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CHAPTER 10 

Renal Energy Consumption and Metabolism
Johan Mårtensson

OBJECTIVES
This chapter will:
1.	 Describe normal renal oxygenation and energy 

metabolism.
2.	 Explore renal bioenergetics during experimental acute 

kidney injury.
3.	 Discuss the role of bioenergetic failure and renal oxygen-

ation during acute kidney injury in critically ill patients.
4.	 Review interventions with potential impact on renal oxygen 

delivery and consumption in critically ill patients.

The kidneys are among the most metabolically active organs 
in the body. Most of the energy consumed by the kidneys 
is used to maintain fluid and electrolyte homeostasis and, 
while clearing waste products from the entire body’s 
metabolism, prevent important nutrients from being lost 
in the urine. Emerging evidence suggests that disruption 
of renal bioenergetics is a major pathophysiologic event 
during development of acute kidney injury (AKI). In recent 
years, thanks to improved techniques to quantify regional 
real-time changes in renal oxygenation and energy metabo-
lism, the effects of common intensive care management 
strategies on such parameters have been unraveled. Iden-
tification of optimal therapies to improve renal bioenergetics 
therefore has become a major focus in AKI research.

NORMAL RENAL BIOENERGETICS

Renal Oxygenation and Energy Consumption
Although the kidneys constitute only approximately 0.5% 
of the total body weight, they are responsible for almost 
10% of the total body oxygen consumption and resting 
energy expenditure (approximately 150 kcal/day).1,2 Renal 
oxygen and energy consumption is a function of primary 
active transepithelial transport of filtered solutes and basal 
consumption necessary for cell survival. Basal consumption 
is required for maintaining ion gradients across cell mem-
branes, “housekeeping” (removal of dysfunctional organelles 
from the cytoplasm), and support of progression of the cell 
cycle (through the G0, G1, S, G2, and M phase) in preparation 
for mitosis. However, under normal conditions, most of 
the energy, around 80%, is consumed during reabsorption 
of filtered solutes from the tubular lumen and back into 
the blood circulation. Among primary active transporters, 
Na+/K+-ATPase is the most abundant, explaining why active 
sodium reabsorption is responsible for most of the renal 
oxygen and energy consumption.

Although increased renal blood flow (RBF) improves 
renal oxygen delivery, parallel changes in glomerular filtra-
tion rate (GFR) and sodium filtration increase tubular 
reabsorptive work and oxygen consumption. Therefore, 
unlike other major organs, the kidneys display a linear 
relationship between oxygen supply (RBF) and demand 
(sodium reabsorption). Consequently, oxygen extraction 
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may have influenced the observed corticomedullary pO2 
gradient in previous investigations by causing increased 
oxygen consumption in mTAL, decreased medullary perfu-
sion, or both. However, further studies are needed to explore 
this hypothesis.

Renal Energy Production
Renal ATP is (95%) generated predominantly via oxidative 
phosphorylation in the mitochondria (Fig. 10.2). Amino 
acids, glucose, fatty acids, and ketone bodies are the major 
substrates used for such ATP production. However, the 
substrate preference varies along the nephron. For example, 
although more distal parts of the nephron have a high 
glycolytic enzyme activity, the proximal tubule poorly 
metabolizes glucose and mainly relies on fatty acids, ketone 
bodies, and amino acids as energy fuels. In contrast, the 
proximal tubule is the only part of the nephron where net 
gluconeogenesis takes place, mainly by using lactate as 
substrate (see Fig. 10.1). Such glucose production contributes 
significantly to whole body gluconeogenesis and also may 
provide important energy substrate to the more distal parts 
of the nephron.

To meet the energy demands from active sodium trans-
port, the S1 and S2 segments, mTAL and distal convoluted 
tubule are rich in mitochondria. Among these segments, 
mTAL needs special attention because it, despite dwelling 
in a hypoxic environment, has the highest mitochondrial 
density and Na+/K+-ATPase activity (see Fig. 10.1). In contrast 
to ATP production in the proximal tubule, which is highly 
oxygen dependent, anaerobic glycolytic capacity is high 
in the mTAL-supporting ATP production required to 
maintain the Na+/K+-ATPase machinery in a hypoxic environ-
ment. In fact, even during short-term (10 minutes) renal 
anoxia, more than 70% of cellular ATP was maintained in 
the mTAL segment in an animal model.4

(i.e., the difference in oxygen content between renal artery 
and vein) remains unchanged below 2 volume percent down 
to a level of RBF when GFR ceases and RBF only supports 
basal metabolic requirements needed for tubular cell sur-
vival. Further reductions in RBF increase oxygen extraction 
until anaerobic metabolism ensues.

Renal perfusion, energy consumption, metabolic effi-
ciency, and hence the tolerance for hypoxic stress vary 
across the nephron. Normally, 85% to 90% of renal perfusion 
circulates through the cortical region. The S1 and S2 seg-
ments of the proximal convoluted tubule have a high Na+/
K+-ATPase activity, maintaining the sodium gradient neces-
sary for secondary reabsorption of glucose, amino acids, 
and water. This part of the nephron is also the most metaboli-
cally efficient; i.e., the energy and oxygen consumption 
(QO2) needed to reabsorb sodium (TNa) is lower than in 
the more distal segments. In fact, metabolic efficiency (QO2/
TNa) progressively decreases downstream from the proximal 
tubule (Fig. 10.1).

In contrast to the cortical region, the renal medulla 
receives only 10% to 15% of RBF. In addition, because of 
the countercurrent exchange of oxygen between the ascend-
ing and descending limb of the vasa recta, the effective 
medullary oxygen supply is relatively low. Yet, the medullary 
thick ascending limb (mTAL) has a high Na+/K+-ATPase 
activity and mitochondrial density and consumes a signifi-
cant amount of oxygen to maintain the medullary osmotic 
gradient. In their aggregate, high oxygen consumption 
together with low oxygen supply logically could explain 
the low medullary tissue pO2 observed in studies on 
anesthetized rats, dogs, and humans. However, a recent 
study on awake sheep found similar tissue pO2 in cortex 
and medulla despite significantly lower perfusion in the 
medullary compartment. Furthermore, a reduction in global 
RBF during partial renal artery occlusion caused a propor-
tionally greater decrease in medullary perfusion and tissue 
pO2.3 This novel finding suggests that anesthetic agents 
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FIGURE 10.1  Mitochondrial density, ATPase activity, metabolic efficiency (QO2/TNa), and major metabolic pathways in different nephron 
segments. (Modified from Sekine et al: Solute transport, energy consumption, and production in the kidney. In Alpern R, Hebert S, ed: 
Seldin and Giebisch’s the kidney. Boston, MA: Academic Press; 2008.)
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FIGURE 10.2  Adenosine triphosphate (ATP) production in kidney 
tubular cells. ATP is generated (1) via breakdown of glucose to 
pyruvate and, during aerobic respiration, through (2) oxidation of 
acetyl coenzyme A (CoA) generated from amino acids, pyruvate 
(decarboxylation catalyzed by pyruvate dehydrogenase [PDH]), 
fatty acids and ketones, and via (3) electron transport phosphoryla-
tion. Under anaerobic conditions, pyruvate is metabolized by  
lactate dehydrogenase (LDH) to lactate. ADP, Adenosine diphos-
phate; NADH, reduced nicotinamide adenine dinucleotide;  
NAD+, oxidized nicotinamide adenine dinucleotide; PDH, pyruvate 
dehydrogenase. 

TABLE 10.1 

Kidney Perfusion and Tissue Oxygenation During Experimental Acute Kidney Injury

REFERENCE (YR, 
AUTHOR, PAGE) ANIMAL SETTING

RENAL BLOOD FLOW GLOBAL RENAL OXYGENATION TISSUE PO2

TOTAL CORTEX MEDULLA RDO2 RVO2 RERO2 CORTEX MEDULLA

2009 
Johannes, 
97–103

Rat LPS 
sepsis

Decreased NR NR Decreased Unchanged Increased Decreased Decreased

2011 Dyson, 
83–89

Rat LPS 
sepsis

Decreased NR NR Decreased Unchanged Increased Decreased Decreased

2015 
Calzavacca, 
e431–e439

Sheep E. coli 
sepsis

Increased Increased Decreased Increased Unchanged Decreased Increased Decreased

2016 
Lankadeva 
100–108

Sheep E. coli 
sepsis

Increased Increased Decreased Increased Unchanged Decreased Increased Decreased

2009 
Legrand, 
F1109

Rat IRI Decreased NR NR Decreased Decreased Increased Decreased Decreased

2011 
Legrand 
192–198

Rat IRI Decreased NR NR Decreased Decreased Increased Decreased Decreased

2014 
Abdelkader, 
F1026

Rat IRI Decreased Decreased Unchanged Decreased Decreased Unchanged Unchanged Unchanged

2010 
Siegemund, 
345

Pig IRI Decreased NR NR Decreased Unchanged Increased Decreased NR

IRI, Ischemia-reperfusion injury; LPS, lipopolysaccharides; NR, not reported; RDO2, renal oxygen delivery; RVO2, renal oxygen consumption;  
RERO2, renal oxygen extraction ratio.

RENAL BIOENERGETICS IN ACUTE  
KIDNEY INJURY

Regional Oxygenation and Energy Metabolism 
During Experimental AKI
Decreased GFR, the major functional event during AKI, is 
a highly protective mechanism during renal stress. Reduced 
GFR lowers oxygen and energy demands as less sodium 
must be reabsorbed actively by the tubules. Moreover, 
transition of Na+/K+-ATPase from the basal to the apical or 
lateral membrane has been observed in response to ischemia-
reperfusion injury.5 Such relocation inhibits the Na+/K+-
ATPase machinery, potentially causing a further reduction 
in oxygen consumption. However, this idea is controversial 
as recent data suggest reduced metabolic efficiency during 
Na+/K+-ATPase relocation causing increased oxygen and 
ATP consumption. Finally, even basal oxygen and energy 
consumption can be reduced during severe renal stress or 
injury, leading to a state of cellular “hibernation.” This 
process, orchestrated by the mitochondria, involves pausing 
the cell cycle before transition from the G1 to the S (DNA 
synthesis) phase, thereby significantly reducing energy 
consumption until renal stress/injury has abated.6

However, despite marked reductions in GFR during AKI 
and the possibility of reduced energy consumption on a 
cellular level, a reduction in total renal oxygen consumption, 
which is a function of the venoarterial oxygen content 
difference, has not been confirmed consistently in animal 
AKI models (Table 10.1). Moreover, even when renal oxygen 
extraction ratio is low, indicating adequate global renal 
oxygenation, regions with impaired tissue oxygenation still 
can be seen (see Table 10.1). This contradicting observation 
has potential explanations. First, because of relatively low 
baseline oxygen extraction, the oxygen saturation in renal 
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venous blood is normally high (approximately 80%). 
Therefore regional changes in consumption may have little 
or no impact on the total renal venous saturation, a com-
ponent of the total renal oxygen consumption calculation. 
Second, as mentioned in the previous section, sodium 
reabsorption becomes less metabolically efficient during 
renal stress (increased QO2/TNa). This was illustrated in 
rats in which the amount of oxygen required to reabsorb 
1 mmol of sodium more than doubled after ischemia-
reperfusion injury.7,8 More recent work suggests that such 
bioenergetic failure may be caused by mitochondrial injury 
and/or dysfunction, possibly via reduced nitric oxide 
activity. In fact, various kidney insults—septic, ischemic 
as well as nephrotoxic—can cause mitochondrial swelling, 
a widespread reduction in electron transport enzyme activity, 
and, as a consequence, reduced ATP synthetic capacity.9 
It is possible, although not confirmed, that greater oxygen 
consumption will follow mitochondrial damage to sustain 
cellular ATP production.

Studies measuring renal tissue ATP during AKI have 
shown divergent results. During hypotensive gram-negative 
sepsis causing AKI in sheep, total renal ATP levels did not 
change despite marked reductions in RBF. Although renal 
oxygen consumption was not measured in that study, it is 
possible that it increased and thereby prevented significant 
renal ATP depletion.10 In contrast, in a canine endotoxin 
shock model causing hyperdynamic sepsis and augmented 
RBF, ATP levels decreased in the renal cortex, whereas 
medullary levels were unchanged.11 This finding agrees 
with the ability of the medullary part of the nephron to 
maintain ATP production via anaerobic glycolysis during 
renal stress.

Significant changes in metabolic functions with potential 
impact on ATP synthesis are observed during AKI. In the 
proximal tubule, gluconeogenesis from pyruvate is stimu-
lated by short-term ischemia (and other AKI forms), provid-
ing glucose as a substrate for anaerobic ATP production in 
the distal nephron.12 Importantly, enhanced gluconeogenesis 
contributes to pyruvate depletion in this nephron segment, 
which may have implications for AKI pathophysiology. In 
light of its key position in aerobic and anaerobic energy 
pathways (see Fig. 10.2) and its antioxidant and potentially 
antiinflammatory effects,13 pyruvate therapy may have a 
role in future AKI therapy (see later section).

Renal Oxygenation and Energy Metabolism During 
Clinical AKI
Data on renal oxygen delivery, consumption, and extraction 
in clinical AKI are limited. However, renal oxygenation 
during cardiac surgery–associated AKI, a condition triggered 
by ischemia reperfusion injury after cardiopulmonary bypass 
circulation, has been explored in a series of experiments by 
Ricksten et al.13a This group used the retrograde renal vein 
thermodilution technique, paraaminohippuric acid (PAH) 
infusion clearance with correction for renal extraction 
of PAH, and renal extraction of 51chromium-ethylene-
diaminetetraacetic acid (51Cr-EDTA) for quantification of 
RBF, GFR, and renal oxygen supply/demand.

In cardiac surgery patients with AKI, a significant 
reduction in RBF, GFR, and oxygen delivery was observed 
despite normal cardiac index. In contrast, despite halved 
GFR and sodium reabsorption, which logically should reduce 
renal oxygen consumption to the same degree, oxygen 
consumption was similar in patients with and without 
AKI. Metabolically inefficient sodium reabsorption likely 
explains this finding. In fact, similar to previous observations 

during experimental AKI,14 AKI patients required twice the 
amount of oxygen to reabsorb the same amount of sodium 
as the control patients without AKI.

The clinical implications of such detectable oxygen 
supply-demand mismatch are yet to be confirmed. In fact, 
a large body of evidence challenges the view that oxygen 
debt is a major trigger of renal injuries. First, even short-term 
interruption of RBF appears to have limited impact on the 
kidney structure and function.15 For example, up to 60 
minutes of total ischemia during aortic aneurysm repair or 
renal revascularization caused only a mild and transient 
increase in serum creatinine, no change in serum cystatin 
C, and minimal histologic changes. In addition, minimal 
release of urinary AKI biomarkers (NAG, LFABP, NGAL, 
IL-18, albumin) was observed. Importantly, neither of these 
changes correlated with ischemia duration. However, despite 
apparent tolerance to ischemia, mitochondrial swelling did 
occur, supporting the potential role of bioenergetic stress 
during AKI.

Second, it is well established that severe AKI can occur 
despite early restoration of RBF with fluids, vasopressors, 
and inotropes in patients with septic shock. Third, although 
patchy areas of necrosis can be seen on postmortem analysis 
in septic patients with severe AKI,16 most renal tubular 
cells appear normal on histopathologic examination.17

Finally, our ability to monitor real-time changes in renal 
oxygenation is limited. Estimation of renal oxygen extraction 
is an attractive approach but requires placement of a renal 
vein catheter, which may not be feasible outside clinical 
research protocols. However, novel data suggest that the 
partial pressure of urinary oxygen, which can be measured 
easily by an oxygen probe inserted via the urinary catheter, 
accurately reflects intrarenal oxygenation. Furthermore, 
experimental septic AKI causing reduced medullary perfu-
sion and oxygenation was detected by parallel changes in 
urinary pO2.18 Whether urinary pO2 reflects clinically 
important changes in renal oxygenation during human AKI 
and whether modification of such changes produces clinical 
advantages over standard care remains to be seen.

INTERVENTIONS AFFECTING RENAL 
BIOENERGETICS

Loop Diuretic Agents
It is well established that loop diuretic agents such as 
furosemide, bumetanide, and ethacrynic acid inhibit the 
Na+/K+/Cl- pumps located in the mTAL and consequently 
reduce sodium reabsorption and oxygen consumption in 
this part of the nephron. In addition, in animal experiments, 
administration of furosemide before and/or after renal artery 
occlusion attenuated short-term19 and longer-term20 develop-
ment of ischemia-reperfusion induced renal failure.

Moreover, in healthy humans, using blood oxygenation 
level–dependent (BOLD) MRI to assess the level of oxy-
genation in the kidney, an intravenous dose of 20 mg 
furosemide significantly increased medullary oxygenation.21 
Finally, in a subsequent study by Swärd et al., a furosemide 
bolus (0.5 mg/kg) followed by infusion (0.5 mg/kg/hr) after 
cardiac surgery decreased sodium reabsorption by more 
than 20% and caused an associated decrease in global renal 
oxygen consumption.22

However, despite such promising animal and human data, 
clinical benefits of using loop diuretics as renoprotective 
agents have not been established. A meta-analysis of nine 
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In the aforementioned study on awake sheep,29 infusion of 
vasopressin at a dose (mean 13 units/hr) that reduced global 
RBF and oxygen delivery did not significantly alter renal 
oxygen consumption, cortical and medullary blood flow, 
or tissue oxygenation. A significant increase in MAP and 
therefore RPP may have preserved renal oxygenation in 
that experiment.

Clinically, vasopressin in combination with noradrenaline 
improved urine output and creatinine clearance compared 
with noradrenaline alone despite similar cardiac index and 
MAP in a small (n = 24) randomized trial.32 However, a 
dose-dependent increase in GFR and sodium reabsorption 
in combination with decreased RBF was observed during 
low-dose vasopressin infusion (1.2–4.8 units/hr) after cardiac 
surgery, collectively reducing renal oxygenation.33

Despite concern about the renal safety of vasopressin 
resulting from oxygen supply-demand imbalance, obser-
vational data suggest beneficial effects on renal outcomes. 
For example, in a secondary analysis of the Vasopressin 
and Septic Shock Trial (VASST), septic shock patients with 
mild AKI randomized to receive low-dose vasopressin 
(0.6–1.8 units/hr) were less likely to progress to severe AKI 
or to require RRT than patients randomized to receive 
noradrenaline infusion.34 Furthermore, in patients with 
hepatorenal syndrome, another condition characterized by 
vasodilatory shock, administration of terlipressin attenuated 
AKI progression compared with placebo.35 Such promising 
clinical data must be confirmed or refuted in future random-
ized controlled trials, including critically ill patients at 
high risk of AKI.

Angiotensin II
Angiotensin II (ATII) is a renal vasoconstrictor mainly affect-
ing efferent arteriolar resistance, thereby causing increased 
GFR in the setting of reduced RBF during hyperdynamic 
sepsis.36 Consequently, increased sodium reabsorptive work 
(increased sodium filtration) together with reduced oxygen 
delivery (reduced RBF) could lead to oxygen supply-demand 
mismatch. Indeed, in awake sheep ATII reduced global RBF 
and caused an isolated decline in medullary pO2, suggesting 
reduced oxygen delivery and/or increased consumption 
in that region.29 More relevant to a clinical setting was 
the observation that in sheep with gram-negative sepsis 
causing profound hypotension and reduced RBF, a 2-hour 
infusion of ATII restored blood pressure without causing 
further reductions in RBF or negatively affecting renal tissue 
ATP levels.10 In view of such limited and contradictory 
evidence, ATII therapy currently is not recommended for 
use outside clinical studies.

Atrial Natriuretic Peptide
Atrial natriuretic peptide (ANP) mainly dilates preglomerular 
resistance vessels, causing a poised increase in RBF (oxygen 
delivery), GFR, and sodium reabsorption (oxygen consump-
tion), hypothetically preserving renal oxygen balance during 
stimulated diuresis. Indeed, after uncomplicated cardiac 
surgery, ANP-infusion (25–50 ng/kg/min) increased GFR 
and oxygen consumption. However, in combination with 
decreased oxygen delivery (RBF dropped because of systemic 
hypotension), renal oxygen extraction increased refuting 
the oxygen-conserving hypothesis in this setting and using 
these doses.22

Even so, in patients undergoing high-risk surgery known 
to cause a high rate of ischemia-reperfusion kidney injuries, 

randomized trials showed that furosemide was not effective 
in the prevention or treatment of AKI.23 Moreover, continu-
ous furosemide infusion failed to improve renal recovery 
after RRT in general intensive care unit (ICU) patients.24 
Finally, more recent studies even suggest increased AKI 
incidence and RRT requirements after diuretic therapy.25,26

Physiologically, inhibition of the Na+/K+/Cl- pumps in 
mTAL raises the downstream urinary sodium concentration, 
which may trigger the tubuloglomerular feedback (TGF) 
mechanism causing preglomerular vasoconstriction and 
decreased GFR. This hypothesis was supported by an 
observed 12% decrease in GFR after furosemide therapy 
after cardiac surgery.22 Together with a potentially reduced 
circulating plasma volume after furosemide-induced diuresis, 
TGF activation may counteract potential benefits of reduced 
kidney cellular oxygen consumption. These effects should 
be considered by clinicians when prescribing loop diuretics 
to critically ill patients with or at risk of AKI.

Vasopressors
Cardiac output, intrarenal vascular resistance, and renal 
perfusion pressure (RPP) are key determinants of RBF and 
hence renal oxygen delivery. Effectively, RPP is determined 
by the difference between mean arterial pressure (MAP) 
and central venous pressure (CVP).27 Although retrospective 
data suggest that higher indexed systemic oxygen delivery 
together with higher MAP during vasopressor therapy 
attenuates AKI progression,28 the optimal individual MAP 
target and the optimal use of vasopressors to achieve this 
target are uncertain.

Noradrenaline
Experimental data in awake, healthy sheep demonstrate 
that, although RBF and oxygen delivery were maintained 
during noradrenaline infusion, oxygen consumption 
increased, whereas medullary flow and tissue oxygenation 
decreased.29 Conversely, in patients with vasodilatory shock 
after cardiac surgery, noradrenaline-infusion to increase 
MAP from 60 to 75 mm Hg improved renal oxygenation 
by increasing oxygen delivery without affecting oxygen 
consumption. Importantly, this beneficial effect on the 
oxygen supply-demand relationship occurred despite an 
almost 30% increase in GFR.30

Finally, in almost 800 patients with septic shock randomized 
to higher (80 to 85 mm Hg) versus lower (65 to 70 mm Hg) 
target MAP using noradrenaline infusion, no overall difference 
in renal replacement therapy requirements was observed. 
However, in a subpopulation of patients with chronic hyperten-
sion, a target MAP of 80 to 85 decreased the need for RRT.31

In view of these clinical findings, administration of 
clinically relevant doses of noradrenaline during vasodilatory 
shock appears to attenuate the risk of renal injury in selected 
populations. Whether this apparent renoprotective effect 
is mediated via the noradrenaline-dependent increase in 
glomerular hydraulic pressure, via improved delivery of 
oxygen and nutrients to the kidney parenchyma, or both 
remains to be determined.

Vasopressin
Vasopressin and its analogue terlipressin are potent renal 
vasoconstrictors acting mainly on postglomerular vessels, 
causing increased hydraulic glomerular pressure and GFR. 
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These findings support the role of pyruvate as a key 
substrate of cellular energy production. They also reinforce 
the view that bioenergetic failure plays an important role 
in ischemic, nephrotoxic, and septic AKI. However, future 
studies must confirm or refute the importance of pyruvate 
depletion in human AKI and whether treatment with 
pyruvate preserves kidney structure and function in patients 
at risk.

CONCLUSION

Bioenergetic failure is emerging as a potentially important 
pathophysiologic mechanism during development of AKI 
from various causes in critically ill patients. Although much 
evidence comes from animal experiments, little is known 
about regional metabolic changes in the human kidney 
during AKI. In addition, in the critically ill patient treated 
in the ICU, changes in renal oxygen delivery, renal oxygen 
consumption, renal ATP production, and renal ATP con-
sumption are not only affected by the underlying illness 
but also modified by a complex interaction of therapies 
such as nutrition, vasoactive drug therapy, fluid management, 
blood transfusion, and oxygen therapy. Therefore the optimal 
use of such therapies to achieve maximum clinical benefit 
must be systematically explored in future randomized 
controlled trials.

Key Points

1.	 Renal metabolic activity is high mainly because 
of active reabsorption of sodium along the nephron.

2.	 Renal mitochondrial injuries, pyruvate depletion, 
and inefficient sodium reabsorption are associated 
with bioenergetic failure and AKI.

3.	 Loop diuretics appear to reduce renal oxygen 
consumption but do not prevent AKI in humans.

4.	 Although experimental data suggest that noradrena-
line improves renal oxygenation and vasopressin 
impairs renal oxygenation, both these vasopressors 
may prevent renal injuries during treatment of 
vasodilatory shock.
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ANP-infusion attenuated postoperative AKI and reduced 
the need for renal replacement therapy.37,38 Importantly, in 
these trials, the use of low-dose ANP (12.5 ng/kg/min) 
prevented systemic hypotension, which may have produced 
a favorable bioenergetic milieu in face of enhanced renal 
excretory function. Larger multicenter randomized studies 
are required to explore the feasibility, safety, and clinical 
benefits of low-dose ANP infusion as a renoprotective agent 
in critically ill patients.

Intravenous Fluid Therapy
Intravenous fluid administration is used commonly to treat 
hemodynamic instability to improve organ perfusion and 
oxygen delivery. However, contemporary studies on healthy 
sheep during normovolemic hemodilution in pigs and in 
rats subjected to hemorrhagic shock have demonstrated 
impaired renal tissue oxygenation after fluid therapy despite 
improved cardiac output and RBF.39–41 Importantly, even 
restoration of baseline hemoglobin using blood transfusion 
after hemorrhage failed to fully restore tissue oxygenation 
in one study.41 Irreversible metabolic inefficiency to reabsorb 
sodium (increased QO2/TNa), as observed by the authors, 
may explain this finding.

Similarly, despite improved cardiac index and RBF during 
postoperative plasma volume expansion with clinically 
relevant fluid volumes (either 20 mL/kg of crystalloids or 
10 mL/kg of colloids) after uncomplicated cardiac surgery, 
impaired renal oxygen delivery resulting from hemodilu-
tion was observed. However, although oxygen extraction 
increased with crystalloid therapy suggesting renal oxygen 
supply-demand mismatch, colloid bolus did not affect 
oxygen extraction.42 Because a large body of data now 
suggests that uncritical fluid administration is common 
and may impair renal outcomes,27 defining optimal fluid 
strategies in critically ill patients should be a priority for 
future studies.

Pyruvate
Based on the assumption that bioenergetic failure is a major 
mechanism during AKI development and that pyruvate 
depletion is a feature of experimental AKI, the role for 
pyruvate therapy was explored recently in separate AKI 
models. Persistent renal cortical tissue pyruvate depletion 
was observed during unilateral kidney ischemia in mice 
and up to 18 hours after reperfusion. In addition, glycerol-
induced AKI (nephrotoxic AKI model) produced similar 
results as well as a marked reduction in renal tissue ATP 
levels.

Compared with saline, treatment with pyruvate almost 
completely prevented AKI development as demonstrated 
by an attenuated increase in BUN levels, improved ATP 
levels, and a marked reduction in renal neutrophil gelatinase-
associated lipocalin (NGAL) mRNA levels. Furthermore, 
although glycerol induced histologic evidence of AKI 
(proximal tubule brush border membrane blebbing and 
cellular necrosis in cortex and outer medulla), normal 
histopathology was seen after glycerol injection in combina-
tion with pyruvate treatment.43 Finally, in a sepsis model 
in mice, administration of ethyl pyruvate even as late as 
12 hours after sepsis initiation attenuated renal injury as 
suggested by decreased serum creatinine and reduced tubular 
damage on histologic examination.13
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