inducing apoptosis. 
Cisplatin also alters the expression and activation of cell 
cycle proteins such as p21 and cyclin-dependent kinase 2 
and increases the expression of the tumor suppressor, p53, 
which activates the executioner caspases-6 and -7 and results 
in apoptosis via the mitochondrial pathway.52 Similarly to 
ischemic injury, cisplatin also activates Bax and Bak. The 
importance of this mechanism is underscored by the partial 
protection from cisplatin-mediated injury observed in Bax 
knockout mice.53

Rhabdomyolysis-induced myoglobin also can result in 
toxic injury to the kidney. In particular, myoglobin alters 
the interaction between the Jun N-terminal kinase and the 
14-3-3 protein, both of which promote apoptosis through 
Bax, Bid, and Bad.54

CELL DEATH REGULATED BY NECROSIS 
DURING ACUTE KIDNEY INJURY

More recent evidence that necrosis occurs in regulated and 
genetically controlled pathways has led to a great expansion 
in our knowledge of some possible mechanisms behind 
the development of AKI. However, the exact mechanisms 
are still unknown, and much of the evidence is limited to 
in vitro or ex vivo studies.

Necroptosis
The contribution of necroptosis to ischemic, cisplatin, and 
hypoxia-induced injury in renal tubular cells was suggested 

APOPTOSIS DURING ACUTE KIDNEY INJURY

Apoptosis is known to be a major mechanism of early tubule 
cell death in IR injury and nephrotoxic AKI.27 Animal models 
of ischemic and nephrotoxic AKI as well as tissue biopsies 
in human AKI in the context of kidney transplantation 
consistently have shown apoptotic changes in tubular 
cells.31–35 However, the extent of apoptosis in vivo is difficult 
to quantify for several reasons:
1.	 It is a rapidly occurring process.
2.	 It is heterogeneous in any individual kidney.
3.	 Clearance of apoptotic cells by the phagocytic machinery 

is known to be very efficient and fast.

Ischemia Reperfusion Injury
During ischemia, the proapoptotic protein Bax in the TEC 
is activated,36,37 which results in reduction of the antiapop-
totic Bcl-2,38 and thus resetting of the pro-/antiapoptotic 
machinery (i.e., Bax/Bcl-2 ratio) balance towards the initia-
tion of apoptosis. Although other possible Bcl-2 family 
members have been implicated, Bax/Bak double knockout 
cells and mice studies have provided evidence that Bax is 
the primary perpetrator of outer mitochondrial membrane 
damage.39 Binding (and blocking) of antiapoptotic Bcl-2 
proteins (Bcl-2 and Bcl-XL) by Bim and Bad also has been 
proposed as a mechanism favoring apoptosis in this setting. 
This is supported by the observation that activation of stress 
kinases, such as Akt and phosphorylates Bad, results in 
the release of Bcl-XL and thereby promotes cell survival.40,41 
Another important stress kinase activated in the setting of 
ischemia that is related to mitochondrial injury in the 
proximal TEC is glycogen synthase kinase 3-β (GSK3β). 
During ischemia and ATP depletion, GSK3β activation 
promotes apoptosis via Bax in TEC and in vivo, and inhibi-
tion by interference RNA knockdown promotes TEC sur-
vival.42 Furthermore, pharmacologic inhibition of GSK3β 
(using TDZD-8) inhibited the activation of Bax and caspase-3, 
limited TEC damage, and protected renal function in a rat 
model of 30-minute IR after left nephrectomy.42

Other mechanisms have been proposed to explain the 
activation of the apoptotic machinery during ischemia in 
TEC. The first is that TEC expresses death receptors includ-
ing Fas, TNFR1, and Fn14 receptor,43 which are capable of 
inducing apoptosis via the extrinsic pathway. This is 
supported by the observation that blockade of Fas amelio-
rates renal injury after IR.44 The second mechanism is 
mitochondrial fragmentation, a phenomenon that seems to 
occur before activation of Bax after ischemic injury. Mito-
chondrial fission (the process by which one mitochondria 
divides into two daughter organelles) is actually a normal 
quality control process that is balanced with fusion (the 
process of merging two mitochondria) to maintain a healthy 
pool of functional organelles. Fragmentation represents the 
disruption of these mitochondrial dynamics; fission is 
activated with the translocation of Drp1 to mitochondria 
in the context of cell stress and is accompanied by a 
characteristic arrest of fusion. Bak, which is located on the 
outer mitochondrial membrane and binds mitofusin-1 and 
-2 to maintain fusion, has been implicated in altering fusion 
during cell stress. Bak dissociates from mitofusin-2, binds 
with higher affinity to mitofusin-1 (arresting fusion),45 and 
allows Drp1 to proceed with the formation of a restriction 
ring that activates the cleavage of the organelle. Blockade 
of Drp1, genetically or pharmacologically, prevents frag-
mentation, suppresses TEC apoptosis, and limits AKI.46 A 
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and ATP-independent form of cell death. The exact methods 
by which parthanatos is regulated remains unknown. PARP1 
is proteolytically inactivated during apoptosis70 but is likely 
involved in multiple pathways of regulated necrosis, 
although the extent of this remains elusive. A role for PARP1 
activation was shown in TRAIL-induced necroptosis 
downstream of RIPK1 and RIPK3.71 However, inhibition of 
PARP1 also has failed to prevent TNF-α–induced necrosis, 
and the inhibition of RIPK3 has failed to block PARP1 
activation and cell death.72 Pharmacologic inhibition or 
gene ablation of PARP1 protects rodent kidneys from both 
IR- and cisplatin-mediated AKI.73,74 In ischemic kidneys, 
PARP1 expression and activity was increased in the S3 
segments of the proximal tubule specifically, where it 
inhibited glycolysis via poly(ADP-ribosyl)ation of glycer-
aldehydes 3-phosphate dehydrogenase (GAPDH).63 The 
decrease in activity of GAPDH leads to the vulnerability 
of the proximal tubule cell in the context of ischemic injury; 
the poly(ADP-ribosyl)ation of GAPDH and the resultant 
inhibition of anaerobic respiration exacerbates ATP depletion 
and induces necrosis.

Pyroptosis
The necrotic-like cell death mode, pyroptosis, is a form of 
programmed cell death that was once thought to occur 
solely in macrophages and leukocytes during inflammatory 
conditions in which intracellular danger signals lead to 
the production of proinflammatory cytokines, such as IL-1β 
and IL-18, and eventually lead to cellular swelling and 
death. Cells undergoing pyroptosis are characterized by 
the activation of nonapoptotic caspases such as caspase-1, 
which mediates cytokine maturation. It has been described 
in the renal TEC during animal and cellular models of IR 
and hypoxia-reoxygenation injury, respectively.75 Membrane 
rupture and cytokine release into the interstitium lead to 
further inflammation and exacerbated AKI.

Ferroptosis
Ferroptosis is an iron-dependent cell death regulated by 
glutathione peroxidase 4 (GPX4).76 Conditions of cysteine 
and reduced glutathione (GSH) depletion favor ferroptosis. 
Ferroptosis is characterized by accumulation of lipid  
oxidation products, particularly those produced from  
the oxidation of polyunsaturated fatty acids (PUFA) in 
membrane phospholipids.60,76,77 As the name implies,  
there is a role of iron in ferroptosis, but the exact mecha-
nisms of its involvement is not clear. Iron may act to  
catalyze free radical formation directly in the cytosol (e.g., 
via Fenton chemistry) and/or as a cofactor for an enzyme 
essential for the PUFA oxidation that precedes ferroptosis. 
The lipoxygenase (LOX) pathway has been implicated as 
a potential iron-dependent catalyst in phospholipid  
oxidation in ferroptosis.76 Morphologic characteristics of 
ferroptosis include the presence of small mitochondria  
with increased membrane density. However, it is not  
associated with chromatin condensation, rupture of the 
plasma membrane, swelling of cytoplasmic organelles, or 
formation of cytoplasmic vesicles.76 Recent studies provide 
evidence for the occurrence of iron-dependent ferroptosis 
in the renal tubules in models of severe IR and oxalate  
crystal-induced AKI.60

Among the eight GPXs that humans have, GPX4 is the only 
one that can reduce oxidized phospholipids in membranes, 
thus its catalytic activity is critically important for cellular 

by the protective effect of necrostatin-1 (Nec-1), which is 
an inhibitor of RIPK1.55-57 Nec-1 also protected rat proximal 
tubule cells in vitro from cyclosporine A–induced cytotoxic-
ity.58 RIPK3 (a downstream effector of RIPK1) knockout 
mice also were shown to be protected against IR renal 
injury.14 It has been suggested that Nec-1 could prevent 
ferroptosis in RIPK1-deficient cells, a finding that questions 
the specificity of Nec-1 for necroptosis.59 In fact, deletion 
of FADD or caspase-8 did not sensitize renal tubules to 
undergo necroptosis, and application of Nec-1 did not protect 
freshly isolated tubules from hypoxic injury.60 In addition, 
in a murine model of contrast-mediated AKI, it has been 
suggested that although tubular cells did not appear to 
undergo cell death, Nec-1 also may alter peritubular perfu-
sion.61 The exact role of necroptosis in kidney injury remains 
unclear; however, these data suggest that necroptosis is 
most likely not the sole mode of regulated cell death in 
renal tubules.

Cyclophilin D–Mediated Regulated Necrosis
Necrotic cell death during acute ischemic injury is believed 
to largely occur secondary to mitochondrial permeability 
transition pore (MPTP) formation, which is thought to be 
composed of the F1/F0 ATP synthase on the inner mito-
chondrial membrane and Bax/Bak on the outer membrane.62 
The opening of the MPTP results in the movement of 
cytoplasmic water and solutes (≤1500Da) into the mito-
chondrial matrix, loss of the mitochondrial inner membrane 
potential, mitochondrial dysfunction, interference with ATP 
production, increased production of ROS, organelle swelling, 
catastrophic energy failure, and eventual cell rupture and 
death.63 Cyclophilin D (CypD) is a regulator of the MPTP 
pore. CypD knockout mice are protected from the necrosis 
associated with IR injury in the kidney,64 and the opening 
of the MPTP can be inhibited by the action of CypD inhibi-
tors such as cyclosporin A. However, the MPTP can still 
open in response to high levels of ROS and calcium overload 
even in the absence of CypD.65 IR to the parenchyma of 
the kidney leads to the activation of the nuclear repair 
enzyme, poly(ADP-ribose) polymerase 1 (PARP1), and the 
transcription factor p53, which can further initiate inflam-
matory signaling and pathways that induce necrosis through 
the opening of the MPTP.

Parthanatos
Parthanatos is a caspase-independent cell death mode 
involving the DNA damage-responsive enzymes, poly(ADP-
ribose) polymerase (PARP) proteins, in particular PARP1. 
These are ADP-ribosyl transferase enzymes that transfer 
ADP-ribose groups from NAD+ to their target proteins and 
can control a variety of cellular processes. The activation 
of PARPs occurs through DNA breaks induced by ultraviolet 
light, ROS or alkylating agents, increased Ca2+ concentrations, 
or posttranslational modifications.15,66,67 PARP activation 
contributes to the restoration of cellular homeostasis in 
conditions with mild DNA damage. However, PARP1 
overactivation can deplete cells of NAD+ (impairs cellular 
metabolism) and consequently ATP (cellular energy crisis) 
and lead to the release and accumulation of the mitochondria-
toxic PAR polymer from the nucleus, which then induces 
the translocation of active, truncated apoptosis-inducing 
factor (tAIF) from mitochondrial membrane to the nucleus 
and causes chromatin condensation and large-scale DNA 
fragmentation.68,69 This culminates in a caspase-independent 
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regulated necrosis,15,81 whereas ferroptosis seems to have 
iron-dependent rather than calcium-dependent signaling.76 
In line with this ferroptosis can be inhibited by the iron 
chelator, deferoxamine, which scavenges accumulated iron 
in lysosomes to inhibit Fenton-type reactions.76 Ferroptosis 
also can be inhibited pharmacologically by ferrostatin-1 
(Fer-1), a synthetic, potent antioxidant molecule whose 
mechanism of action is still not entirely clear.76,82 A third-
generation ferrostatin, 16-86, was shown to decrease renal 
injury after severe IR.60

POTENTIAL THERAPIES

Although apoptosis has been the target for drug development 
for many years, the recent advancement in knowledge of 
the cellular machinery behind additional nonapoptotic 
regulated cell death pathways has led to the development 
of several promising strategies for new therapeutics (sum-
marized in Table 20.2).

health. Conditional deficiency of GPX4 in the kidney has 
been shown to cause ferroptotic death of tubular epithelial 
cells leading to acute kidney injury, which was ameliorated 
by liproxstatin-1, a spiroquinoxalinamine derivative.59 GPX4 
activity relies on GSH levels, and GSH depletion leads to 
the loss of function of GPX4.78 The key determinant of GSH 
synthesis in the cell is the availability of cysteine, which 
is transported into the cell as cystine (the oxidized form of 
cysteine) via the system Xc (cysteine/glutamate antiporter). 
Inhibitors of system Xc (such as Erastin) and inhibitors of 
GPX4 (such as RSL3) can trigger ferroptosis.76,77

Cell death caused by inhibition of the Xc– Cys/Glu 
antiporter by an excess of the neurotransmitter glutamate 
originally was classified as oxytosis.15,79,80 In oxytosis, excess 
extracellular glutamate is thought to inhibit system Xc, 
thus decreasing intracellular cysteine and subsequently 
GSH levels. It is likely that oxytosis and ferroptosis share 
common pathways at least in some tissues. However, 
oxytosis is known to heavily rely on calcium influx, which 
activates the noncaspase proteases, calpains, facilitates 
lysosomal membrane permeabilization (LMP), and induces 

TABLE 20.2 

Promising Pharmacologic Inhibitors of Regulated Cell Death

COMPOUND
MOLECULAR 
TARGET PRIMARY EFFECT

INDICATION(S) AND CURRENT RESEARCH/
DEVELOPMENT STATUS

IDN-6556 Caspases Small-molecule, pan-caspase inhibitor Liver transplant (phase 2 clinical trials)
Hepatitis C (phase 2)

IDN-6734 Caspases Small-molecule, pan-caspase inhibitor Acute myocardial infarction (phase 1)
Amifostine P53 Small molecule; inhibits p53 Reduction of cisplatin nephrotoxicity (FDA 

approved)
Minocycline Cytochrome 

c release
Small compound; inhibits 
cytochrome c release

Amyotrophic lateral sclerosis (phase 3)
Huntington disease (phase 2)

SS-31 
(elamipretide)

Cardiolipin Inhibits cytochrome c peroxidase 
activity, protects mitochondrial 
cristae membranes from damage

Heart failure (phase 2), primary 
mitochondrial disease (phase 2), 
atherosclerotic renal artery stenosis/IR 
injury (phase 1 + 2)

Necrostatins, 
ponatinib83

RIPK1 Stabilize RIPK1 Ponatinib is approved for adults with T3 
15I-positive chronic accelerated or 
blast-phase chronic myeloid leukemia, or 
Philadelphia chromosome positive ALL84

GSK872, GSK840, 
dabrafenib85,86

RIPK3 Blocks phosphorylation of MLKL Dabrafenib, BRAF-mutant tumors including 
melanoma (phase 1, 2, and 3)

Necrosulfonamide87 pMLKL Unknown Experimental preclinical studies
Sanglifehrin A, 
cyclosporin A14

Cyclophilin 
D

Prevents mitochondrial membrane 
potential-related necrosis

Sanglifehrin and other cyclophillin 
inhibitors in hepatitis C

INO-1001 PARP Small molecule; inhibits PARP (poly 
[adenosine diphosphate–ribose] 
polymerase)

Ischemia-reperfusion injury (phase 1)

Olaparib87 PARP1 Inhibits PARP1-mediated parthanatos Advanced solid tumors including pancreatic, 
breast and lung cancer (Phase I/II)

GPX4 mimics GPX4 Blocks ferroptosis Experimental preclinical studies
Ferrostatins82

Liproxstatin-159
Lipid 
peroxidation

Loss of plasma membrane integrity Preclinical studies

Adalimumab TNF-α Anti–TNF-α neutralizing monoclonal 
antibody

Rheumatoid arthritis, psoriasis, Crohn’s 
disease (FDA approved)

Infliximab TNF-α Anti–TNF-α neutralizing monoclonal 
antibody

Rheumatoid arthritis, Crohn’s disease (FDA 
approved)

Etanercept Type 2 TNF 
receptor

Type 2 TNF receptor (TNF-R2)/
immunoglobulin G fusion protein, 
inhibits TNF-α

Rheumatoid arthritis, Crohn’s disease (FDA 
approved)

Edaravone Free radicals Small molecule; free radical 
scavenger; antioxidant

Acute myocardial infarction (phase 3)
Approved in Japan for stroke

FDA, US Food and Drug Administration; RIPK1, receptor interacting serine/threonine-protein kinase 1; MLKL, mixed lineage kinase domain-like;  
TNF, tumor necrosis factor.
Modified from Mulay et al. Necroinflammation in kidney disease. J Am Soc Nephrol 2016;27:27–39; Xie et al. Ferroptosis: process and function. Cell 
Death and Differentiation 2016;23:369–379; ClinicalTrials.gov.



Key Points

1.	 Cell death is a normal process that occurs in health 
and disease and can be classified into two distinct 
categories: accidental cell death and regulated cell 
death.

2.	 Regulated cell death, particularly the subtype 
programmed cell death, includes a number of 
genetically encoded pathways that are used by 
cells to maintain homeostasis in the face of adver-
sity and thus represents important adaptive 
strategies.

3.	 Apoptosis and regulated necrosis have been docu-
mented in AKI secondary to ischemia and ischemia 
reperfusion and nephrotoxic injury.

4.	 Regulated cell death is considered an integral 
component of the pathophysiologic mechanism 
leading to AKI of diverse causes such as ischemia, 
ischemia reperfusion, and nephrotoxicity.

5.	 Multiple regulated cell death pathways have now 
been identified, and the understanding of these 
mechanisms may provide insight into novel targets 
for the development of mechanism-based therapies 
to prevent and treat acute kidney injury.
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