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CHAPTER 7 

The Physiology of the Glomerulus
Dawson F. Dean and Bruce A. Molitoris

OBJECTIVES
The chapter will:
1.	 Explain the structure of the glomerulus.
2.	 Describe the many regulatory pathways that control blood 

flow and urine filtration and how some diseases and 
medications can affect these pathways.

3.	 Identify and describe initial symptoms of some common 
diseases that affect the glomerulus.

The study of the glomerulus is a study of vasculature. 
Glomerular flow regulation is key to kidney function and 
a window into the hemodynamics of the body. As the 
interface between the nephron and systemic bloodstream, 
glomerular injury often reflects broader systemic disease 
processes.

BASIC ANATOMY

Each kidney contains roughly 1 million glomeruli, and 
together these filter approximately 20% of cardiac output.1 
Virtually all renal blood flow will travel through the glo-
merular capillaries, and 20% of this plasma is filtered. 
Glomerular capillaries are surrounded by Bowman’s capsule, 
which comprises an inner visceral epithelium that encases 
the capillaries and an outer parietal epithelium. Between 
these two membranes is a space analogous to the potential 
space of a serous membrane like the pleural space, which 
is named Bowman’s space, and is where plasma filtrate 
begins its path down the nephron. Blood flows into the 
glomerular capillaries from the afferent arteriole and leaves 
via the efferent arteriole. The filtration fraction is the fraction 
of the plasma entering the glomerulus that is filtered into 
the renal tubule; it does not leave through the efferent 
arteriole. The glomerular filtration rate measures how much 
plasma actually is filtered. This normal filtered volume 

adds up to 144 L daily. A typical patient may make approxi-
mately 1 L of urine per day, so most of the 144 L of filtered 
blood will be reabsorbed along the nephron (Fig. 7.1).

Afferent and efferent arterioles have a complex anatomy 
that is specialized for managing renal blood flow in response 
to various conditions. Even the size of these vessels changes 
in different sections of the kidney. In the cortex, where the 
emphasis is on filtration and reabsorption, afferent arterioles 
have a larger diameter than efferent arterioles, whereas in 
the juxtamedullary glomeruli, where the emphasis is on 
maintaining a hypertonic gradient and concentrating urine, 
the afferent and efferent arterioles are much larger than in 
the cortex. More important, after blood leaves glomerular 
capillaries, it does not enter a venous system but instead 
flows into efferent arterioles and perfuses different parts 
of the kidney.

Some efferent arterioles have branches that form peri-
tubular capillaries, and these capillaries take up water and 
solute that is reabsorbed by the tubule, as well as to provide 
oxygen and nutrients to the nephron. In a sense, peritubular 
capillaries perform a mirror function to that of the glomerular 
capillaries: glomerular capillaries deposit water and ions 
into the tubule, and the peritubular capillaries take up 
water and ions that were reabsorbed by the tubule. These 
different capillaries have comparable structure, including 
fenestrations. The peritubular capillaries branching from 
the efferent arteriole of one glomerulus actually may provide 
nutrients to and remove waste from a different glomerulus. 
Thus, if the capillaries of one glomerulus are damaged, 
then they no longer supply blood to filter, and this injury 
also may reduce total blood flow to peritubular capillaries 
of a different glomerulus. Other efferent arterioles perfuse 
the medulla, and this represents about 25% of renal blood 
flow. These efferent arterioles break up into descending 
vasa recta in the corticomedullary junction. Descending 
vasa recta eventually will feed into capillary beds in the 
medulla. Thus the blood flows through two capillary beds: 
first the glomerular capillaries and then the medullary 
capillaries. The medullary capillary beds then will join to 
form ascending vasa recta, and the ascending vasa recta 
travel back up to the corticomedullary junction and feed 
into arcuate veins. There are more ascending vasa recta 
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blood flow to the remaining kidney, potentially causing  
injury.6

Limiting glomerular blood pressure by constricting the 
afferent arteriole is also clinically protective during kidney 
injury. For example, ischemic injury can injure the proximal 
tubule, where approximately 70% of sodium is reabsorbed. 
When this happens, less sodium is reabsorbed in the proxi-
mal tubule, which can lead to massive diuresis, causing 
rapid volume depletion. Some sodium may be reabsorbed 
by the distal tubule, but that cannot compensate for losing 
the large reabsorption that would normally be done in the 
proximal tubule. For example, if a kidney filters 144 L daily, 
most of this volume is reabsorbed, because there is only 1 L 
of urine made daily. Up to 70% may be reabsorbed by the 
proximal tubule. However, if that 70% of filtered volume, 
which is 100 L, were not reabsorbed by the proximal tubule, 
then a significant percentage would be lost to urine, leading 
rapidly to volume depletion. To prevent such catastrophic 
volume loss, sensors in the macula densa detect this sodium 
wasting and provide a feedback that constricts the afferent 
arteriole limiting filtration and volume loss. The afferent 
and efferent arterioles also are important when blood pres-
sure is low. Lower afferent arteriole resistance and higher 
efferent resistance allows the glomerulus to maintain normal 
filtration in spite of low blood pressure ensuring continued 
filtration efficiency. There are limits to this compensation, 
however, and renal blood flow drops off significantly when 
systolic blood pressure drops below 80.

Myogenic Response
The afferent and efferent arteriole vascular muscle constricts 
or dilates rapidly, within 0 to 8 seconds, in response to 

than descending vasa recta, possibly to accommodate lower 
pressure after the blood has passed through a second capil-
lary bed.

FLOW REGULATION

Blood flowing to the glomerulus is under higher pressure 
in the afferent arteriole than in the efferent arteriole, and 
the difference is the pressure driving filtration across the 
glomerular filtration barrier known as ΔP. There is higher 
pressure in glomerular capillaries (60 mm Hg) than in other 
capillary beds (20 mm Hg), which helps drive plasma across 
the filtration barrier into the urinary space. This pressure 
is regulated tightly, and the kidney continually constricts 
and dilates the afferent and efferent arterioles to respond 
to different systemic blood pressures and blood flow rates.

Role of Flow Regulation
Renal blood flow regulation is important for several 
reasons. Afferent arteriole vasoconstriction provides vas-
cular resistance that protects against vascular injury from 
high blood pressure. In extremely high pressure, normal 
protective mechanisms are overwhelmed and the kidney 
is still exposed to elevated blood pressures. Glomerular 
injury ensues as part of the progression to renal failure.2,3 
In addition, early diabetes leads to loss of afferent arteriole 
pressure control, despite normal systemic blood pressure,4,5 
and this may play a part in the renal injury associated 
with diabetes. Finally, as demonstrated in experiments on 
rats, loss of one kidney to nephrectomy redirects more 
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the feedback. Tubuloglomerular feedback can be affected 
by anything that affects these ion concentrations. If the 
proximal tubule did not reabsorb the ions, such as when 
there is ischemic injury to the proximal tubule, then this 
increases the concentrations reaching the macula densa 
and causes a negative feedback that constricts the afferent 
arteriole. Alternately, loop diuretics (such as furosemide) 
will inhibit the NKCC2 ion channel and therefore blunt the 
tubuloglomerular feedback.7–9 Specifically, loop diuretics 
reduce autoregulation and preserve glomerular filtration rate, 
even when there is high flow inside the tubule. So, a loop 
diuretic will cause diuresis by blocking sodium, potassium, 
and chloride reabsorption in the thick ascending limb and 
maintain diuresis by blocking absorption of these same 
ions in the macula densa, thus blunting tubuloglomerular  
feedback.

Angiotensin II
Renin is released by the juxtaglomerular granular cells (Peti-
Peterdi) and is a catalyst for conversion of angiotensinogen 
to angiotensin I, which is later enzymatically converted 
to angiotensin II by the angiotensin converting enzyme. 
Angiotensin II can have diverse effects throughout the body, 
but it also contributes to regulation of renal blood flow 
through its actions on the efferent arteriole.10 Angiotensin 
II is a vasoconstrictor11 mainly for efferent arterioles. It 
activates angiotensin II type I receptor (AT1), a G-protein 
receptor, which will activate intracellular Rho kinase in 
smooth muscle cells. Rho kinase then inactivates myosin 
light-chain phosphatase and increases smooth muscle 
myocyte contraction. As a result, Rho kinase causes 
contraction of smooth muscle cells around the afferent 
arteriole, as well as other vessels such as interlobular  
arteries.

Angiotensin II acts on AT1 receptors in afferent and 
efferent arterioles, but it will constrict the efferent arteriole 
10 to 100 times more than the afferent arteriole.12,13 As a 
result, it will tend to increase glomerular capillary pres-
sure and lead to more plasma filtered. This explains part 
of the effects of the drug class of angiotensin-converting 
enzyme (ACE) inhibitors. These inhibit the angiotensin-
converting enzyme lowering the level of angiotensin II, even 
when there are elevated levels of renin and angiotensin I. 
Lower angiotensin II reduces the contraction of the effer-
ent arteriole, thus allowing more blood to flow out of the 
glomerulus and lowering glomerular filtration. This is why 
serum creatinine rises when they start an ACE inhibitor. 
If the decline is limited, it does not necessarily mean the 
kidney is injured; instead a small decline in the glomerular 
filtration rate (GFR) means less plasma is being filtered, 
but renal blood flow is either constant or increases. Of 
course, the effects of this shunting are limited, so a larger 
drop in GFR may signal actual renal damage. In addition, 
by relatively dilating the efferent arteriole and reducing 
intraglomerular pressure, an ACE inhibitor also will reduce 
proteinuria. Proteinuria is a signal of glomerular injury 
(discussed below) and can be inflammatory. This is partly 
why an ACE inhibitor is used as part of the treatment for 
nephrotic proteinuria. Angiotensin II, however, plays a 
complex role in vascular management, both inside the kidney 
and systemically. For example, angiotensin II also acts as a 
vasodilator. It activates angiotensin II type 2 receptor (AT2), 
causing endothelial cells to release vasodilatory paracrine 
agents.14 Angiotensin II also activates EP4 receptors to cause 
synthesis of PGE2, PGI2, and NO in the afferent arterioles. 
These vasodilators will counteract the effect on Angiotensin 

pressure sensing. Stretch or distortion of the plasma mem-
brane in the muscle cells causes the membrane to change 
conductance and depolarizes the membrane. This opens 
voltage-gated calcium channels and leads to increased 
intracellular calcium. The muscle cell has a positive feedback 
cascade: intracellular calcium causes further release of 
calcium from the sarcoplasmic reticulum, leading to actin/
myosin interaction and muscle contraction. The result is 
to contract muscle cells in response to increased pressure, 
so it maintains vessel diameter in face of higher pressure. 
This is more prominent in the afferent arteriole than the 
efferent arteriole.

Tubuloglomerular Feedback
Tubule cells between the thick ascending limb and the 
distal convoluted tubule are in close proximity to the 
glomerular afferent arteriole. These macula densa cells 
release chemical signals and interact with specific cells, 
called juxtaglomerular cells, in the afferent arteriole just 
proximal to the glomerulus. Macula densa cells monitor 
intratubular salt concentrations to regulate renal blood flow 
via afferent arteriole constriction and dilation. The juxta-
glomerular cells also contain renin granules, which can 
send out a wider signal to control vascular resistance through 
the renin-angiotensin-aldosterone pathways. The coordinated 
effects of the macula densa cells and the juxtaglomerular 
cells to control vascular tone and renal blood flow is called 
tubuloglomerular feedback.

Tubuloglomerular feedback works more slowly than 
the myogenic response. The feedback responds to the 
concentration of sodium chloride in the tubule that reaches 
the macula densa; increased renal blood flow carries more 
sodium chloride into the tubule and eventually to reach 
the macula densa. Macula densa cells contain NKCC2 ion 
channels on their apical plasma membrane, which are 
similar to the NKCC ion channels in the thick ascending 
limb. When concentrations of sodium and chloride arrive 
at the macula densa, these channels will take up more ions, 
which increases intracellular concentrations of the ions. 
The increased ion concentrations activate Na/K-ATPase 
transporters in the macula densa cells’ basolateral mem-
branes, and these transporters will in turn use adenosine 
triphosphate (ATP), producing adenosine diphosphate (ADP) 
and adenosine monophosphate (AMP).

The increased levels of ADP and AMP are converted to 
adenosine and then released from the cell. Released adenos-
ine binds to A1 receptors on the juxtaglomerular vascular 
smooth muscle cells and stimulates calcium signaling in 
these cells. There is also separate evidence that AMP or 
ADP binds to P2× receptors on the vascular smooth muscle 
cells. In all cases, the adenosine signal leads to smooth 
muscle cell contraction and therefore vasoconstriction of 
the afferent arteriole. As a result, this is negative feedback: 
increased renal blood flow will lead to more sodium, potas-
sium, and chloride in the tubule, which is detected by the 
macula densa cell that then causes the afferent arteriole to 
constrict to reduce blood flow.

Evidence suggests that other signals besides adenosine 
may be involved in tubuloglomerular feedback. For example, 
the angiotensin 1 receptor seems to be involved, because 
AT1-antagonists in normal mice reduce tubuloglomerular 
feedback. So, potentially, angiotensin-receptor blockers 
(such as Losartan or Valsartan) may diminish autoregu-
lation by tubuloglomerular feedback and make patients 
more vulnerable to moderate blood pressure drops. 
There is also evidence that ACE inhibitors may blunt 
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Short- and Long-Term Regulation
Dilation and constriction of the afferent and efferent 
arterioles is a rapid response to changing blood flow, but 
this is a short-term response and may be overshadowed by 
a longer-term, more systemic response.

Short-term responses modulate blood pressure in the 
glomerular capillaries, but the long-term response manages 
sodium balance, which affects systemic blood pressure. 
For example, tubuloglomerular feedback may vasoconstrict 
the afferent arteriole in response to increased sodium and 
chloride levels in blood. This leads to temporarily reduced 
glomerular filtration rate. Over the longer term, however, 
high blood volume will cause a drop in angiotensin II, 
which will dilate the efferent arteriole. The lower angiotensin 
II, however, also leads to a lower level of aldosterone, so 
less sodium is reabsorbed, and this finally reverses the 
original elevation in vascular volume.

There is empiric evidence that increased perfusion 
pressure will lead to decreased sodium reabsorption in at 
least some nephrons,16 an effect termed pressure natriuresis. 
This leads to a salt-wasting diuresis, which is a negative 
feedback: the kidney responds to higher systemic blood 
pressure by wasting salt and volume. However, this raises 
questions of how the kidney senses the higher pressure, 
and how does it force salt wasting? There are several theories 
to explain why increased interstitial pressure will lead to 
salt wasting. One theory proposes that increased hydrostatic 
pressure in the interstitium will lead to increased capillary 
pressure in the endothelium. The endothelial cells respond 
to this increased pressure by releasing NO, and NO will 
have a paracrine effect on the thick ascending limb and 
collecting duct, causing reduced sodium reabsorption. There 
are, however, competing theories on how this mechanism 
works. In all cases, though, salt wasting will cause a diuresis 
and lower blood volume. This will help maintain a blood 
pressure and steady glomerular pressure even when systemic 
blood pressure changes.

GLOMERULAR CAPILLARIES

After entering the glomerular capsule the afferent arteriole 
branches into five to seven primary capillary branches.17 In 
humans (and rats but not mice) these capillaries form a network 
of branches and merges until they finally combine into the 
efferent arteriole. Glomerular capillaries are unique in several 
ways. They bridge between two arterioles, they are the only 
capillaries not surrounded by interstitial tissue, and they 
support high blood pressures to bring about filtration.

Vascular Endothelial Growth Factor
Endothelial and mesangial cells express receptors that 
respond to vascular endothelial growth factor (VEGF). 
Podocytes secrete VEGF and during embryonic organo-
genesis this is a chemoattractant to the angioblasts that 
form the glomerular endothelium. Deficiency of VEGF 
understandably prevents normal glomerular development. 
VEGF also has autocrine effects on podocyte cell survival 
and differentiation, and knockout mice with no VEGF also 
seems to have paracrine effects on mesangial cell migration 
and survival.18

A deficiency of VEGF also may be clinically significant 
in a mature kidney. For example, in a pregnant woman 
preeclampsia is a disease of proteinuria and hypertension. 

II vasoconstriction on afferent arterioles. This explains 
partly why angiotensin II affects the efferent arteriole more 
than the afferent; it causes only vasoconstriction in the 
efferent but a mix of vasoconstriction and vasodilation of 
the afferent. In the glomerulus, angiotensin II also acti-
vates mesangial cells to contract, thus causing capillary  
constriction.

Endothelial Factors
Several paracrine agents are released by endothelial cells 
that contribute to glomerular flow regulation. In many cases 
these are local signals released by endothelial cells in 
response to systemic signals such as angiotensin II or 
vasopressin. They are not so much a separate regulatory 
pathway but rather one step in a multi-step control pathway 
that will constrict or dilate the arterioles to control glomerular 
flow. For example, nitric oxide causes vasodilation and is 
released by endothelial cells in response to systemic signals 
such as bradykinin, thrombin, platelet-activating factor, 
endothelin, and calcitonin gene-related peptide. Endothelin 
is a vasoconstrictor that is released by endothelial cells in 
response to systemic signals such as transforming growth-
factor beta, tumor necrosis factor-alpha, platelet-derived 
growth factor, angiotensin II, vasopressin, insulin, bradykinin, 
thromboxane, and thrombin. The diversity of these triggers 
suggests that several different processes, from inflammation 
to the clotting cascade, may promote vasoconstriction or 
vasodilation or both. Several agents, such as bradykinin 
and thrombin, also may cause vasodilation and vasoconstric-
tion by triggering release of dilatory or constricting paracrine 
agents in different vessels. Vascular smooth muscle cells 
detect these signals through a variety of receptors, often 
G-protein receptors. Several G-protein receptors activate 
phosphokinase C inside the cell, which triggers an enzyme 
cascade that leads to increased intracellular calcium. 
Intracellular calcium binds calmodulin, and together they 
activate myosin light chain kinase, which causes myocyte 
contraction through repositioning of the actin and myosin 
filaments. Calcium enters the smooth muscle cell through 
several means, but an important channel is the “transient 
receptor potential cation channels,” or TRPC. There are 
several types of TRPC, although TRPC3 and TRP6 are 
common in vascular smooth muscle in renal arterioles. 
Calcium also enters cells through Na/Ca exchange transport-
ers. However, there are different types of G-protein receptors 
on vascular smooth muscle cells. For example, prostaglandin 
E2 (PGE2) and prostacyclin activate different G-protein 
receptors, which, in turn, activate adenylyl cyclase  
to synthesize cyclic adenosine monophosphate (cAMP). 
Elevated levels of cAMP lead to lowering calcium levels 
inside the cell, either by pumping calcium out of the cell 
or by sequestering it in the sarcoplasmic reticulum. The 
lower calcium levels lead to muscle relaxation and thus 
vasodilation. Other local paracrine signals act directly on 
the cell and do not activate a G-protein receptor. For example, 
nitric oxide from endothelial cells and atrial natriuretic 
peptide (ANP) directly activate guanylate cyclase to synthesize 
cGMP inside the cell. Intracellular cGMP, like cAMP discussed 
above, lowers calcium and thus induces vasodilation.

In all cases, these signals to constrict or dilate muscle 
cells work by changing levels of calcium inside the smooth 
muscle cell. Interestingly, calcium channel blockade can 
inhibit these autoregulatory mechanisms.15 This raises the 
interesting possibility that a patient on a calcium channel 
blocker may be more sensitive to renal injury from hypoten-
sion, such as that experienced during surgery or sepsis.



Chapter 7 / The Physiology of the Glomerulus    39

clear but may be related to congenital or acquired deficiency 
of complement pathways regulation enzymes, such as factor 
H, or other regulating enzymes such as the D7E lipid enzyme. 
Atypical hemolytic uremic syndrome often has waxing/
waning course with multiple relapses and often leads to 
ESRD. The difference between hemolytic uremic syndrome 
and thrombotic thrombocytopenic purpura is thrombotic 
thrombocytopenic purpura is defective ADAMTS13, and 
hemolytic uremic syndrome is direct endothelial injury 
through the complement cascade.

MECHANICAL FILTRATION

Plasma in the glomerular capillaries pass through the 
glomerular filtration barrier as a first step in urine formation. 
The glomerular filtration barrier filters molecules based on 
size and charge.26 This filtration barrier is made of three 
types of filters: the endothelial fenestrations in glomerular 
capillaries, the glomerular basement membrane, and the 
visceral epithelial cell podocyte slit diaphragm. Injury at 
any of these layers can disrupt the filtration barrier and 
lead to proteins or blood cells entering Bowman’s space as 
part of urine (Fig. 7.2).

Understanding the content of urine will tell us what is 
happening at this filtration boundary. For example, injury 
on the vascular side of the glomerular filtration barrier 
allows red blood cells to leave the capillary causing 
microscopic hematuria. These red blood cells usually do 
not pass freely but rather “squeeze” through gaps in the 
endothelium and emerge misshapen. This is why “dysmor-
phic” red blood cells are a significant finding. It suggests 
there are gaps in the endothelium and is more associated 
with nephritic than nephrotic diseases. Alternatively, 
injury on the epithelial side of the basement membrane 
allows large amounts of protein to pass, and a urinalysis 
shows significant proteinuria. This is usually a nephrotic  
disease.

Filtered Molecules
Normally, a healthy glomerular filtration barrier will freely 
pass water and small molecules, but filtration of larger 

Preeclampsia patients have elevated levels of a competitive 
inhibitor of VEGF (soluble fms-like tyrosine kinase, also called 
sFlt-1 or VEGF-R1).19 Early in a normal pregnancy there are 
elevated levels of placental growth factor (PlGF, a member 
of the VEGF family), which likely contributes to placental 
development. Later in a normal pregnancy there is a rise in 
sFlt-1, which is an antagonist of VEGF and PlGF. Preeclampsia 
is associated with elevated levels of sFlt-1 too soon in the 
pregnancy, causing an early drop in PIGF and VEGF and 
direct glomerular injury. Microscopically, preeclampsia causes 
glomerular injury and swollen endothelial cells, leading to 
proteinuria. Experiments have injected sFlt-1 into pregnant 
rats and induced the same glomerular lesions of preeclamp-
sia.20 An excess of VEGF also is associated with disease. For 
example, people with diabetes have elevated levels of VEGF, 
and this leads to part of diabetic nephropathy.21,22 Chronic 
hyperglycemia (as in diabetes) causes increased VEGF produc-
tion by podocytes,23 and podocyte abnormalities are an early 
manifestation of diabetic nephropathy.24 Overexpression of 
VEGFA has been shown to cause collapse of the glomerular 
tuft and depletion of endothelial cells.25

Glomerular Capillary Diseases
Several diseases have particular effects on the glomerular 
capillary endothelium. Thrombotic microangiopathies 
present with anemia, thrombocytopenia, and renal injury. 
Thrombotic thrombocytopenic purpura (TTP) is a disease 
of ADAMTS13, an enzyme that cleaves von Willebrand 
factor (vWF) and so controls the clotting cascade. Without 
ADAMTS13, vWF multimers grow large enough to sponta-
neously trigger clotting. TTP often occurs as an acquired 
disease resulting from an autoantibody to ADAMTS13, 
but it also may occur as a congenital deficiency in the 
ADAMTS13 enzyme.

Hemolytic uremic syndrome is a different thrombotic 
microangiopathy caused by dysregulation of the alternate 
complement pathway that leads to excessive inflammation, 
endothelial cell injury, and apoptosis. This inflammatory 
overactivation may be triggered by Shiga toxin from 
O157:H57 E. coli, and in these cases usually is accompanied 
by diarrhea. Diarrhea also may be absent in other cases, 
however; this is called atypical hemolytic uremic syndrome. 
The cause of atypical hemolytic uremic syndrome is not 
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FIGURE 7.2  Glomerular basement membrane. 



40    Section 2 / Principles of Renal Physiology

in humans diabetes proteinuria correlates with damage to  
the endothelium.38

Basement Membrane
The glomerular basement membrane is a trilaminar mem-
brane consisting of the lamina densa in the middle, lamina 
interna next to the endothelial cells, and lamina externa 
next to the podocytes. The podocytes and endothelial cells 
secrete proteins to make up the basement membrane. There 
are 144 distinct proteins in the basement membrane, but 
about half of the proteins are collagen IV.39 There are several 
subtypes of collagen IV, each made by a different gene, and 
the glomerular basement membrane largely uses a trimer 
of collagen IV subtypes, alpha3, alpha4, and alpha5. This 
is different from other basement membranes, which typically 
are made of collagen IV alpha1 and alpha2. These proteins 
form a network of fibrils, with pores that average 10 nm 
in diameter. Different proteins form layers in the membrane, 
so it is not a homogenous pile, but rather a laminated 
collection of layers.

Another common protein in the basement membrane is 
beta-2 laminin, which binds to alpha3beta1 integrin in the 
podocyte membrane. Alpha3beta1 integrin connects to the 
podocyte cytoskeleton inside the cell, so the bond between 
beta2 laminin and alpha3beta1 integrin connects the base-
ment membrane to the podocyte cytoskeleton. Besides type 
IV collagen and laminin, other significant proteins include 
fibronectin, proteoglycans, and entactin connect collagen 
and laminin.

The glomerular basement membrane is anionic,40 chiefly 
because of anionic proteoglycans. This previously was 
thought to cause a charge-selectivity: the anionic basement 
membrane may repel other anionic proteins, such as 
albumin.41–44 Recent experiments, however, have challenged 
this. For example, Ficoll/Ficoll sulfate particles of different 
charges all passed through the basement membrane equally, 
whether they were anions or not.45 Genetically modified 
mice with minimal anionic charge do not have proteinuria.46 
Treating the glomerular basement membrane with heparinase 
to strip out glycosaminoglycan anionic charge does not 
cause proteinuria.47 Finally, genetically modified mice with 
reduced podocyte charge have only mild albuminuria, 
suggesting that charge is not a major factor in filtering anions 
like albumin from the urinary space.48

PODOCYTES

Podocytes encase the capillaries, forming a selectively 
permeable boundary between the fenestrated capillary and 
Bowman’s space. They are also important to the filtration 
of blood and provide approximately 40% of hydraulic 
resistance of the filtration layer.49

If 40% of proteins are blocked by the glomerular basement 
membrane, then where do they go? Normally, there is no 
accumulation of proteins between the fenestrated endothelium 
and the basement membrane or between the basement mem-
brane and the podocyte slit diaphragm. The filtration barrier 
seems to also have a process that continually removes proteins. 
Podocytes express general protein transporters such as cubilin/
megalin, and podocytes may take up proteins that manage to 
traverse the basement membrane but then are blocked by the 
slit diaphragms.50,51 Other theories propose that the basement 
membrane acts more like a gel than filter, and only proteins 
that travel further through the gel will pass.52

molecules depends on glomerular surface area and the 
glomerular capillary wall permeability. For example, studies 
with Dextrans show that molecules larger than 4.2 nm are 
essentially completely blocked27 and molecules larger than 
3.4 nm have limited filtration. Note, however, that molecules 
between 3.4 nm and 4.2 nm are filtered partially, and this 
includes some proteins. The traditional view that fluid enter-
ing the tubule from the glomerular capillaries is virtually 
protein free is being questioned. First, albumin (3.6 nm), like 
other proteins, is filtered and reabsorbed.28 These filtered 
proteins normally are reabsorbed by proximal tubule cells 
using the megalin/cubilin complex, as well as possibly 
fluid phase endocytosis. Moreover, some renal diseases are 
explained by protein first passing through the glomerular 
filtration barrier and then reabsorbed by the proximal tubule. 
Fanconi syndrome caused by multiple myeloma is due to 
light chains passing through the glomerular filtration barrier 
and being endocytosed by proximal tubular cells.29 In small 
quantities this protein endocytosis may not be harmful, but 
reabsorbing large amounts of free light chains may cause 
cell injury from crystal deposition in lysosomes as well 
as activating intracellular stress pathways such as nuclear 
factor-κB (NF-κB).

The filtration of any molecule across the glomerular 
filtration barrier is passive and driven by forces such as 
hydrostatics, oncotic pressure, and perhaps electrostatics. 
Hydrostatic pressure is nearly constant along the capillary 
path through the glomerulus. Empirically, this has been 
measured to be 46 mm Hg in the capillary, and 12 mm Hg 
in Bowman’s space in Munich-Wistar rats.30 As a result, 
there is a net force of 34 mm Hg driving plasma into the 
Bowman’s space. In addition, the filtration is affected by 
the hydraulic conductivity or resistance of the capillary 
wall, basement membrane, and visceral epithelium.

Plasma oncotic pressure increases as more water is filtered 
out of the capillary, and the remaining blood increases in 
osmolality. Traditionally, oncotic pressure was assumed to 
be determined by the contents of blood, and the filtrate in 
Bowman’s space was assumed to have virtually no oncotic 
pressure because it was assumed that there are no proteins. 
However, if we instead assume that some smaller proteins 
pass into Bowman’s space, then we need to revisit these 
measurements.31

Endothelium
Endothelial cells in the glomerular capillaries are not a 
seamless barrier but instead have gaps within cells called 
fenestrations that allow water and molecules to pass through. 
Fenestrations are typically 70 to 100 nm in diameter and 
represent up to 20% of endothelium surface area. Fenestra-
tions originally were considered more pores than filters; 
they were so large they let everything through and the 
basement membrane did the actual filtering. However, the 
endothelium is covered by a layer of anionic glycoproteins 
and proteoglycans, called the glycocalyx, that also seems 
to cover the fenestrations.32 These glycoproteins absorb 
proteins from serum creating a 200-nm thick coat on the 
endothelial surface.33 This is an anionic barrier, which may 
repel large macromolecules and anions.34 The glycocalyx 
seems to contribute to protein filtration. Rupturing the 
proteoglycan cover with hyaluronidase and adriamycin 
causes proteinuria.33 Similarly, in different experiments, 
progressive enzymatic breakdown of the endothelial 
surface layer leads to increased albuminuria.35,36 The 
glycocalyx may be modified in diseases such as diabetes, 
which is associated with a nephrotic proteinuria,37 and 
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GTPases.55 Overstimulation of this process seems to cause 
podocyte injury, and gain of function mutations affecting 
TRPC6 leads to renal injury, whereas loss of TRPC5 is 
protective in some cases.56–58

MESANGIUM

The mesangial cells are a “stalk-like” support network that 
holds the coils and loops of capillaries in place, but they 
also play other roles. There are several types of mesangial 
cells. For example, the mesangium contains immune cells 
that are similar to monocytes/macrophages and make up 
5% to 15% of the mesangium. However, more common are 
contractile cells, which make up 85% to 95% of mesangium 
and seem to provide structural support and contraction. 
This contraction may control capillary flow in a manner 
analogous to arteriole smooth muscle contraction and 
dilation.59 Mesangial cells have hormone receptors,60 and 
G-protein receptors will lead to constriction while cAMP 
receptors will lead to relaxation. The mesangial cell contains 
actin and myosin-based microfilaments inside the cell pass 
through the cell membrane and bind to laminin in the 
glomerular basement membrane.61,62 The mesangium also 
contains the matrix, extracellular material that is made 
of several proteins including collagen III and IV, heparin 
sulfate proteoglycans, and fibronectin, laminin, entactin, 
and fibrillin.

Key Points

1.	 Blood pressure in the afferent and efferent arterioles 
is tightly regulated, which protects the kidney and 
controls filtration and diuresis under different 
physiologic conditions.

2.	 Glomerular capillaries are the site where plasma 
moves across a filtration barrier into the urinary 
space. The glomerular filtration barrier filters 
molecules based on size and charge and is made 
of three types of filters: the endothelial fenestrations 
in glomerular capillaries, the glomerular basement 
membrane, and the visceral epithelial cell podocyte 
slit diaphragm.

3.	 The glomerular filtration barrier filtration barrier 
will freely pass water and small molecules, but 
filtration of larger molecules also happens. The 
traditional view that fluid entering the tubule from 
the glomerular capillaries is virtually protein free 
is being questioned.

4.	 Podocytes’ shape (regulated by its internal cyto-
skeleton) is complex and biologically important, 
and podocytes dynamically respond to mechanical 
forces as well as vasoactive hormones such as 
angiotensin II, vasopressin, norepinephrine, adenos-
ine, and many more.

Key References
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Podocyte Structure and Function
There are several distinct parts of the podocyte cell: the 
cell body, primary processes, secondary processes, and 
tertiary processes (foot processes) that anchor onto the 
basement membrane. Throughout these is a complex 
cytoskeleton, which includes microtubules and intermediate 
filaments in the body and primary processes, and actin 
microfilaments in podocytes.

The cytoskeleton is significant partly because the shape 
of the podocyte is complex and biologically important. 
Foot processes extend out from secondary processes, and 
there are slit-diaphragms between these foot processes. This 
gap between foot processes has similarities to epithelial 
cell tight junctions, although there is no E-cadherin, so this 
is not a true tight junction. Nonetheless, the space between 
podocytes is bridged by several types of proteins that extend 
into the podocyte interior and outside the cell into the 
mesangium. Some proteins span the cell membrane, includ-
ing NEPH1, nephrin, and laminin. Nephrin has an intracel-
lular domain and an extracellular domain and is part of 
an extracellular filtration pore and part of the intracellular 
cytoskeleton. Nephrin from adjacent podocytes may bind 
directly, or else indirectly through the NEPH1 molecules, 
and forms a filtration pore. The intracellular domain of 
nephrin binds with podocin, which enables podocin 
polymerization and so is part of controlling actin filament 
rearrangement to shape the foot processes. Similarly, 
alpha3beta1 integrin and beta2 laminin connect the podocyte 
cytoskeleton to the basement membrane. Proteins inside 
the cell include CD2-associated protein, which anchors 
nephrin to the cytoskeleton; podocin, which anchors nephrin 
to the plasma membrane; and zonula-occludens-1, which 
anchors nephrin to the cytoskeleton. In addition, zonula-
occludens-1 positions nephrin and podocin, and loss of 
zonula-occludens-1 is associated with proteinuria and is 
reduced in diabetic nephropathy. Proteins outside the cell 
lie between adjacent foot processes and include NPHS2, 
which is a member of the stomatin family, P-cadherin and 
FAT, which are members of the cadherin family, and many 
others, including Kieel/Neph1, TRPC6, ACTN4, MYO1E, 
ARHGAP24, ARHGDIA, INF2, COQ2, COQ6, PLCE1, ANLN, 
PTPRO, and ADCK4.

Despite the large list of proteins, however, the true 
topology of the basement membrane is not understood. A 
different way to look at this catalog of proteins is to consider 
the diseases of the slit diaphragm, which shows what 
happens when one protein is defective. For example, 
congenital nephrosis and adult-onset FSGS is caused by 
mutation in the NPHS2 gene, which encodes podocin, and 
autosomal dominant focal segmental glomerular sclerosis 
is caused by a mutation in TRPC6, and congenital nephrotic 
syndrome (Finland) is caused by mutation the NPHS1 gene 
for nephrin.

Podocytes play a mechanical role that dynamically reacts 
to mechanical forces. The podocyte senses hydrodynamics 
and transduces changes in pressure into cell processes 
through several mechanisms, including changing membrane 
potential, activating protein kinases, and controlling gene 
expression.53

The podocyte also responds to systemic signals, and 
podocytes have receptors for vasoactive hormones, including 
angiotensin II, vasopressin, norepinephrine, adenosine, 
ANP, nitric oxide (NO), endothelin, and prostaglandins.54 
For example, the podocyte cell membrane contains ion 
channels such as Trpc5 and Trpc6, which respond to 
angiotensin II and allow Ca to enter the podocyte. Intracel-
lular calcium causes actin reorganization by activating Rho 
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