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Renal Blood Flow and Perfusion Pressure
François Beloncle, Lise Piquilloud, and Pierre Asfar

OBJECTIVES
This chapter will:
1.	 Examine the relation between renal blood flow and renal 

perfusion pressure.
2.	 Investigate the determinants of renal perfusion pressure.

In healthy humans, renal blood flow (RBF) is around 1.2 L/
min, which accounts for 20% of cardiac output. Contrary 
to many other organs, in which blood flow is regulated 
according to metabolic needs, renal metabolic work is a 
function of RBF. RBF is a major determinant of glomerular 
capillary filtration pressure and therefore of the glomerular 
filtration rate (GFR). The relationship between RBF and 
renal perfusion pressure is complex. According to Ohm’s 
law, in kidneys as in all other organs, blood flow entering 
the organ is equal to

∆P R

where ΔP = perfusion pressure = input pressure – output 
pressure and R = resistance to flow through that organ. 
Input and output pressures often are considered equal to 
mean arterial pressure (MAP) and organ venous pressure, 
respectively. However, important features must be taken 
into account to ensure a better understanding of renal 
hemodynamics. First, renal vascularization is autoregulated, 
meaning that RBF is constant over a broad range of values 
of renal perfusion pressure. In addition, as suggested by 
the previous equation, although MAP often is considered 
a surrogate of perfusion pressure, renal venous pressure 
should not be neglected, especially in certain clinical situ-
ations where it may be increased (heart failure, increased 
intraabdominal pressure, or septic shock).

Knowledge of the pathophysiologic characteristics 
of renal hemodynamics is essential to promote efficient 
resuscitation in critical patients. This chapter focuses on 

the relationship between RBF and renal perfusion pressure 
as well as on the determinants of renal perfusion pressure.

RELATIONSHIP BETWEEN RENAL BLOOD 
FLOW AND PERFUSION PRESSURE, OR 
RENAL AUTOREGULATION

Definition of Autoregulation
In kidneys, as in the brain1 and the heart,2 blood flow 
entering the organ is constant, regardless of perfusion 
pressure in a range of values called the autoregulation zone 
(Fig. 18.1).3,4 In this zone, a decrease in renal perfusion 
pressure is associated with a decrease in intrarenal vascular 
resistances (mainly because of changes in afferent arteriolar 
tones); conversely, an increase in renal perfusion pressure 
is associated with an increase in intrarenal vascular resis-
tances, leading to blood flow adaptation. Below the lower 
and above the upper autoregulation thresholds, organ blood 
flow is proportional to perfusion pressure.

Autoregulation Zone
Lower and upper autoregulation thresholds vary depend-
ing on the autoregulated organ5 and on the patient’s age 
and associated comorbidities (chronic hypertension in 
particular).

Physiologic Conditions
The autoregulation threshold is higher in the kidneys than 
it is in the heart or the brain.5 In healthy dogs, when using 
models with an inflatable cuff placed around the renal 
artery to modify renal input pressure and various RBF 
measurements after stepwise reductions in renal input 
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be cautious, considering the autoregulation zone cannot 
be delineated in each specific patient, and the autoregulation 
phenomenon may even be altered in certain clinical 
situations.

Mechanism of Autoregulation
RBF autoregulation is mediated by at least two interacting 
control mechanisms: the intrinsic myogenic reflex of pre-
glomerular vessels and the tubuloglomerular feedback (TGF).

The myogenic response occurs in all organs. In kidneys, 
it involves mainly the afferent arteriole (and secondarily 
the interlobular artery). Changes in arteriolar transmural 
pressure are sensed by vascular smooth muscle cells and 
transduced through the membrane potential of these cells. 
Membrane depolarization after an increase in arteriolar 
transmural pressure leads to the activation of L-type calcium 
channels and myogenic constriction.3,15 This phenomenon 
is very quick: an increase in renal perfusion pressure induces 
the vasoconstriction of afferent arterioles within 300 ms.10,16

The TGF mechanism is slower than the myogenic 
response (approximately 1 s) and is specific to renal auto-
regulation. Changes in the volume and composition of the 
outflow of filtrate from the thick ascending limb are sensed 
by the macula densa. The exact nature of these changes is 
still a matter of debate, but it may include osmolality, 
sodium, or chloride concentration. An increase in one of 
these sensed signals indicates an increase in the GFR and 
leads to adenosine triphosphate (ATP) or adenosine libera-
tion by macula densa cells, inducing an afferent arteriolar 
vasoconstriction (in turn inducing a decrease in capillary 
glomerular pressure and in RBF).17,18

Autoregulation mechanisms make it possible to maintain 
a constant RBF over a large renal perfusion pressure range. 
However, this phenomenon involves mainly the afferent 
arteriole and the interlobular artery and not postglomerular 
circulation. Peritubular capillaries, which vascularize 
tubules, are not involved directly in autoregulation mecha-
nisms but are affected by preglomerular flow, depending 
on these mechanisms.

DETERMINANTS OF PERFUSION PRESSURE

Two major determinants affect perfusion pressure: MAP 
and venous pressure. In critical patients, interventions 
aiming at increasing MAP (i.e., catecholamines and fluid 
infusions) also may lead to an increase in venous renal 
pressure.19

Mean Arterial Pressure
MAP usually is considered a major objective for resuscita-
tion. Given that autoregulation thresholds are lower in the 
kidneys than they are in the brain and heart, a MAP slightly 
higher than the renal lower autoregulation threshold may 
be the most adequate MAP target in patients with shock.

The impact of the MAP target on renal function has 
been studied primarily in patients with septic shock. In 
such cases, the Surviving Sepsis Campaign Guidelines 
recommend a MAP target higher than 65 mm Hg.20 However, 
a higher target may be appropriate to prevent the occurrence 
of AKI.

Some observational studies have attempted to delineate 
an optimal MAP target in septic patients.21,22 Varpula et al. 

pressure, the lower renal autoregulation threshold ranges 
from 50 to 90 mm Hg.6,7 However, precise renal autoregula-
tion threshold values are not known in humans.

Pathophysiologic Conditions
Chronic hypertension is known to shift the autoregulation 
zone to the right (see Fig. 18.1).8,9 Autoregulation mecha-
nisms seem to be more efficient in maintaining RBF in 
high rather than low MAP ranges.10 Furthermore, in some 
clinical situations (sepsis in particular), autoregulation may 
not be maintained, and if autoregulation is maintained, the 
autoregulation thresholds may change. Experimental and 
clinical data remain controversial with regard to sepsis. This 
question is complicated further by the role of vasoactive 
drugs on systemic and renal hemodynamics. In a model 
that used rats, early sepsis did not modify the relationship 
between RBF and MAP, suggesting that autoregulation may 
be conserved.11 Data on renal autoregulation in septic 
patients are scarce. More generally, little is known about 
RBF changes in human sepsis. Rector et al. showed that 
RBF assessed by paraaminohippuric acid extraction ratio 
measurement after catheterization of the right renal vein 
increased in five out of six patients with severe sepsis.12 
In another study that involved using a percutaneously 
placed thermodilution catheter in the renal arteries of 
eight critically ill patients (seven septic), RBF increased 
from the time of initial evaluation to the time of follow-up 
evaluation 24 to 72 hours later. However, the time of initial 
evaluation during the course of sepsis was not determined.13 
In a study including septic patients with MAP between 
70 and 100 mm Hg, RBF assessed by cine phase-contrast 
magnetic resonance imaging was lower in septic patients 
than in control healthy patients.14 For all these studies, 
remember that renal hemodynamics may be different at 
different phases (initiation, maintenance, and recovery) of 
acute kidney injury (AKI).

As such, some authors assume that the objective of 
resuscitation should specifically target a MAP level higher 
than the lower autoregulation threshold to allow an adequate 
renal perfusion (cf. below). However, when drawing clinical 
conclusions from these physiologic data, physicians should 
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FIGURE 18.1  Renal autoregulation in patients with or without chronic 
hypertension. In the autoregulation zone, renal blood flow is 
constant, irrespective of the perfusion pressure. The lower and 
upper autoregulatory thresholds are higher in patients with chronic 
hypertension than in normotensive patients. 
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in the two groups. However, the incidence of AKI (defined 
by the doubling of serum creatinine levels) and the rate 
of renal replacement therapy were lower in the high MAP 
target group in the prospectively defined group of patients 
with previous hypertension.

Fewer data are available on the relationship between 
MAP, RBF, and renal function in other clinical situations.

In a situation close to septic shock, in 12 postcardiac 
surgery patients with vasodilatory shock and AKI, an 
increase in MAP from 60 to 75 mm Hg was shown to improve 
renal oxygen delivery, the renal oxygen delivery/consumption 
relationship, and the glomerular filtration rate.33 However, 
an increase from 75 to 90 mm Hg did not lead to any changes 
in these parameters.

In patients with hemorrhagic shock, a high MAP target 
may lead to a major fluid overload resulting in coagulopathy 
because of dilution of coagulation factors and hypothermia. 
Moreover, it may favor the bleeding process. These elements 
led some authors to develop the concept of hypotensive 
resuscitation. To the best of our knowledge, however, the 
impact of this strategy on the kidneys has not been assessed.

Renal Venous Pressure
The impact of increased renal venous pressure on RBF 
(and GFR) has long been known in physiologic studies34 
and has been described especially in patients with heart 
failure.35 In right-sided heart failure, the increase in right 
atrial pressure causes an increase in the backup venous 
pressure in all abdominal organs (including the kidneys) 
and a decrease in the gradient between the mean circulatory 
filling pressure and the right atrial pressure. In addition, 
this situation often is associated with a decrease in the 
cardiac output and with a neurohormonal vasoconstrictor 
response. All these mechanisms lead to AKI in right-sided 
cardiac heart failure, as in cardiac tamponade, a right-sided 
myocardial infarction or a severe pulmonary embolism. 
The mechanisms also explain the AKI frequently observed 
in patients with global heart failure.

The role of renal congestion has been described more 
recently in critically ill patients outside the situation of 
heart failure. In an observational study involving 12,778 
patients admitted into an ICU, venous congestion (defined 
as presence of either peripheral edema or increased central 
venous pressure) was associated with an increased risk of 
AKI.36 A study has shown that, in patients with sepsis, an 
increase in central venous pressure (and probably of renal 
venous pressure) was associated with AKI.37 This harmful 
effect may be linked with the numerous descriptions of 
the deleterious effect of positive fluid balance in critical 
patients.38 The negative outcome probably is due at least 
in part to an increase in renal interstitial pressure.

Pathophysiologic mechanisms seem to be close to 
those observed in cases of intraabdominal hypertension.39 
In critically ill adults, intraabdominal pressure usually 
ranges from 4 to 7 mm Hg. Intraabdominal hypertension 
is defined as sustained or repeated pathologic elevation 
of intraabdominal pressure ≥12 mm Hg. The abdominal 
compartment syndrome, corresponding to a severe form 
of intraabdominal hypertension, is defined as sustained 
elevation of intraabdominal pressure ≥20 mm Hg associated 
with new organ dysfunction.40 However, kidney function 
may be altered with much lower intraabdominal pres-
sure levels.41,42 Experimental models have shown that an 
increase in renal parenchymal and renal vein pressures 
may lead to a decrease in renal perfusion pressure and may 
render the occurrence of AKI more likely.43,44 However, an 

showed that the best predictive MAP threshold value for 
30-day mortality was 65 mm Hg and that the time spent 
under this value was correlated with 30-day mortality. 
However, these results were limited by the strong correlation 
between MAP level and disease severity. In the study by 
Dünser et al. that included 274 patients with sepsis or septic 
shock, results were adjusted according to disease severity.22 
The hourly time integral of MAP drops below 55 mm Hg 
during the first 24 hours was associated with a significant 
increase in 28-day mortality. However, there was no dif-
ference in 28-day mortality between MAP drops below 60, 
65, 70, and 75 mm Hg. Moreover, the area under the ROC 
curve to predict the need for renal replacement therapy 
was highest for the hourly time integral of MAP drops 
below 75 mm Hg, which suggests that a MAP level higher 
than 65 mm Hg may be necessary to prevent AKI. Conversely, 
in a posthoc analysis of a large randomized trial,23 the MAP 
level was not associated with mortality or the occurrence 
of disease-related events when using logistic regression 
models.24 Age and chronic arterial hypertension did not 
affect the association between MAP and mortality or AKI. 
In an observational prospective study involving 217 patients, 
a low MAP averaged over 6 hours or 12 hours to 24 hours 
was shown to be associated with a high incidence of AKI 
at 72 hours only in patients with septic shock and AKI at 
6 hours.25 A MAP threshold between 72 and 82 mm Hg 
was found to predict AKI at 72 hours. In 423 patients with 
severe sepsis from a large prospective observational FINNAKI 
study,26 time-adjusted MAP was lower in patients presenting 
progression of AKI within the first 5 days of admission 
into the intensive care unit (ICU) than in patients without 
AKI progression.27 The threshold of 73 mm Hg was shown 
to be the MAP value to predict progression of AKI. However, 
as in the study by Badin et al.,25 results were not adjusted 
depending on the severity of the disease.

Several prospective interventional studies were aimed 
at delineating an optimal MAP target in septic patients to 
preserve kidney function.28–30 Designs of these studies were 
globally similar. MAP levels were increased from 60 or 
65 mm Hg to 85 or 90 mm Hg over a short period of time 
by increasing the catecholamine infusion rate. Urine 
output28,29 and renal function28 were not altered during these 
studies. However, in a study assessing the renal resistive 
index measured by echography in 11 septic patients, an 
increase in MAP from 65 to 75 mm Hg for 2 hours resulted 
in an increase in urinary output and a decrease in the renal 
resistive index.30 A further increase from 75 to 85 mm Hg 
did not lead to any changes in these parameters. The renal 
resistive index does not represent renal resistance but is 
influenced by many other determinants.30,31 Patients included 
in these small interventional studies usually were already 
hemodynamically stabilized. Assessment timing is probably 
a key point in understanding the relation between MAP 
and renal function given that pathophysiologic mechanisms 
of renal failure may vary during the progression of sepsis, 
from mainly pressure-dependent mechanisms to mainly 
injury-dependent mechanisms.

The SEPSISPAM study, a randomized open-labeled trial, 
including 776 patients within 6 hours after the initiation of 
vasopressors, showed that a MAP level higher than 65 mm 
Hg may be necessary to prevent the occurrence of AKI in 
patients with a history of chronic hypertension.32 Patients 
were randomized into two MAP target groups (65–70 vs. 
80–85 mm Hg) with stratification according to previous 
chronic hypertension. The MAP target was maintained 
from day 1 to day 5 (or until the patient was weaned from 
vasopressor support). Twenty-eight and 90-day mortality 
rates and overall rates of organ dysfunction did not differ 



2.	 Autoregulation thresholds are not known in humans 
and may be altered in patients with chronic 
hypertension or in the case of sepsis.

3.	 Changes in renal venous pressure may lead to 
significant changes in renal perfusion pressure and 
play a major role in the occurrence of AKI in certain 
clinical situations.
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isolated increase in renal parenchymal pressure does not 
seem sufficient to cause AKI.45 In addition, intraabdominal 
hypertension also may lead to a decrease in cardiac output, 
which is associated with a decrease in RBF. Furthermore, 
an increase in inflammatory mediators may be observed in 
case of intraabdominal hypertension and may induce AKI.46

CONCLUSION

RBF is autoregulated, meaning that it is constant over a 
broad range of perfusion pressure. In patients with shock, 
an MAP target higher than the lower autoregulation threshold 
may be sufficient for an adequate RBF. However, autoregula-
tion thresholds are not known in humans and may be altered 
in patients with chronic hypertension. Moreover, autoregula-
tion may be altered in patients with shock (particularly in 
the case of sepsis). Furthermore, changes in renal venous 
pressure may lead to significant changes in renal perfusion 
pressure and play a major role in the occurrence of AKI in 
certain clinical situations.

Key Points

1.	 Renal blood flow is constant over a broad range 
of perfusion pressure.
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