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CHAPTER 19 

Humoral Mediators in Sepsis
Vincenzo Cantaluppi, Sergio Dellepiane, Ciro Tetta, Filippo Mariano, and Giuseppe Segoloni

OBJECTIVES
This chapter will:
1. Identify the complex imbalance of proinflammatory and 

antiinflammatory mediators in sepsis.
2. Describe the biologic actions of the most prominent classes 

of mediators associated with sepsis.
3. Review the involvement of inflammatory cells (endothelium, 

monocytes/macrophages, polymorphonuclear neutrophils).

Local infection may develop into a systemic inflammatory 
response syndrome that encompasses a complex mosaic of 
interconnected events, including the so-called compensatory 
antiinflammatory response syndrome.1 A 2002 hypothesis 
holds that a defective host innate response may render 
bacteria resistant to host recognition and defense mecha-
nisms, leading to systemic infection and sepsis.2 In higher 
organisms, a variety of host defense mechanisms control 
the resident microflora and, in most cases, effectively prevent 

invasive microbial disease. Many microbial pathogens avoid 
host recognition or dampen the subsequent immune activa-
tion through sophisticated interactions with host responses, 
but some pathogens even benefit from the inflammatory 
reaction. The defective response of the host may depend 
on a unique genetic makeup of a pathogen that can render 
it more resistant to antibiotics or on disturbances in the 
integrated response of the innate arm and the adaptive arm 
of the immune system. Differences in reactivity of dendritic 
cells to microbial molecules through Toll-like receptors 
(TLRs) are associated with susceptibility and resistance to 
microbes.3

HUMORAL MEDIATORS IN THE 
PATHOGENESIS OF SEPSIS

A wide range of bacterial-derived molecules have been 
shown to have a role as humoral mediators in sepsis 
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a role in the pathophysiology of sepsis, such as surface-
expressed and soluble adhesion molecules, kinins, thrombin, 
myocardial depressant substances, endorphin, and heat 
shock proteins.

In physiologic conditions, the biologic activity of 
sepsis-associated mediators is under the control of specific 
inhibitors that may act at different levels. In sepsis, the 
homeostatic balance is altered and a profound disturbance 
of relative production of different mediators may be 
observed (as reviewed by Cavaillon et al.9). On one side, 
the spillover into the circulation of mediators intended 
to have autocrine or paracrine effects generates systemic 
effects, including endothelial damage,10 procoagulant and 
fibrinolytic effects, complement activities, hemodynamic 
shock, and vasoparalysis.11–17 On the other side, monocytes 
demonstrate a profound inability to produce cytokine when 
they are challenged with different stimuli ex vivo.18,19

In this setting, recent studies showed that different 
circulating mediators may have a role as predictors of 
outcome and of disease severity: presepsin, a protein cleaved 
from the monocyte-specific CD14 receptor complex after 
binding with LPS is able to discriminate sepsis severity.20 
Angiopoietin-2 (Ang-2) is an endothelial-derived molecule 
able to increase vascular leakage: serum Ang-2 levels are 
increased during sepsis and associated with disease sever-
ity.21 Soluble CD40 ligand (sCD40L) shows prothrombotic 
and proinflammatory properties after binding to its cell 
surface receptor CD40. Circulating sCD40L levels are sig-
nificantly higher in septic patients than in controls and in 
nonsurvivors.22 Furthermore, several cell fragments are 
identifiable in plasma of septic patients, including apoptotic 
bodies, necrotic fragments, and actively released extracellular 
vesicles (EV). EV are membrane-coated particles carrying 
tissue specific lipids, proteins mRNA, and microRNA. Sepsis 
is associated with a massive increase of EV production; 
the main sources of septic EV are leukocytes, platelets, and 
injured endothelial cells.23 EV promote microvascular 
dysfunction and systemic inflammation.23 In addition, 
pathogens can exploit human EV to propagate the infection 
and may release toxic EV by themselves. Human immuno-
deficiency virus and herpesviruses can be shuttled by host 
EV; this allows to spare cell contagion by an immune-
privileged shuttle. Hepatitis B virus (HBV) and several 
bacteria release vesicles as a red herring for host immune 
system; Anthrax bacillus delivers toxins to target cells by 
its particles.24 Some parasites, such as Leishmania, release 
immune-inhibiting EV that reduce macrophage activity.25

Coagulation Cascade Activation in Sepsis:  
the Role of Platelet-Activating Factor
Coagulopathy can be seen in essentially all patients with 
severe sepsis. The earliest signs of consumptive coagulopathy 
in sepsis are a decrease in protein C level and an increase 
in D-dimer level. In patients with more severe consumptive 
coagulopathy, prothrombin time and partial thromboplastin 
time increase, with drops in fibrinogen level and platelet 
count. In addition, fibrinolysis also is impaired in severe 
sepsis.26 LPSs cause a direct activation of coagulation through 
the upregulation of tissue factor on the surface of endothelial 
cells and monocytes. The tissue factor expression in turn 
activates factor VII of the extrinsic system, leading to 
thrombin formation and generation of fibrin clots. Thrombin 
is a multifunctional serine protease with the primary func-
tion of cleavage of circulating protein substrates: e.g., 
conversion of fibrinogen to fibrin monomer or activation 
of protein C. However, thrombin also has important actions 

pathogenesis: all together, these substances have been 
classified as pathogen-associated molecular pattern molecules 
(PAMPs) that include bacterial lipopolysaccharide (LPS), 
microbial lipopeptides, microbial DNA, porins, formylme-
thionine (f-Met) proteins, peptidoglycan, and lipoteichoic 
acid. PAMPs are able to trigger the interaction between the 
Toll-like receptors and the related molecules (MD-2, MyD88), 
the principal sensors of the innate immune response.4,5 In 
the last decades, several other bacterial-derived products 
have been shown to play a role in the pathogenic mecha-
nisms of systemic inflammation and sepsis-associated tissue 
injury. In this setting, quorum sensing (QS) represents a 
new and heterogeneous class of signal molecules of bacterial 
colonies regulating microbic growth, biofilm formation, 
virulence, and antibiotic resistance. Gupta et al. demon-
strated that QS from Pseudomonas aeruginosa is able to 
elicit cytokine release.6 Moreover, QS may regulate the 
activation of the coagulation cascade and monocyte response 
to the inflammatory environment.7

Other humoral mediators may be released by injured 
cells during sepsis. Indeed cell injury promotes the release 
of the so-called endogenous damage-associated molecular 
pattern molecules (DAMPs) that include RNA/DNA frag-
ments, S100 proteins, heat shock proteins, and the chromatin 
protein high-mobility box group 1 (HMBG1). HMBG1 is a 
TLR4 ligand, and its circulating levels have been shown 
to correlate with organ dysfunction in critically ill patients. 
Another study has proven that circulating plasma free DNA 
is a predictor of mortality.8

Stimulus-receptor coupling activates different signal 
transduction pathways, leading to exacerbated generation 
of cytokines and phospholipase A2–dependent, arachidonic 
acid–derived platelet-activating factor (PAF), leukotrienes, 
and thromboxanes (Fig. 19.1). At the plasma level, activation 
of the complement (C3a, C5a, and their desarginated 
products) and coagulation pathways interacts with the 
process, because products generated in the fluid phase may 
in turn trigger and sustain cell activation. Other agents play 
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FIGURE 19.1 The drawing schematically represents the leukocyte-
endothelium as a result of cytokine production and fluid phase 
activation. Rolling, tethering, and, finally, attachment of leukocytes 
to the endothelium layer is mediated by the expression of several 
adhesion molecules and the platelet-activating factor, release of 
proteolytic enzymes, and cationic proteins that enhance vascular 
permeability. Similar mechanisms induce cell activation (mediator 
production) and complement activation, leading to tissue injury 
by resident or recruited circulating cells. H2O, Water; NO, nitric 
oxide; PLA2, phospholipase A2. 
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human subjects reproduces the initial phase of bacterial 
infection.35 In human subjects, LPS alters capillary integrity 
and affects the cardiovascular system,36 causes production 
of cytokines,36–38 and activates the coagulation-fibrinolytic 
pathways.39 Peak concentrations of IL-1, TNF-α, IL-6, and 
IL-8 occur within 2 to 3 hours of LPS infusion.26,27 Studies 
on knockout mice have shown that intercellular adhesion 
molecule-1 (ICAM-1) mutant mice are resistant to the lethal 
outcome of endotoxin-induced pneumonitis.40

What is the relevance of circulating cytokines? The pres-
ence or absence of detectable levels of cytokines within 
biologic fluids reflects a rather complex balance between 
enhancing and inhibitory signals acting on producer cells, 
between production and catabolism, and between the binding 
of cytokines to the target cells and the modulation of their 
receptors on the cell surface.41 Furthermore, the presence of 
cytokines does not necessarily parallel their activity, and a 
possible interplay between a given cytokine and its relative 
inhibitor (if known) should be considered. Cavaillon et al.9 
called the expression of circulating cytokines “the tip of 
the iceberg,” implying that neither the presence nor the 
absence of cytokines can reflect the complex interplay at the 
tissue level. Despite the fact that the peak concentrations 
of cytokines may reflect an exacerbated production, these 
levels do not necessarily represent enhanced bioactivity.

Based on the previous experimental and clinical observa-
tions, the concept of sepsis as a simply proinflammatory 
event has been challenged in recent years (Fig. 19.2).42 
Indeed, after a first phase characterized by a systemic 
inflammatory response syndrome, cell-associated cyto-
kines in peripheral blood mononuclear cells progressively 
decrease, and the most relevant decline is observed for 
TNF-α and IL-1b, IL-6, IL-10, and IL-12.43–45 Terms such as 
monocyte deactivation, immunoparalysis, and, more simply, 
cell hyporesponsiveness indicate the inability of cells to 
respond ex vivo to LPS stimuli owing to overproduction of 
antiinflammatory cytokines. Hyporesponsiveness not only 
is present in mononuclear cells but also occurs in whole 
blood,36 and it is associated with increased plasma levels of 
IL-10 and prostaglandin E2, which are potent inhibitors of 
the production of proinflammatory cytokines.46 Adib-Conquy 
et al.47 demonstrated that, upon LPS activation, peripheral 
mononuclear cells from patients with systemic inflamma-
tory response syndrome show patterns of nuclear factor-κB 
(NF-κB) expression that resemble those reported during LPS 
tolerance: global downregulation of NF-κB in survivors of 
sepsis and patients with trauma and the presence of large 

on cells. It is a potent activator of platelets and causes 
endothelial cells to deliver the leukocyte adhesion molecule 
P-selectin to their surfaces, to secrete von Willebrand factor, 
to elaborate growth factors and cytokines, and to synthesize 
PAF. Such cellular actions of thrombin may account for its 
role in controlling early cellular behavior during sepsis.27

On the other hand, an indirect activation of the coagula-
tion cascade on the surface of endothelial cells can be 
triggered by proinflammatory mediators generated by sepsis, 
including tumor necrosis factor (TNF), interleukin-1 (IL-1), 
complement fragments, and PAF. In addition, activation of 
coagulation in sepsis also can occur indirectly throughout 
the activation of the contact system.

Many experimental and clinical observations suggest 
that PAF or PAF-like lipids are involved in the unregulated 
inflammation and pathologic thrombosis observed in septic 
shock.28 PAF contributes to acute sequestration and endo-
thelial adhesion of neutrophils and to induction of nitric 
oxide synthase in experimental endotoxemia.29 In mice, 
the overexpression of the PAF receptor increases lethality 
in response to administration of LPS.30 However, disruption 
of the PAF receptor gene in mice caused a marked reduction 
in systemic anaphylactic symptoms, but mice remained 
sensitive to bacterial endotoxin.31

In humans, several studies have shown the presence of 
intravascular PAF activity in septic patients.32–34 PAF is 
present at high concentrations in blood and bronchoalveolar 
lavage fluid and occupies specific platelet receptors, and 
the rate of its catabolism is reduced.33 In patients with acute 
renal failure (ARF) associated with septic shock, PAF was 
present in high concentration in plasma, in association 
with platelets, and in urine. Plasma concentration of PAF 
correlated with the severity of renal failure and with indexes 
of renal inflammatory injury, such as urine IL-6 and IL-8 
levels. Interestingly, a negative correlation between con-
centration of PAF in blood and number of circulating 
platelets was observed, suggesting a PAF-dependent activa-
tion of platelets during septic shock.32,34

Proinflammatory and Antiinflammatory Cytokine 
Network During Sepsis
The pathogenesis of sepsis was described initially as an 
overproduction of proinflammatory factors in the host. The 
concept was established on the basis of several studies. 
The injection of LPS into experimental animals and healthy 
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FIGURE 19.2 The first response to an inflammatory response 
is characterized by the prompt production of several pro-
inflammatory mediators. The extent of this response is 
important because a reduced early inflammatory response 
is associated with the unconstrained invasion of the invading 
organism. The response, which acts at first at a local level, 
may extend to the systemic level, giving rise to the so-called 
systemic inflammatory response syndrome (SIRS). As a result 
of a counterbalanced effect, production of antiinflammatory 
cytokines begins, which antagonizes the inflammatory 
response (compensatory antiinflammatory response syndrome 
[CARS]). 
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apoptosis is a potential mechanism for immunosuppression 
during sepsis.65 Endotoxin and inflammatory cytokines 
induce apoptosis in the myocardium, contributing to cardiac 
dysfunction.66

Several studies demonstrated that apoptosis and necrosis 
are typical features of acute septic, ischemic, and nephro-
toxic ARF.67 Indeed, ischemia, growth factor deficiency, loss 
of cell-matrix or cell-cell interactions, oxidant stress, and 
several pharmacologic compounds (e.g., cisplatin, antibiotics, 
calcineurin inhibitors) are potential causes of apoptosis in 
tubular cells. Some other molecules, such as TNF-α, Fas 
ligand, and angiotensin, can induce tubular apoptosis via 
the activation of specific receptors located on tubular cells. 
Given the described increase in inflammatory cytokine levels 
in AKI, the direct involvement of such cytokines in tissue 
injury seems probable. Thus inflammatory cytokines are 
able to activate tubular apoptosis through the upregulation 
of Fas and the activation of caspases.

Sepsis also is associated to a further pathway of pro-
grammed cell death defined as necroptosis. This is a highly 
immunogenic form of necrosis activated by receptor-
interacting protein kinase 1 and 3 (RIPK1, 3) and represents 
a second-line defense mechanism of the host involving 
caspase-8 activation. During sepsis, the combination of 
several humoral signals (such as IFN-γ and TNF-α) can 
reverse the RIPK/caspase-8 imbalance, promoting necroptosis 
and, consequently, tissue inflammation.68

In addition, these substances cause shedding of tubular 
cells from the basal membrane, with consequent lumen 
obstruction and possible back-leakage of tubular fluid in 
the interstitial spaces.60

The altered function induced by different causes in 
distant organs can result in the systemic release of inflam-
matory mediators that are potentially involved in kidney 
injury through the activation of apoptotic processes. 
Moreover, tubular cells regulate cytokine handling and can 
cause a further increase in these substances, as reported 
after renal ischemia-reperfusion injury.69

Inflammatory cytokines are also able to effect a variety 
of nonlethal alterations in epithelial and endothelial cells, 
in particular loss of cellular polarity and tight junction 
dysfunction.70,71 Epithelial tight junction proteins have some 
major functions, working as a regulatory barrier that sepa-
rates and maintains biologic fluid compartments of different 
composition. In addition, tight junction proteins play a key 
role in the maintenance of polarity, cell growth, and dif-
ferentiation. In different epithelial districts, inflammatory 
cytokines are known to increase permeability, via a nitric 
oxide–dependent mechanism, by altering the expression 
of some tight junction proteins, such as zonula occludens-1 
(ZO-1), ZO-2, ZO-3, and occludin.72,73 AKI has been shown 
to involve alterations in tight junction proteins and disrup-
tion of actin cytoskeletal fibers. These changes lead to a 
misleading expression of apicobasal molecules, such as the 
integrins that anchor tubular cells to basal membrane or 
Na+, K+–ATPase, which regulates tubular sodium handling. 
Such alterations can contribute to some pathologic manifesta-
tions of AKI, including impairment of sodium readsorption 
and shedding of tubular cells in the lumen, causing obstruc-
tion and back-leakage of tubular fluid and activation of the 
tubule-glomerular feedback.74 Moreover, these functional 
alterations of tubular epithelial cells induced by systemic 
inflammation also may lead to cell dedifferentiation in the 
so-called epithelial-to-mesenchymal transition, a biologic 
process at the basis of a maladaptive repair of the kidney 
finally leading to chronic kidney disease.60

PAMPs and DAMPs can be freely filtered by glomeruli 
reaching tubular cells through the lumen or they alternatively 

amounts of the inactive homodimer in the nonsurvivors of 
sepsis. This immune anergy is associated clinically with 
the late-onset mortality of septic patients.48

In intensive care medicine, blocking one mediator has 
not led to measurable outcome improvement in patients 
with sepsis.49 Possibly more rigidly defined subgroups would 
profit from TNF-antagonizing treatments.50 On the other 
hand, it has been shown that antagonizing a cytokine may 
lead to deleterious consequences, which in turn leads to 
substantially higher mortality.51 A low-level TNF-α response 
seems to be necessary for the host defense to infection,52 
and high levels of TNF-α apparently must be modulated 
by antiinflammatory feedback. In sepsis, however, impaired 
regulation may cause an excessive antiinflammatory 
response, which generates monocyte “immunoparalysis” 
and exposes the host to further infections. Both processes 
(inflammation and antiinflammation) are designed to act 
in response to specific stimuli in a well-balanced fashion 
defined as immune homeostasis.

Furthermore, the time of therapeutic intervention in sepsis 
seems to be crucial.53 Because the network acts as a cascade, 
early intervention would seem most beneficial. Sepsis shows 
complex and multiple rises in mediator levels that change 
over time. Neither single mediator–directed nor one-time 
interventions therefore seem appropriate. One of the major 
criticisms of continuous blood purification treatment in 
sepsis, its lack of specificity, could turn out to be a major 
strength. Unspecific removal of soluble mediators—be they 
proinflammatory or antiinflammatory—without complete 
elimination of their effect may be the most logical and 
adequate approach to a complex and long-running process 
such as sepsis to restore immunohomeostasis.54,55

The contribution of inflammatory cytokines to the 
determination of hemodynamic alterations with consequent 
tissue hypoperfusion and injury acquires a particular rel-
evance in the clinical setting of multiple-organ failure. It 
has been proven that damaged organs can release a plethora 
of immune mediators that further contribute to Systemic 
Inflammatory Response Syndrome (SIRS). In particular, 
activated kidney tubular cells produce TNF-α, MCP-1, IL-8, 
IL-6, IL-1β, and TGF-β, regulated on activation, normal T 
cell expressed and secreted (RANTES), and epithelial 
neutrophil activating peptide 78 (ENA-78)56,57; cardiomyo-
cytes release TNF, interferon-γ and high quantities of 
natriuretic peptides,58 injured pneumocytes release IL-1β, 
IL-6, IL-8 and TNF-α.59 Moreover, in the context of SIRS, 
these cells are able to act as immune antigen-presenting 
cells by expressing MHC II and costimulation molecules, 
thus worsening tissue inflammation and damage.60

The importance of acute kidney injury (AKI) in the 
induction of functional alterations in distant organs (organ 
cross-talk) has only lately emerged and is discussed in 
other chapters. Cytokine production during acute inflam-
matory disorders such as sepsis is usually the result of 
the interplay between genetic and environmental factors. 
Studies on genetic polymorphism of the host immune 
response may help in identifying patients with a higher 
susceptibility to developing acute inflammatory disorders.61 
In this clinical setting, a wide range of studies over the last 
decades tried to identify the specific mediators responsible 
for organ damage, without success. On the basis of the 
proven absence of a “magic bullet” to interfere with these 
detrimental processes, extracorporeal techniques, which 
achieve unspecific increases in cytokine clearance, have 
acquired a primary importance.62–64

Proinflammatory cytokines induce a direct injury to 
several cell types, in particular via the activation of the 
apoptotic processes. It has been shown that lymphocyte 



of apoptotic processes and leading to simultaneous 
tissue injury and immunoparalysis.

3. The contribution of inflammatory cytokines to the 
determination of hemodynamic alterations, with 
consequent tissue hypoperfusion and injury, 
acquires a particular relevance in the clinical setting 
of multiple-organ failure.

4. The “inflammatory milieu” can modulate innate 
and adaptive immunity through the activation of 
different cell types.
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Key Points

1. Cytokine production during acute inflammatory 
disorders such as sepsis is usually the result of 
the interplay between genetic and environmental 
factors.

2. Inflammatory cytokines induce a direct injury to 
several cell types, in particular via the activation 
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