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CHAPTER 15 

Genetic Predisposition for Acute Kidney 
Injury (AKI)
Didier Payen

OBJECTIVES
This chapter will:
1.	 Describe the strategies used for looking at single nucleotide 

polymorphisms associated with acute kidney injury traits.
2.	 Review the main studies reporting associations between 

genes of interests and acute kidney injury traits.
3.	 Propose to develop “agnostic” genome-wide associations 

to discover potential pathways involved in acute kidney 
injury.

BACKGROUND

Genetic Approaches
The field of genetic implication on many diseases results 
from studies of Mendelian traits, in which typically there 
was a one-to-one relationship between a mutation and a 
phenotype.1 Diagnostic and prognostic values of identifying 
such mutation are strongly related. In contrast, genetic 
studies for more complex diseases, a fortiori for syndromes 
as acute kidney injury (AKI), have looked at genetic variants 
associated to occurrence, severity, or outcome of these 
syndromes. Prevalence of variants differs only slightly 
between persons with a given syndrome or disease and 
those without it, having then little or no predictive utility. 
This apparent limitation for using genetic tests may be seen 
as irrelevant for the studied syndrome. However, it may 
represent therapeutic targets for potential interventions on 
gene-associated biologic pathways. For the vast majority 
of variants associated with complex disease, we have no 
understanding of the biologic processes and pathways 
involved in disease causation; this is an important problem. 
Moreover, little is known about the function of the majority 
of genes in the genome. As a consequence, we have no 

way of knowing whether the causal variant increases or 
decreases gene expression, modifies protein interactions 
or localization, or changes their activity.

The development of large-scale studies using genome-
wide associations (GWAs) sounds adequate, because this 
method has a high resolution for single nucleotide poly-
morphism (SNP) detection, is an “agnostic” evaluation, 
can be related to any trait, and may provide signals in 
previously unsuspected genes or gene “desert.” The rapid 
advances in technology and quality control permit reliable 
genotyping of up to 1 million SNPs in a single sample of 
an individual.1 Only a few GWAs have been performed in 
nephrology, and none has been performed on AKI in 
intensive care patients. One example applying the GWAs 
method for kidney disease was reported in 2011, looking 
at SNPs associated with the biopsy-proven diagnosis of 
idiopathic membranous nephropathy.2 Among investigated 
SNPs, only one (HLA-DQA1 allele in chromosome 6p21) 
was associated closely with this glomerulopathy in person 
with white ancestry.

Association With Candidate Genes
Another approach is based on association of candidate genes 
identified in several ways. Most are suggested by studies 
of immune mechanisms in infectious diseases, such as major 
histocompatibility (MHC) genes and cytokine and chemokine 
genes and their receptors. This chapter reports mainly such 
studies but with the limits of these studies to interpret the 
results from literature.3 This is complicated by apparent 
inconsistencies between different populations for any 
associations primarily because of poor study design. The 
small number of patients with lack of power to detect 
convincing allelic associations with odds ratios less than 
2 or greater than 0.5 are the main causes for the limited 
validity of these studies. Performing sequential studies, 
using the results from the first raising a small number of 
specific hypotheses for testing in the second, is an efficient 
means to deal with extensive allelic diversity. The adequately 
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nuclear cells (PMNs) with a high rate of apoptotic cells. 
Surprisingly, relatively few lesions related to renal ischemia 
could be described.9 The selection of genes of interest for 
potential susceptibility to AKI then may be linked to the 
main pathways fitting to these observations. The selection 
of the clinical traits to be tested in terms of SNPs association 
is an important step. It could be the prediction of the risk 
of AKI, the risk of severe AKI, or the outcome of AKI patients. 
Some reviews have reported the results published from 
1950 until 2014 on polymorphisms associated with AKI4 
or from 2000 to 2014.3

GENES ASSOCIATED WITH ACUTE  
KIDNEY INJURY

Mechanistic Approach to Select Gene Associations
The combination of acute insults and comorbidities renders 
complex and hazardous the demonstration of associated 
genetic polymorphisms supporting the concept of individual 
susceptibility to AKI. In consideration of the cell compart-
ments of the normal renal tissue, potential susceptibility 
may concern epithelial cells, endothelial cells, and resident 
immune cells. In stress conditions with systemic inflam-
mation, the immune cell compartment may largely change,10 
as observed in renal biopsies.9 One important acceptable 
hypothesis is to consider the blood milieu as a “good biopsy” 
for renal inflammation markers, cell activation, transcriptome, 
and genotyping guiding the selection of genes of interest. 
In 2009 Lu et al.11 performed a systematic review of genes 
that influence AKI covering the period from 1950 to 2007. 
They found 16 studies on cohort or case-cohort investigating 
35 SNPs in 21 genes associated with AKI. The studied 
populations were primarily critically ill premature infants 
or adults or postcardiac surgery patients. At this time, five 
different definitions of AKI have been used, an important 
confounding factor for analysis. Among the reported SNPs, 
only one polymorphism (APO E e2/e3/e4) was present in 
more than one study showing a significant impact on AKI 
incidence.11 The mean quality score was low, studies were 
heterogeneous, and the scarcity of studies precluded 
additional meta-analysis of the results. They concluded 
that “current association studies are unable to provide 
definitive evidence linking genetic variation to AKI. Future 
success will require a narrow consensus definition of AKI, 
rigorous epidemiologic techniques, and a shift from a priori 
hypothesis-driven to genome-wide association studies.”11

Investigated Gene Associations With Acute  
Kidney Injury
Inflammatory Genes
If the consensus definition of the AKI goal has been 
achieved,12 there were no reported GWAs studies on AKI. 
More recently, another review on systematic literature 
focused on genetic predisposition to AKI or outcome was 
published.3 The researchers searched in databases cover-
ing the period between 2000 and 2015 and followed the 
recommendations of the Human Genome Epidemiology 
Network. Among the 4027 selected articles with interest 
in genetic variability in AKI, only 37 articles were selected, 
keeping only 28 articles after removing those published 

matching control group to the cases is another difficult 
problem to resolve, especially in large urban cities. The 
limits of such approach are the following3:
1.	 The limitation of SNP association with genes supposed 

to control pathways known to play a role in the complex 
disease

2.	 The impossibility to discover new genes/pathways that 
had never been described in such diseases

3.	 The lower resolution than the one obtained with GWAs 
method

4.	 The poor reproducibility according to the patient’s 
selection, the cohort size, and the traduction in potential 
therapies

Genetic Variability and Acute Kidney Injury
The evaluation of potential contribution of genetic variability 
on occurrence, course, and severity of AKI sounds like a 
reasonable approach, because patients facing similar injury 
conditions may or may not develop an AKI, even after 
controlling the confounding factors such as comorbidity.3 
In absence of any GWAs on AKI population, only studies 
about association between preselected polymorphism(s) 
and AKI have been reported.3,4 As mentioned above, some 
limitations impede the validity of the results: limited size 
of the investigated cohorts, heterogeneity between patients 
because of different medical context, AKI definition, and 
supportive therapies, especially renal replacement therapy 
(RRT). The a priori determination of association between 
SNPs of genes of interest and AKI had restricted the inves-
tigation to several pathways known for their implication in 
AKI mechanisms. Among these mechanisms, inflammation, 
metabolism, control of renal vascular tone, and reactive 
oxygen species production or their “detoxifying” routes 
were reported most frequently.3,5 This chapter summarizes 
the main results of SNPs associated with AKI, grouping 
results of recent reviews testing the quality control of the 
published results and more recent individual articles.3,4

DIFFICULTIES IN DEFINING THE GENES OF 
INTEREST IN ACUTE KIDNEY INJURY

Because AKI is a syndrome and not a disease, it is tempting 
to group the accepted arguments for AKI mechanisms to 
better define the genes of interest.5 Because the leading 
clinical conditions associated with AKI (sepsis, major surgery, 
heart failure, and severe hypovolemia) frequently are associ-
ated with the presence of shock, it seems logical to attribute 
AKI to renal hypoperfusion/ischemia in presence of hypoten-
sion and/or low systemic blood flow.5 However, sepsis-
induced AKI was shown to be associated rarely with decreased 
RBF states,6 with a concomitant elevated cardiac output 
after fluid challenge resuscitation and/or pressors infusion 
to maintain blood pressure.7,8 AKI may occur in the absence 
of overt signs of hypoperfusion or shock or in absence of 
macrohemodynamic signs of hypoperfusion. This observation 
prompts to consider other mechanisms than renal hemo-
dynamic impairment, such as inflammation, alteration of 
microvascular flow at the peritubular and glomerular levels, 
alteration of mitochondrial function, and cell cycle arrest.5 
This statement is supported strongly by the observations 
made on renal biopsies performed early after patient death 
in a context of severe sepsis or septic shock.9 These biopsies 
showed important infiltration by monocytes and poly morpho 
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25 C/G and IFN-γ +874 T/A may be a risk factor for ICU 
patients to the develop AKI and/or to die. In the studied 
population, the polymorphism of TGF-β and IFN-γ was not 
associated as a risk factor for AKI or death. In 2012 Payen 
et al. reported the association between AKI severity and 
outcome and the genotyping of 13 HLA-DRB1 alleles.20 The 
major complex of histocompatibility class II (MHC II) is 
key for the “synapse” between innate and adaptive immu-
nity.17 It is well evaluated in antigen-presenting cell 
membranes by the surface expression of HLA-DR.18 In 
addition, HLA-DR is expressed constitutively in peritubular 
and glomerular capillary endothelium,19 a unique organ 
property that may contribute to the kidney response to 
foreign antigens. Among the mosaic of MHC class II genes, 
HLA-DRB genes are highly polymorphic and were chosen 
to detect a haplotype-phenotype association with a greater 
probability. This expression was measured in 176 multi-
centric adult patients in severe sepsis and septic shock.20 
The genotyping concerned 13 alleles of HLA-DRB1. The 
presence of at least four HLA-DRB1 alleles or more appeared 
protective for severe AKI, with a significantly lower (58%) 
proportion in patients with severe AKI requiring RRT than 
in those having severe AKI without RRT (84%).

As mentioned above, the infiltration of the kidney at the 
acute phase of sepsis by inflammatory cells seems clear21 
and may be a key mechanism for tubular cells’ functional 
impairment.5 Such a concept was verified by in 2016 by 
Chousterman et al.21 using a mouse model of AKI and human 
data. The observed adhesion of the monocyte on renal vascular 
wall depends on intensity of the expression of a chemokine 
receptor CX3CR1, which may then modulate the extent of 
kidney lesions. These lesions were shown reduced when 
CX3CR1 activity increased in several conditions such as 
coronary artery disease22 or neuroglioblastome23 and others. 
As part of the paper, the search for a polymorphism for gene 
controlling CX3CR1 activity was investigated in a multicentric 
cohort of 239 severe septic or septic shock patients. The 
CX3CR1 polymorphism (VV genotype of VI genotype) tested 
the allele I249 versus V249. In vitro adherence of peripheral 
blood monocyte from healthy donors heterozygous for the 
I249 allele were significantly more frequent than those 
homozygous for V249 allele. The I249 allele then was tested 
in the cohort of 239 septic patients. The I249 allele was 
present in nearly 50% of the patients and was associated 
with a lower incidence of AKI after elimination of confounding 
factors, with an odds ratio of 0.43. This result showed that 
the I249 allele of CX3R1 is associated with a reduced AKI 
incidence in septic patients, probably related to the protective 
effect of CX3CR1 activity.

Genes Regulating the Vasomotor Tone
Because hemodynamic and inflammatory mechanisms are 
intricate, looking at polymorphisms for pathways participat-
ing in the control of vascular tone is reasonable. Six studies 
have investigated angiotensin-converting enzyme (ACE) 
insertion/deletion polymorphism.3 Four studies failed to 
detect association with increased risk of AKI and necessity 
for RRT in ICU patients or after cardiac surgery. The two 
remaining studies provided contradictory results.24,25 Only 
one study has shown an association between the ACE 
D-allele and an increased risk of postoperative AKI after 
cardiac surgery.24 It becomes difficult to draw any conclusion 
about a true association between ACE polymorphism and 
risk of AKI.

Similarly, polymorphism within catechol-o-methyl 
transferase (COMT) gene and AKI was negative for two 

in abstract form only. These articles were heterogeneous 
with a moderate quality (mean 6.4 of 10). The authors 
concluded, “Despite different gene polymorphisms with 
suggested associations with development or severity or 
outcome of AKI, definitive conclusions would require 
replication of associations in independent cohort studies 
and, preferably a hypothesis-free study design.”3 Details 
of the main findings of this review are presented in the 
chapter, with more recent publications genes polymorphism 
positively or negatively related with susceptibility to AKI 
or outcome. For inflammatory genes, the a priori selected 
genes focused on tumor necrosis factor-alpha (TNF-α), 
interleukin-10 (IL-10), and IL-6 cytokines release. Studies 
performed in adult patients having cardiopulmonary bypass 
surgery showed that association between IL-6 gene -572G/C 
polymorphism or IL-10 gene -592 C/A polymorphism and 
AKI was not confirmed by subsequent studies.13 In a study 
performed in similar patients, a combination of angioten-
sinogen (AGT) gene +842C –allele and IL-6–572C –allele 
was associated with renal dysfunction.14 The most frequently 
investigated polymorphism concerned the classic TNFα-308 
G/A polymorphism.

Jaber et al.15 have evaluated single nucleotide polymor-
phisms in the promoter region of TNF-α and IL-10 in a 
cohort of 61 patients with acute renal failure requiring 
intermittent hemodialysis. Although the patients were not 
well described, 43% died with for 65% in a context of 
multiple organ failure. In the survivals, 69% recovered a 
normal renal function. They explored the relationship of 
these polymorphisms to clinical outcomes as mortality and 
recovery of renal function. Compared to genotype frequencies 
from control subjects (from literature), TNF-α high-producer 
genotypes and IL-10 low producers were more prevalent 
in the study cohort. Interestingly, performing ex vivo 
endotoxin-stimulated white cells, TNF-α, and IL-10 were 
shown higher in patients with high-producer genotype for 
TNF and for IL-10, even after adjustment for white blood 
cell count. TNF-α high-producer genotypes were associated 
with high Acute Physiology and Chronic Health Evaluation 
(APACHE) score values and were related to high risk of 
death after adjustment on APACHE level and for the presence 
of sepsis or not. IL-10 genotype, on the contrary, was not 
associated with mortality. The genetic combinations showed 
78% of survival when low-producer TNF-α and IL-10 genes 
were present and was only 45% in both high-producer 
genotypes. The authors concluded that “cytokine gene 
polymorphisms essentially predict outcome in patients with 
acute renal failure (ARF) requiring renal replacement therapy 
(RRT).” Mortality in the ARF group was higher in patients 
with the mutation -308 G→A polymorphism for the promoter 
region of TNF-α gene, associated with high levels of TNF-α 
and the -1082 G→A polymorphism of the promoter region 
of IL-10 gene associated with a lower levels of IL-10 produc-
tion. Dalboni et al.16 have tested in 303 ICU patients and 
244 healthy individuals if the TNF-α-308 G/A, IL-6 -174G/C, 
and IL-10 -1082 G/A polymorphisms may predispose to 
the development of AKI or death. The group of patients 
who developed AKI (n = 139) had a significantly lower 
incidence of TNF-α -308 GG (low-producer phenotype) than 
in the group of patients without AKI or in healthy individu-
als. Grouping the combinations of the tested polymorphisms, 
the authors observed that the combination of low TNF-α 
+ low IL-10 producer phenotypes was an independent risk 
factor to AKI and/or death and RRT in ICU patients.

In 2014 the same group reported a study performed on 
an extended cohort of similar patients investigating poly-
morphism for TGF-β and IFN-γ. They tested whether the 
genetic polymorphisms of TGF-β codon 10 T/C and codon 
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relevant genes for association with AKI in hemodynamic 
contexts was mostly those that participate in vasomotor 
tone control. The results appear poorly contributive and 
confusing, with almost no confirmation for associations. If 
the sample size and the internal replication are the most 
important criteria for quality, large cohorts have to be 
grouped and replicated from a new set of similar patients. 
In the near future, whole gene(s) should be covered instead 
of genotyping some random SNPs. Such a goal will be 
achieved using the GWAs method for non a priori studies 
using a high-flux sequencing method. The example using 
GWAs to explore SNPs association with idiopathic mem-
branous nephropathy diagnosis,2 was performed in 556 
patients originating from three populations. A large fraction 
of these patients were used to find SNP associations, which 
were tested in the remaining patients. The observed sig-
nificant association with HLA-DQA1 polymorphism with 
high odds ratio when homozygosity was present provides 
a credible result about facilitation of an autoimmune 
response against targets.

In 2010 a meta-analysis of GWAs in 67,093 individuals 
from 20 population-based studies was published.34 The 
aim was to identify new susceptibility loci for reduced 
renal function (creatinine level or creatinine clearance). 
After replication of 22,982 samples, 13 new loci affecting 
renal function and 7 loci suspected to affect creatinine 
production and secretion were identified. These results 
potentially influence nephrogenesis, podocyte function, 
angiogenesis, solute transport, and metabolic functions of 
the kidney. Such approach is warranted for AKI in intensive 
care patients.

Key Points

1.	 Genetic susceptibility for acute kidney is reasonable 
because, while facing similar stress conditions, 
some patients experience an acute kidney injury 
(AKI) and others do not.

2.	 Genetic involvement may only concern associations 
of single nucleotide polymorphisms with clinical 
traits, being out of a pure Mendelian genetic (one 
mutation-one phenotype).

3.	 Strategy for single nucleotide polymorphisms had 
been driven primarily by recognized pathways 
participating in AKI mechanisms, which implies 
a reduced chance to discover new pathways.

4.	 The future to assess a genetic susceptibility may 
come from screening a large number of genes as 
a blinded research, using the genome-wide associa-
tion method.

5.	 Until now, the small number of patients, the limited 
quality of the clinical studies, and their heterogene-
ity preclude any conclusion on a potential genetic 
role for AKI occurrence, severity, and recovery.
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studies.26,27 Because of the crucial role of nitric oxide (NO) 
in vasomotor regulation especially at the renal vasculature,28 
eNOS polymorphism associated with renal dysfunction is 
a reasonable hypothesis. Popov et al.29 have looked at the 
eNOS T-786C polymorphism in 497 patients undergoing 
cardiac surgery with cardiopulmonary bypass. This eNOS 
polymorphism, one of the most important for the regulation 
of the transcription rate of the eNOS gene, has been shown 
to be associated with various cardiovascular diseases. It 
has been reported that the presence of the C allele induces 
a significant lower promoter activity compared to the T 
allele, which is consistent with reduced NO production. 
Patients were grouped on the basis of whether they were 
homozygous or heterozygous for the C allele (TC + CC) or 
only homozygous for the T alleles (TT). TC + CC alleles 
were associated with a significant minimal creatinine 
clearance lower than in TT allele group, and a higher 
proportion of RRT during hospital stay.

Other Gene Polymorphisms
Metabolic pathways participating in immune cellular func-
tion capabilities may be seen as a potential modulator of 
inflammation.30,31 The association between renal function 
alteration and polymorphism of key enzymes or major factors 
has been investigated. In 2000 Chew et al.32 tested in 564 
coronary bypass patients the hypothesis that apolipoprotein 
E alleles could be associated with different postoperative 
changes in serum creatinine after cardiac surgery. Renal 
function was assessed by comparison between preoperative, 
perioperative, and peak postoperative serum creatinine 
levels. Inheritance of the apolipoprotein E4 allele was 
associated with reduced postoperative increase in serum 
creatinine after cardiac surgery, compared with the e3 or 
e2 alleles, which raises questions regarding apolipoprotein 
E role in AKI. These associations have not been confirmed 
by other studies.

Only one study found a polymorphism in the pro-oxidant 
enzyme NADPH (nicotinamide adenosine dinucleotide 
phosphate) oxidase p22phox,33 a key enzyme for oxidative 
stress-mediated injury. The polymorphism +242 C/T and 
on the promoter -262 of the antioxidant enzyme catalase 
gene in a cohort of 200 hospitalized patients for established 
acute renal failure of mixed cause and severity were 
investigated. Genotype associations were characterized by 
measuring plasma level of nitrotyrosine and catalase activity. 
A genotype–phenotype association was demonstrable 
between the NADPH oxidase p22phox genotypes and plasma 
nitrotyrosine level, as well as between the catalase genotypes 
and whole-blood catalase activity. Compared with the 
NADPH oxidase p22phox CC genotype, the T-allele carrier 
state was associated with 2.1-fold higher odds for dialysis 
requirement or hospital death, even after adjustment on 
confounding factors.

FUTURE DIRECTIONS:  
GENOME-WIDE ASSOCIATIONS

Most of the quoted studies have been considered to have 
an inadequate quality (mean score 6.4/10) with heterogeneity 
in defining concepts and outcomes, being underpowered 
and replicated with ambiguous results. Studies looking at 
inflammatory pathways are the most frequently reported 
investigation with poorly replicated studies. The choice of 
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