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C H  A P T E R

In this chapter, we review disturbances in potassium and 
acid–base homeostasis seen in patients with renal disease. 
Our discussion is, however, limited to disorders of potas-

sium and acid–base homeostasis seen in (1) patients with 
progressive chronic kidney disease (CKD) and (2) patients 
with renal insuf  ciency and defects in the renin–aldosterone 
axis or in the tubular response to aldosterone. We brie  y 
review potassium and acid–base homeostasis in healthy 
humans before focusing on patients with underlying renal 
disease. We do not, however, discuss normal renal handling 
of potassium and only brie  y review renal handling of hy-
drogen ion. These two topics are extensively reviewed in 
Chapter 6: Tubular Potassium Transport, and Chapter 7: 
Renal Acid–Base Transport, respectively. 

 POTASSIUM HOMEOSTASIS 
Potassium is the most abundant cation in the body. The distri-
bution of potassium is such that 98% of total body potassium 
is intracellular, whereas only 2% is extracellular. Serum potas-
sium is normally between 3.8 and 5.0 mEq per liter, whereas 
the intracellular potassium concentration is 120 to 140 mEq 
per liter. The high intracellular to extracellular potassium ratio 
(Ki/Ko) is crucial to normal cell function, because it is the major 
determinant of the resting membrane potential. The body is able 
to maintain this distribution in a highly regulated and ef  cient 
fashion through the hormonal modulation of Na-K-ATPase 
pump activity. 1,2 Humans, as carnivorous intermittent eaters, 
are continuously challenged by large potassium loads. On a 
long-term basis, this challenge is met primarily by the renal 
excretion of potassium load; however, on a short-term basis, a 
signi  cant amount of potassium is shifted intracellularly. 3 This 
shift temporarily buffers the expected change in the K i/Ko ratio 
until potassium intake is balanced by a comparable output. 
Therefore, potassium homeostasis is regulated through both 
extrarenal as well as renal mechanisms (Fig. 72.1). 4

 Extrarenal Potassium Homeostasis 
The kidney is able to excrete only about 50% of the adminis-
tered potassium during the   rst 4 hours after intravenous or 

oral intake of potassium. Approximately 80% of the retained 
potassium is shifted intracellularly, and only 20% (or 10% 
of the total intake) remains in the extracellular space. 5–7 The 
retained potassium will be excreted completely over the next 
24 hours. 8 The major regulators of this internal redistribu-
tion are: (1) insulin, (2) catecholamines, and (3) mineralo-
corticoids. In addition to these physiologic regulators, serum 
potassium is also regulated by acid–base status as well as 
plasma osmolality. Factors that increase or decrease plasma 
potassium concentration are noted in Figure 72.2. 

 Insulin 
The ability of insulin to shift potassium intracellularly has 
been known for over 70 years 9 and has been used therapeu-
tically for the treatment of hyperkalemia. Pancreatectomized 
dogs tolerate exogenous potassium loads poorly. 10 This is 
reversed by the exogenous replacement of insulin. 11,12 The 
partial inhibition of endogenous insulin in dogs by soma-
tostatin infusion results in a twofold rise in serum potassium 
compared to controls. 6 If physiologic doses of insulin were 
added to the somatostatin infusion, potassium tolerance re-
turned to normal. In healthy volunteers, somatostatin infu-
sion in the postabsorptive state led to a 50% decline in the 
plasma insulin concentration and a 0.5 to 0.7 mEq per liter 
rise in serum potassium that was reversed by a physiologic 
infusion of exogenous insulin. 6 A similar phenomenon was 
observed in maturity-onset diabetic patients who have nor-
mal or increased fasting plasma insulin levels, but not in 
insulin-de  cient juvenile diabetic patients. 13

The primary sites of insulin-mediated potassium uptake 
include muscle and the liver, and to a lesser degree, adipose 
tissue.14,15 In normal volunteers on variable insulin doses, 
the liver is the primary site of potassium uptake during the 
  rst hour. 15 However, during the second hour, despite a con-
tinued decrease in serum potassium, there is net release of 
potassium from the portal and splanchnic bed, indicating a 
shift of potassium uptake to the peripheral tissue, especially 
muscle.15

At the cellular level, insulin interacts with speci  c re-
ceptors on the plasma membrane, 16 increasing the activity 
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sium shift decreased by 94%, whereas in rats deprived of 
potassium for only 2 days the number of pumps did not 
decrease, but insulin-mediated potassium shift decreased by 
80%. This would indicate that insulin resistance precedes a 
decrease in the number of pump expression during hypoka-
lemia. The molecular mechanism underlying this response, 
however, remains poorly understood. 19 Several in vitro 
studies, including one study in humans, have shown that 
insulin-driven potassium uptake by both muscle and the 
liver is independent of glucose uptake. 15,20

 Catecholamines 
D’Silva,21 beginning in 1934,   rst observed a biphasic 
response of plasma potassium to epinephrine injection. 
Plasma potassium rose during the   rst 1 to 3 minutes, but 

of the Na-K-ATPase pump in the skeletal and heart muscle, 
epithelial cells of the kidney and bladder, as well as liver 
and fat cells. 17 This results in a series of intracellular events 
leading to hyperpolarization of cell membranes. 17 The time 
course for this interaction is consistent with both an in-
crease in enzyme activity as well as the rapid recruitment of 
Na-K-ATPase pumps to the cellular membrane. In contrast, 
chronic stimulation by insulin probably increases the total 
number of available pump sites. This occurs through the 
regulation of the Na-K-ATPase pump at the transcriptional 
and posttranscriptional levels by inducing the synthesis of 
new   and    subunits. 1 McDonough and Youn, 18 using a 
potassium clamp, have recently shown that after 10 days 
of potassium deprivation in rats Na-K-ATPase activity 
decreased by more than 50% and insulin-mediated potas-

FIGURE 72.1 The distribution of potassium (K) in the 
body. Potassium is primarily located in cells (96%), with 
distribution controlled by a pump-leak mechanism 
involving both Na-K-ATPase and membrane potassium 
channels. The kidneys excrete more than 90% of the 
daily potassium load, and the intestines excrete the rest. 
(From Giebisch G, Krapf R, Wagner C. Renal and extrare-
nal regulation of potassium. Kidney Int. 2007;397, with 
permission.)

FIGURE 72.2 The distribution of potassium (K) between the intracellular and extracellular   uid compartments. Potassium distribu-
tion between the intra- and extracellular   uid is controlled by a pump-leak mechanism involving both Na-K-ATPase and membrane 
potassium channels. The factors noted in the   gure drive potassium into or out of cells. (From Giebisch G, Krapf R, Wagner C. 
Renal and extrarenal regulation of potassium. Kidney Int. 2007;397, with permission.)
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rats. This adaptation is lost by prior adrenalectomy and re-
stored by exogenous mineralocorticoid replacement. 39 How-
ever, Spital and Sterns 40,41 observed that during the 20 hours 
of fasting before a nephrectomy and acute potassium load-
ing, these rats became potassium depleted owing to marked 
kaliuresis resulting from high serum potassium coupled with 
a high aldosterone level. In adrenalectomized dogs, Young 
and Jackson 42 have shown that plasma potassium concen-
tration at any exchangeable potassium level was a function 
of aldosterone replacement dose. High-dose aldosterone in 
anephric rabbits delays death due to hyperkalemia. 43 Simi-
larly, baseline potassium was signi  cantly higher in hor-
monally de  cient adrenalectomized rats despite negative 
potassium balance compared to exogenously replaced con-
trols, thus supporting a defect in the cellular uptake of 
potassium.5,44 This impairment was corrected by either al-
dosterone or epinephrine replacement. In rats, aldosterone 
has been shown to increase Na-K-ATPase pump activity by 
inducing the synthesis of new  - and  -subunits in heart 
and vascular smooth muscle. 1 This effect presumably repre-
sents the action of aldosterone on Na-K-ATPase pump gene 
expression and supports a role for aldosterone in cellular 
potassium homeostasis. In anephric humans treated with 
deoxycorticosterone acetate (DOCA), spironolactone, or 
placebo for 3 days, the baseline potassium was similar; how-
ever, the DOCA-treated subjects showed greater tolerance 
to acute potassium load than did the other two groups. 45

In a study of 15 patients on hemodialysis that were treated 
with 0.05 to 2.0 mg per day of   udrocortisone acetate, the 
serum K   decreased signi  cantly. 46 Interestingly, the effect 
of exogenous mineralocorticoid was more pronounced in 
patients with a low compared to a high plasma aldosterone 
concentration. Low dose spironolactone (25 mg per day) 
was associated with an increase in a mean serum K   con-
centration of 0.3 mEq per liter over 4 weeks of therapy in 
15 chronic hemodialysis patients. 47 In the largest study to 
date, serum potassium in 50 hemodialysis patients treated 
with 25 mg per day of spironolactone increased from baseline 
4.96 to 5.16 in 2 weeks and remained stable for 6 months. 48

Very low dose spironolactone (25 mg thrice weekly), how-
ever, did not increase serum K   in hemodialysis patients, 49

whereas a very high dose (300 mg per day) induced a signi  -
cant rise in plasma potassium (0.5 mEq per liter) and caused 
hyperkalemia after 3 weeks of therapy in nine chronically 
hemodialyzed end-stage renal disease (ESRD) patients (three 
were anephric). 50 In summary, these studies support a small 
but signi  cant role for aldosterone in internal potassium ho-
meostasis in anephric animals and ESRD patients. 

 Acid–Base Balance 
The role of acid–base balance on the internal distribution of 
potassium51 is based on the concept that during the develop-
ment of acute acidemia, the hydrogen ion enters the cell in 
exchange for potassium and that the reverse occurs during 
the development of alkalemia. 51–53 This dynamic interrela-
tionship has been simpli  ed clinically to a general rule that 

with continued infusion, fell and remained lower than base-
line. Other investigators have shown increased potassium 
tolerance in animals infused with pharmacologic doses of 
epinephrine22,23 despite a pancreatectomy or nephrectomy. 24

Brown and coworkers 25 have shown that the infusion of 
stress-level doses of epinephrine resulted in a decrease in 
serum potassium by 0.4 to 0.6 mEq per liter. Because epi-
nephrine inhibits the renal excretion of potassium, 26,27 the 
decline in potassium concentration is entirely accounted for 
by enhanced cellular potassium uptake. 

Speci  c receptors are involved in the cellular disposal 
of potassium by catecholamines. Alpha stimulation in hu-
mans by phenylephrine 28 signi  cantly impairs cellular po-
tassium tolerance, which is reversed by the   -antagonist
phentolamine. This phenomenon may explain the initial rise 
in serum potassium after the infusion of catecholamine. 26,27

 2-blockade impairs the catecholamine-induced shift of po-
tassium into extrarenal tissues 29,30 and causes hyperkalemia 
despite an increase in renal excretion of this ion. In normal 
volunteers who exercise while taking   -adrenergic blocking 
agents, the serum potassium level is raised 2- to 2.5-fold 
higher than during similar exercise performed without a 
  blockade. 3,31 The effect of nonspeci  c   -blockers such as 
propranolol on serum potassium is mimicked by speci  c 
 2-blockers32 but not   1-blockers. Although an important 
role for catecholamine-stimulated uptake of potassium by 
muscle has been demonstrated, the role of the liver remains 
controversial. The effect of potassium on catecholamine 
levels is less clear. 

At the cellular level, epinephrine binds to the  2-
receptor resulting in the stimulation of adenyl cyclase and 
the conversion of adenosine triphosphate to cyclic 3  ,5 -ade-
nosine mono- phosphate (cAMP). It is postulated that cAMP 
then activates protein kinase A, which then phosphorylates 
the Na-K-ATPase pump, increasing its activity and promot-
ing potassium in  ux into the cell and Na   ef  ux. 31 Binding 
catecholamines to the   receptor decreases cellular potas-
sium uptake by inhibiting adenylate cyclase activity and 
decreasing Na-K-ATPase pump activity. 32 In addition, activa-
tion of the  -1 receptor alters cytoplasmic calcium, thereby 
increasing intracellular calcium concentration and opening 
calcium-activated potassium channels, which allow potas-
sium to exit the cell. 32 Interestingly, the effect of insulin and 
epinephrine on plasma potassium is additive, which con-
  rms a separate mechanisms of action. 31 In insulin-induced 
hypoglycemia, hypokalemia is therefore due to the com-
bined effect of both insulin and the hypoglycemia-induced 
rise in catecholamines. 31

 Mineralocorticoids 
Mineralocorticoids play a major role in external potassium 
homeostasis by increasing its excretion by the kidney, 33 co-
lon,34 salivary, 35 and sweat glands. 36 However, aldosterone’s 
role in internal potassium homeostasis is less clear. 37,38

Anephric rats adapted to high potassium intake handle an 
acute potassium load more ef  ciently than do nonadapted 
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  4. The amounts of potassium shifted into the cell in 
metabolic and chronic respiratory alkalosis are ap-
proximately similar (0.1 to 0.4 mEq per liter for each 
0.1 U of pH change). 

  5. Acute respiratory acidosis resulting in a decrease in pH 
to 7.24 had no effect on serum K  . 61

  6. Changes in serum bicarbonate, independent of serum 
pH, have an inverse effect on the serum potassium 
concentration. 

  7. In chronic acidosis and alkalosis, the   nal serum K   is 
a function of the effect of acid–base disturbance on the 
renal handling of potassium, as well as on the transcel-
lular distribution of this ion. In dogs with ammonium 
chloride–induced acidosis, Magner and associates 62

noted a fall in serum potassium below baseline by days 
3 to 5, owing to severe kaliuresis. 

 Osmolality 
 The acute hyperkalemic effect of a sudden rise in plasma 
osmolality is probably caused by the shift of potassium-rich 
intracellular   uid by solvent drag. 63  Clinically, this phenom-
enon is most commonly observed in hyperosmolar diabetic 
patients (Fig. 72.4), with or without ketoacidosis 64–67  when 
insulin de  ciency augments the rise in potassium. Although 
chronic hyperkalemia in diabetic patients is multifactorial, a 
sudden rise in plasma osmolality seems to play a contributory 
role. The infusion of hypertonic mannitol in healthy humans 68

or hypertonic saline 69  or hypertonic contrast media 70  in 
patients with chronic kidney disease results in a modest rise 
in serum potassium (0.4 to 0.6 mEq per liter). Hyperkalemia 
can be severe, especially in diabetic patients with little or no 

for each 0.1 U change in serum pH, the serum potassium 
changes in the opposite direction by 0.6 mEq per liter. How-
ever, the relationship between serum potassium and serum 
pH is much more complex and depends on the type and 
severity of the acid–base disorder, the anion accompanying 
hydrogen, the duration of acidosis, changes in plasma bicar-
bonate concentration independent of changes in pH and the 
extent of intracellular buffering, and renal adaptation as well 
as hormonal changes in response to the disorder. 54  In ad-
dition, in clinical settings, there are often other physiologic 
and pathophysiologic processes that may be present, which 
would affect both transcellular as well as the renal and extra-
renal handling of potassium. The following generalizations 
should therefore be used with caution. 

  1. On the whole, acidosis is accompanied by a greater 
change in serum potassium than is alkalosis. 55  

  2. Mineral acidosis (Fig. 72.3) causes the greatest shift 
(0.24 to 1.7 mEq per liter for each 0.1 U in pH 
change), whereas organic acidosis has a much smaller 
effect. 53,56,57  Mild mineral acidosis (a decrease in serum 
bicarbonate by 5 mEq per liter and an increase in 
hydrogen ion concentration by 0.45 nmol per liter), 
however, does not result in a signi  cant change in 
serum potassium. 58  

  3. Acute respiratory alkalosis paradoxically results in a 
small but signi  cant rise in serum potassium 
(   0.30 mEq per liter with a drop in pCO 2  of 16 to 
22.5 mm Hg). The rise was primarily due to stimulation 
of    -adrenergic receptors by catecholamine. 59  Chronic 
respiratory alkalosis, however, results in sustained 
hypokalemia due to a renal loss of potassium. 60  

FIGURE 72.3 The effect of arterial pH on plasma potas-
sium concentration in experimentally induced mineral 
acidosis (hydrochloric acid-HCl) and lactic acidosis in dogs. 
(From Perez GO, Oster JR, Vaamonde CA. Serum potassium 
concentration in acidemic states. Nephron. 1981;27:233, 
with permission.)
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other observations support a role for a direct gut–kidney axis 
in potassium homeostasis favoring a feedforward rather than 
a feedback homeostatic mechanism (Fig. 72.5). The spe-
ci  c gut sensor and the gut–kidney loop remains specula-
tive at this point. For a more detailed discussion, readers are 
referred to two recent reviews of this topic. 73,74  

 POTASSIUM HOMEOSTASIS IN 
RENAL FAILURE 
 Patients with renal failure are able to maintain a near normal 
serum potassium concentration despite a marked decrease 
in glomerular   ltration rate (GFR). 75–78  Although hyperkale-
mia could be due to increased potassium intake and/or rapid 
shifts of potassium from the cell, renal failure is the most 
important cause of hyperkalemia, accounting for 77% of 
the cases reported by Acker and coworkers. 79  In a random 
sample of 300 CKD patients (serum creatinine [Cr] levels 

renal function facing sudden hyperglycemia. 71  These clinical 
observations support an independent role of sudden osmolar 
shifts in the regulation of serum potassium. 

 Feedback or Feedforward Control of Potassium Ho-
meostasis. It is well known that an increase in potassium 
concentration directly stimulates renal potassium excretion 
through an increase in potassium secretion in the collect-
ing duct. This is accomplished by the direct stimulation of 
Na-K-ATPase, an increased tubular   ow, and an increase in 
aldosterone. However, as Rabinowitz et al. 72    rst noted an 
increase in renal potassium excretion after meals in sheep 
was independent of change in serum potassium and aldoste-
rone. In normal human subjects, urinary potassium excre-
tion increased signi  cantly 20 minutes after the ingestion of 
potassium salts before any change in serum potassium. Ka-
liuresis was more robust if potassium is ingested with meals 
rather than without meals or given intravenously. These and 

FIGURE 72.4 The effect of glucose infusion on plasma po-
tassium and glucose concentrations in diabetics (squares) 
and normal subjects (triangles). The plasma potassium rises 
in diabetics owing to the development of hyperosmolality 
(hyperglycemia) but falls in normal subjects as a result of 
the glucose-induced release of endogenous insulin. (From 
Nicolis GL, Kahn T, Sanchez A, et al. Glucose-induced hyper-
kalemia in diabetic subjects. Arch Intern Med. 1981;141:49, 
with permission.)
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 In this section, we initially discuss total body potassium 
content in patients with renal failure before treatment with 
dialysis and then review internal and external potassium ho-
meostasis in these patients. In the subsequent section, we dis-
cuss hyperkalemia seen in patients with renal insuf  ciency 
with a defect in the renin–angiotensin–aldosterone axis or in 
the tubular responsiveness to aldosterone. 

1.5 to 6.0 mg per deciliter) not receiving drugs that inter-
fered with potassium homeostasis, 55% were noted to have 
hyperkalemia (K        5.0 mEq per liter). 80  Treatment with 
drugs that interfere with potassium handling would be ex-
pected to further increase the development of hyperkalemia 
(see the following). Serum potassium rises with decreasing 
GFR; however, it often remains within normal range with 
GFR above 40 mL per minute. 75  In this study, the rate of 
hyperkalemia ([K   ]     5.0) was 17% and was primarily lim-
ited to patients with CKD stage 4 and 5. However, under 
certain conditions, hyperkalemia may occur in patients with 
mild-to-moderate renal failure (Table 72.1). In a longitudi-
nal study of patients with CKD, hyperkalemia ([K]     5.5] 
was reported in only 8% of patients and, surprisingly, hy-
pokalemia ([K]     4.0) was more frequently seen in 15% of 
patients. Hypokalemia was not related to nutrition and was 
most likely secondary to the use of diuretics. 78  This observa-
tion would indicate that electrolyte disturbances in patients 
with CKD are partly related to the underlying disease and 
partly to medications used in the management of concomi-
tant comorbidities such as   uid overload and hypertension. 
However, it should be emphasized that the risk of hyper-
kalemia in patients with CKD, including those treated with 
renin–angiotensin–aldosterone system (RAAS) blockers, is 
relatively small. 81  

FIGURE 72.5 The integrated model of the regula-
tion of body potassium balance: feedback and 
feedforward regulation. Renal potassium excretion 
is controlled by both feedback signals (plasma 
potassium concentration) and feedforward signals 
(liver and gut). CNS, central nervous system. (From 
Greenlee M, Wingo CS, McDonough AA, et al. Nar-
rative review: evolving concepts in potassium 
homeostasis and hypokalemia. Ann Intern Med. 
2009;150:619, with permission.)

TA B L E

13.2 Etiologies of Hyperkalemia in 
Patients with Renal Insuf  ciency

TA B L ETA B L E

72.1

GFR   20 mL/min
Defects in the renin–angiotensin–aldosterone axis
Tubular defects in potassium secretion
Potassium input (e.g., rhabdomyolysis, hemolysis, severe 

catabolic states, gastrointestinal bleeding, exogenous 
potassium administration)

Shift of potassium from intracellular compartment
Drugs that interfere with renal and extrarenal potassium 

homeostasis

GFR, glomerular   ltration rate.
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Schon and associates 103 have shown that the cellular uptake 
of potassium in rats with a remnant kidney is similar to that 
in normal rats maintained on a comparable diet but is lower 
than normal when both groups consume a high potassium 
diet. In contrast, in two different models of renal failure in 
rats, Bia and DeFronzo 101 showed impairment in the cel-
lular disposal of an acute potassium load. Bourgoignie and 
associates102 challenged chronically uremic dogs (remnant 
kidney model) that were adapted to different potassium in-
takes with an acute potassium load. Whereas the percentage 
of retained potassium that was shifted into the intracellular 
compartment was greater in normal dogs (90%), the abso-
lute amount was signi  cantly less than that in dogs with a 
remnant kidney (9.0 versus 20.5 mEq, respectively). They 
concluded that extrarenal cellular uptake was normal in the 
dogs with renal failure. Gonick and colleagues 76 challenged 
patients with moderate renal failure with an oral potassium 
load. Whereas serum potassium 5 hours postchallenge was 
slightly higher in patients than in controls (5.2 versus 4.7 
mEq per liter), this result was entirely because of a lower 
urinary excretion. In a study of patients with tubulointer-
stitial disease, the absolute amount of potassium shifted 
into the cell was greater in patients compared with controls, 
but the relative amount (expressed as a percentage of total 
potassium retained) was similar. 100 In contrast, Kahn and 
colleagues77 observed a signi  cantly greater rise in serum 
potassium in patients compared with controls when dietary 
potassium was increased by 50 mEq per day. This study 77

cannot be strictly compared with others because they re-
lied on 24-hour urinary potassium measurements, and their 
study re  ected a long-term adaptation to a high potassium 
diet in patients with CKD. In hemodialysis patients, serum 
potassium rose signi  cantly more in patients than in con-
trols challenged with acute potassium load (1.06 versus 
0.39 mEq per liter). However, the baseline potassium was 
signi  cantly higher in patients than in controls (5.17 versus 
3.59 mEq per liter), making the interpretation of this study 
dif  cult. 104 More recently, Allon and colleagues 105 noted a 
similar response in these patients with lower baseline potas-
sium. Finally, the effect of vigorous exercise on serum po-
tassium in hemodialysis patients was similar to the control 
group. 106 It is reasonable to conclude that the extrarenal cel-
lular uptake of an acute potassium load in CKD patients is 
near normal. 

As discussed previously, internal potassium homeosta-
sis is regulated by insulin, catecholamines, and, to a lesser 
extent, aldosterone. Although the serum insulin level is 
increased in renal failure, 106–108 several studies provide 
strong support for normal insulin-stimulated potassium up-
take106,108,109 by the splanchnic as well as by the peripheral 
tissues.109 Alvestrand and coworkers, 109 using the euglyce-
mic insulin clamp technique, demonstrated a similar uptake 
of potassium by both splanchnic and leg tissues in patients 
with CKD. The inhibition of endogenous insulin by soma-
tostatin results in a signi  cantly greater rise in serum potas-
sium in uremic rats than in controls (1.0 versus 0.2 mEq per 

 Total Body and Cellular Potassium Content in 
Renal Failure 
Total body potassium content is a re  ection of the balance 
between potassium intake and potassium output, whereas 
the cellular content re  ects the distribution of potassium be-
tween the intracellular and the extracellular compartments. 
Exchangeable potassium (K e) in pre-ESRD patients has been 
generally reported as lower than normal. 82 However, Berlyne 
and associates, 83 after excluding patients with intercurrent 
problems (such as vomiting, diarrhea, or malnutrition), re-
ported a normal value. It should also be noted that malnutri-
tion is common in patients with CKD and many serum and 
anthropomorphic measurements of protein-energy nutri-
tional status show progressive decline with the progression 
of CKD. 84 As Patrick 85 has pointed out, the normal range for 
Ke is not well de  ned and depends on age, sex, and the refer-
ence points used (e.g., total body weight, lean body weight, 
intracellular water). These reference points may be distorted 
in patients with CKD. The measurement of total body potas-
sium by the use of a naturally occurring isotope ( 40K) also 
has given normal values. 86

Cellular potassium content has been estimated by 
the use of muscle biopsy. 87–92 Bergstrom and colleagues 87

studied 102 patients with serum creatinine levels ranging 
from 4.8 to 25.0 mg per deciliter before therapy. In this and 
other studies, the intracellular potassium concentration 
was low owing to an increase in intracellular water despite 
normal intracellular potassium content. 87,90 However, Bil-
brey and coworkers 93 and Montanari and coworkers 92 have 
reported normal intracellular potassium concentrations. 
Importantly, the intracellular potassium content was either 
low or normal (but not increased) in all four studies. 87,90–93

The low intracellular potassium (and high intracellular so-
dium content) has also been reported in erythrocytes 92,94,95

and leukocytes 82,96 from these patients. This bespeaks of 
a decrease in the number and/or the activity of the Na-K-
ATPase pumps in the cell membrane. In chronic dialysis 
patients, the pump transport rate is higher immediately 
after   uid removal, 97,98 and the abnormal levels of intracel-
lular sodium and potassium in uremic patients return to 
normal following several weeks of dialysis. 95 Because the 
number of pump sites inversely correlates with intracel-
lular sodium, and a change in their number requires the 
production of new cells with lower intracellular sodium, 
the acute effect of   uid removal by dialysis may result from 
the removal of a volume-sensitive pump inhibitor. 99 In con-
trast, the long-term effect of dialysis re  ects the production 
of new cells with lower intracellular sodium and a higher 
number of pump sites. For a detailed discussion, refer to 
the article by Kaji and Kahn. 99

 Internal Potassium Homeostasis in 
Chronic Kidney Disease 
The role of cellular uptake of potassium in renal failure has 
been studied in both humans 76,77,100 and animals. 101–103
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Gonick and colleagues 76 documented that human sub-
jects with CKD were able to excrete only 20% of an oral 
potassium load in 6 hours compared with 46% in normal 
controls. Similar data were reported by Perez and col-
leagues100 in patients with tubulointerstitial disease. Kahn 
and colleagues 77 demonstrated in 10 patients with stable 
chronic kidney disease renal adaptation to increased dietary 
potassium. In summary, it can be concluded that residual 
renal tissue is able to maintain external potassium homeo-
stasis in the postabsorptive state. However, the initial phase 
of this adaptation is impaired when an acute potassium load 
is administered. 

The nephron sites involved in this adaptation have been 
studied using a variety of techniques in both rats and rabbits 
and appear to include both the distal convoluted tubule and 
the collecting duct. 103,119–123 The discrepancies reported in 
the literature most likely owe to interspecies and intraspe-
cies differences as well as the anatomic de  nition of different 
distal tubular segments. 

The mechanisms involved in this renal adaptation have 
been partially de  ned. In both humans 115 and rodents, 124

aldosterone has been shown to play an important role in the 
adaptive ability of the diseased kidney to maintain a normal 
rate of potassium excretion. This renal adaptation has been 
shown to be independent of dietary sodium intake. 125 Schul-
tze and coworkers 119 argued that aldosterone is not impor-
tant in the renal potassium adaptation that occurs following 
a reduction in renal mass, because uremic dogs maintained 
on constant aldosterone replacement maintained normal 
rates of potassium excretion. However, the replacement dose 
of aldosterone in this study was in the high pharmacologic 
range. Serum potassium concentration itself plays an im-
portant role in augmenting urinary potassium excretion. 81

Bourgoignie and colleagues 102 found a direct relationship be-
tween serum potassium and both the absolute and fractional 
potassium excretion (EE k). The slope of the curve relating 
serum potassium to the absolute rate of urinary potassium 
excretion was much steeper in normal dogs than in dogs 
with a remnant kidney. However, the slope of the curve re-
lating serum potassium to the FE K was similar in the control 
and uremic dogs. 

Microperfusion studies by Fine and associates 122 in-
dicate that adaptation is an inherent characteristic of the 
renal tubular cells of uremic animals and, once learned, it 
can be retained in vitro, at least for short periods of time. 
Schon and associates 103 showed that augmented potassium 
excretion is associated with an increase in Na-K-ATPase in 
the outer medulla in animals subjected to a three-quarter 
nephrectomy. This increase is quite speci  c to this enzyme 
and occurs only in the kidney 103 and the colon. 126 Muto and 
colleagues127 demonstrated that an increase in peritubular 
[K ] increased renal potassium excretion by also enhancing 
K  conductance (ROMK) and Na   conductance (ENaC) in 
principal cells (Fig. 72.6). Other mechanisms may include a 
higher rate of potassium delivery and an increase in tubular 
  ow rate in the distal nephron. 120

liter at 60 minutes). 110 The administration of glucose with 
potassium stimulates insulin secretion and attenuates the 
rise in potassium in patients on dialysis as well as normal 
controls. 105

Elevated serum catecholamine levels have been report-
ed in CKD. 106,111,112 Yang and coworkers 113 noted higher 
mean potassium in patients on propranolol. Infusion of 
epinephrine resulted in two different responses: In 4 of 10 
patients, serum potassium did not fall; in the remaining 6, 
an exaggerated response was noted. The authors felt that 
the latter group of patients is those who have a propen-
sity to develop hyperkalemia while on propranolol. Gifford 
and associates, 114 using a much lower epinephrine dose, 
could not show a hypokalemic response in patients with 
ESRD. Plasma aldosterone is normal or high in most CKD 
patients.115–119 As noted, patients with ESRD who are tak-
ing DOCA, spironolactone, or placebo have similar base-
line potassium levels; however, patients on DOCA can 
dispose an acute potassium load more promptly than the 
other groups. 45 In addition, ESRD patients on spironolac-
tone have a small but signi  cant rise in serum potassium 
levels.48 These studies would support a minor role for aldo-
sterone in internal potassium homeostasis in ESRD patients. 
In summary, extrarenal potassium homeostasis is near nor-
mal in patients with severe renal failure, although a cellular 
defect in potassium disposal due to abnormal response to 
catecholamines has been reported in a subgroup of patients 
on dialysis. 

 External Potassium Homeostasis in 
Severe Renal Failure 
 Renal Adaptation 
Patients with a marked decrease in GFR are able to excrete 
the ingested dietary potassium load and maintain near nor-
mal potassium balance. This adaptive process is re  ected by 
an increase in the fractional excretion of potassium (FE K)
modulated by an increase in secretory rate per functioning 
nephron. However, this adaptive response is limited and 
a sudden increase in potassium intake may result in life-
threatening hyperkalemia. The quantitative aspects as well 
as the anatomic and functional characteristics of this adap-
tive response are brie  y reviewed herein. 

In conscious dogs with a 10% remnant kidney, Schultze 
and coworkers 119 showed that potassium excretion by the 
remnant kidney increased fourfold by 18 hours and ap-
proached 85% of the control value by the 7th day. Kunau 
and Whinnery 120 and Wilson and Sonnenberg 103 reported 
similar data in rats. In experiments by Schultze and associ-
ates,119 animals with a remnant kidney manifested an exag-
gerated kaliuresis following a potassium load. In contrast to 
these data and independent of previous potassium intake, 
dogs with 25% remnant kidney were only able to excrete 
30% to 37% of the load in 5 hours compared with 70% to 
90% in the control animals. 102 There is no easy resolution to 
the differences in these two studies. 102,119
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dialytic therapy was begun. Five patterns were found: 14 pa-
tients with normal electrolytes; 14 with anion gap metabolic 
acidosis; 21 with hyperchloremic acidosis; 11 with mixed hy-
perchloremic and anion gap acidosis; and 10 with normal se-
rum chloride, low serum bicarbonate, and normal anion gap. 
This last group, however, had the lowest serum sodium and 
therefore were relatively hyperchloremic. Therefore, among 
these 70 patients with ESRD, 31 (44%) had hyperchlore-
mic acidosis, only 14 (20%) had classic anion gap acidosis, 
and interestingly, another 14 (20%) had normal electrolytes. 
Patients with an increased anion gap, however, had a slight 
but signi  cantly higher serum creatinine than patients with 
pure hyperchloremic acidosis or with normal electrolytes 
(13.2 versus 10.0 versus 9.0 mg per deciliter, respectively). 
In addition, these two studies did not support the common 
impression that hyperchloremic acidosis occurs more often 
in patients with tubulointerstitial rather than glomerular dis-
ease. 132,133  Interestingly, diabetic patients with moderately se-
vere renal failure (GFR     30 mL per minute) have recently 
been reported to have milder metabolic acidosis than nondia-
betic patients with similar renal function. 134  

 Renal tubular acidosis (RTA) de  nes a group of disor-
ders characterized by the presence of metabolic acidosis out 
of proportion to the decrease in GFR. The hallmark of these 
disorders is the presence of signi  cant metabolic acidosis 
with hyperchloremia and a normal anion gap. Renal tubular 
acidosis in patients with mild-to-moderate renal insuf  cien-
cy is often associated with signi  cant hyperkalemia and is 
discussed later in this chapter. 

 The Pathophysiology of Metabolic Acidosis 
in Chronic Kidney Disease 
 Many studies have shown that acid production in renal 
failure is normal, and therefore, uremic acidosis re  ects 
a decrease in net acid excretion, de  ned as the difference 
between proton excretion in the form of titratable acid and 

 Intestinal Potassium Excretion in Renal Failure 
 Patients with renal failure secrete more potassium in the 
stool than do normal controls. 115,128,129  Net colonic secretion 
of potassium is increased signi  cantly above control levels 
in rats with renal insuf  ciency. 128  This increase is associated 
with an increase in Na-K-ATPase activity in colonic muco-
sa and is functionally similar to the increase seen with the 
administration of DOCA, glucocorticoids, or high dietary 
potassium. 130  Although the rise in fecal potassium concen-
tration is signi  cant, the absolute amount of K    lost through 
this route in patients with mild-to-moderate CKD is small 
and contributes only minimally to the external K    homeo-
stasis. In patients with advanced renal insuf  ciency (GFR     
5 to 10 mL per minute), however, up to 30% to 40% of the 
ingested potassium load may be excreted in the stool. 129  

 Acid–Base Homeostasis in Renal Failure 
 The ability of the kidney to excrete a hydrogen ion is progres-
sively diminished with the diminution of GFR. A signi  cant 
decrease in serum bicarbonate does not usually occur until 
GFR falls below 25 to 30 mL per minute. 75,131  Widmer and 
colleagues ,132  in 41 ambulatory patients with CKD who had 
multiple electrolyte measurements over time, noted a serum 
bicarbonate reduction from 28 to 22 mEq per liter in pa-
tients with a moderate renal failure de  ned as a creatinine 
level of 2 to 4 mg per deciliter and a further reduction to 
19 mEq per liter in patients with a creatinine level of 4 to 
14 mg per deciliter. The anion gap remained unchanged in 
the   rst group and rose signi  cantly with a further decrease 
in GFR. This study is criticized for the use of serum creati-
nine to de  ne severity of renal failure rather than the use of 
a more accurate measurement of renal function. The concept 
of orderly progression of metabolic acidosis of renal failure 
from hyperchloremic to anion gap acidosis, however, occurs 
in the minority of patients. Wallia and colleagues 133  studied 
the electrolyte pattern in 70 patients with ESRD just before 

FIGURE 72.6 The major factors that regulate 
potassium secretion in principal cells. Sodium 
is reabsorbed across the luminal membrane 
through ENaC (epithelial sodium channels) with 
resultant cellular depolarization increasing the 
electrical driving force for potassium secretion 
through ROMK (potassium channels). The effects 
of aldosterone (Aldo) and hyperkalemia (↑K ) on 
potassium secretion are noted. (From Gennari FJ, 
Segal AS. Hyperkalemia: an adaptive response in 
chronic renal insuf  ciency. Kidney Int. 2002;62:1, 
with permission.)
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in the distal tubule, is normal. 147 The amount of titratable 
acids in these patients is normal. 137,138–150 This is primarily 
owing to an increase in the fractional excretion of phosphate 
initiated by secondary hyperparathyroidism. It should be 
noted, however, that urinary phosphate does decrease with 
severe renal failure. This re  ects both a decrease in dietary 
phosphate as well as the effect of phosphate binders com-
monly used in these patients. 

 Renal Excretion of Ammonium 
Although bicarbonaturia may contribute to metabolic aci-
dosis, the major abnormality is a decrease in renal excre-
tion of ammonium. Ammonium is primarily produced by 
the deamination of amino acids, chie  y glutamine, in the 
proximal tubule and, to a much lesser extent, in the loop 
of Henle and the distal convoluted tubule. 130,131 This is 
reviewed in detail in Chapter 7, Renal Acid–Base Trans-
port and will not be reviewed here. In CKD, fractional re-
nal ammonium excretion initially increases by severalfold, 
thereby resulting in the maintenance of a normal absolute 
excretion rate. 151 However, as the GFR decreases below 
20 mL per minute, despite a maximal increase in fractional 
excretion of ammonium, the absolute excretory rate de-
creases signi  cantly. Thus, progressive metabolic acidosis 
results. This decrease in the rate of ammonium excretion 
also re  ects a decreased ability of the kidney to trap am-
monia in the collecting duct. 146 Warnock 139 has suggested 
that the decrease in ammonia trapping in the remnant 
kidney model may be secondary to excess delivery of bi-
carbonate to the collecting duct, thereby resulting in an 
unfavorable environment for the diffusion and trapping of 
ammonia. 

The role of aldosterone in ammonium excretion is com-
plex. Aldosterone increases the rate of Na  -dependent and 
Na -independent H   secretion in the cortical and medul-
lary collecting duct. 152,153 Hypoaldosteronism is associated 
with a decrease in the rate of H   secretion, whereas the 
ability to maintain a steep H   gradient between urine and 
plasma, as measured by urinary pH and urine minus blood 
PCO2 in alkaline urine, is not affected. 154,155 The decrease 
in the rate of H   secretion is associated with a decrease in 
the availability of ammonium buffer in the urine that is 
not augmented appropriately in response to sodium sulfate 
infusion.156,157 Hypoaldosteronism is universally associ-
ated with a decreased potassium excretion and hyperka-
lemia. Hyperkalemia decreases renal ammonium excretion 
signi  cantly. A decrease in accumulation of ammonium in 
the renal interstitium despite normal production by the 
proximal tubule underlies this effect. 158 In the syndrome 
of hyperkalemic renal tubular acidosis, this mechanism 
probably plays the major role in the production of hyper-
chloremic acidosis seen early in the course of renal fail-
ure (Fig. 72.7). 159 Reversal of hyperkalemia with sodium 
binding resin, 160 mineralocorticoids, 161 or low-potassium 
diet162 ameliorates the metabolic acidosis by increasing am-
monium secretion. 

ammonium ion (NH 4 ) and bicarbonate excretion. 135–137

Careful metabolic studies by Goodman and colleagues 137

documented that patients with chronic renal failure have a 
daily bicarbonate de  cit of approximately 13 to 19 mEq. It is 
notable that despite this persistent de  cit, serum bicarbon-
ate in patients with CKD after an initial drop remains stable 
over long periods of time. 138,139 This is due chie  y to the 
buffering of excess hydrogen ions by bone buffers, including 
calcium carbonate. 138

 Renal Excretion of Bicarbonate 
Several studies demonstrate that some patients with severe 
kidney disease have signi  cant bicarbonate wasting. 135,140–144

In an early study by Schwartz and coworkers, 135 three out of 
four patients with renal failure had signi  cant bicarbonatu-
ria, which disappeared only after the fall of serum bicarbon-
ate to below 20 mEq per liter. In a more detailed study in 
17 uremic patients (serum creatinine of 5.6 to 18.9 mg per 
deciliter), the majority had signi  cant bicarbonate wasting 
(fractional excretion of HCO 3 of 0% to 17.56%) despite 
the presence of metabolic acidosis (serum HCO 3 of 16 to 
23 mEq per liter). After NH 4Cl loading, serum bicarbonate 
decreased to below 14 mEq per liter, and bicarbonaturia dis-
appeared in all but four patients. 144 Interestingly, the bicar-
bonate wasting in these four patients also disappeared with 
the institution of a low-sodium diet. 144 These two studies 
support the presence of a diminished maximal tubular re-
absorption (T m) for bicarbonate in the majority of patients 
with renal failure. Further, they demonstrate that the low T m
is partly responsive to volume status. 

Arruda and colleagues 143 and Wong and associates, 145

working with a remnant kidney model in dogs with vari-
able levels of volume expansion and serum bicarbonate, 
noted that the ratio of absolute bicarbonate to sodium re-
absorption was increased in CKD. In addition, Wong and 
associates,145 using a micropuncture method, showed that 
this ratio was also higher at the beginning of the distal 
tubule, indicating avid bicarbonate absorption by the 
proximal tubule of the remnant kidney. Although absolute 
absorption was higher, the absolute amount of bicarbonate 
delivered to the distal tubule was also higher, re  ecting the 
marked increase in   ltered load per nephron owing to an 
increase in single nephron GFR. 145 In summary, the whole 
kidney T m for bicarbonate is, in general, diminished in 
CKD despite an absolute increase in bicarbonate resorption 
at the single nephron. The discrepancy in these   ndings 
may re  ect the variation in the experimental designs and 
the role of nonvolume regulators in bicarbonate handling 
by the kidney. 

 Renal Excretion of Titratable Acid 
The excretion of titratable acids chie  y re  ects the amount 
of urinary phosphate and the urinary pH. Most CKD pa-
tients are able to maximally acidify their urine, 135,146 and 
urine-serum P CO2, as a measure of hydrogen pump activity 
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of these cases are diabetic or hypertensive nephropathy or 
chronic interstitial nephritis. 165 In 1972, Schambelan and 
colleagues166 presented evidence linking hypoaldosteron-
ism with hyporreninism in six patients with this syndrome. 
This association was veri  ed in subsequent reports, 167–170

and the entity became known as hyporeninemic hypoaldo-
steronism (HHA). However, it quickly became clear that 
a signi  cant minority of these patients had normal renin 
levels. DeFronzo, 171 in 1980, after reviewing 81 published 
cases, came to the conclusion that in 20% of cases the low 
plasma aldosterone levels could not be explained by renin 
de  ciency, and therefore a primary abnormality in aldo-
sterone synthesis had to be postulated. At the same time, 
some patients with sickle cell disease, 172,173 systemic lupus 
erythematosus, 174–177 and renal transplantation 178–180 have 
a renal tubular secretory defect resulting in hyperkalemia 
despite a normal renin–aldosterone axis. Therefore, at the 
present time, these patients can be divided into two large 
categories: (1) hyperkalemia resulting from hypoaldoste-
ronism with or without hyporreninism; and (2) hyperka-
lemia resulting from a primary renal tubular potassium 
secretory defect. One could consider this entity as a spec-
trum ranging from pure aldosterone de  ciency with normal 
tubular responsiveness to severe tubular resistance with 
normal aldosterone secretion. Between these two extremes 
there are many overlapping presentations in which either 
the defect in the hormonal axis or the tubular responsive-
ness dominates. Although Table 72.2 summarizes all the 
hormonal or tubular defects that can lead to hyperkalemia, 

In summary, the metabolic acidosis develops universally 
in all patients with CKD as GFR decreases to below 20 mL 
per minute. The pathogenesis of this disorder is complex 
and re  ects renal defect in both resorption as well as the 
generation of bicarbonate. The major mechanism, however, 
is in a decrease in absolute ammonia excretion despite the 
presence of acidosis. 

 HYPERKALEMIC RENAL TUBULAR 
ACIDOSIS OWING TO A DEFECT IN 
RENIN–ANGIOTENSIN–ALDOSTERONE 
AXIS OR TUBULAR UNRESPONSIVENESS 
TO ALDOSTERONE 
Although a decrease in GFR may be associated with the de-
velopment of signi  cant hyperkalemia and hyperchloremic 
(HCA) or anion gap metabolic acidosis, this usually occurs 
only with severe reductions in GFR, below 15 to 20 mL per 
minute. However, some patients with underlying renal dis-
ease and mild-to-moderate azotemia present with striking 
hyperkalemia with or without HCA. The elevated serum 
potassium in these patients is primarily owing to a distur-
bance in the renin–angiotensin–aldosterone axis or to renal 
tubular responsiveness to aldosterone (see Fig. 72.6 and 
Table 72.2). Since the report by Hudson and associates, 163

numerous cases have been described in which hyperka-
lemia with or without HCA developed in the presence of 
only mild-to-moderate renal insuf  ciency. 164 The majority 

FIGURE 72.7 The factors involved in hyperkalemic acidosis. A: ENaC function at the apical surface of principal cells allows potassium 
secretion by ROMK (potassium channels) and the hydrogen ion by adjacent intercalated cells. B: Hyperkalemia increases intracellular 
pH by proton exchange, impairing the enzyme involved in ammoniagenesis. C: The process of ammoniagenesis involves deamination 
of glutamine, which allows ammonia to buffer the hydrogen ion in the urine. Ammonia and ammonium are reabsorbed in the medul-
lary loop and are then excreted in the urine in the distal nephron. (From Karet FE. Mechanisms in hyperkalemic renal tubular acidosis. 
J Am Soc Nephrol. 2009;20:251, with permission.)
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and then summarize our present understanding of aldoste-
rone de  ciency in this syndrome. 

 Hyporreninism 
 At present, no single abnormality can explain the low PRA 
seen in 80% of these patients. 171,182,183  Evidence has been 
presented in support of a defect in one or more physiologic 
regulators of renin secretion including volume, autonom-
ic nervous system, serum potassium concentration, and 
prostaglandins. 

 Oh and colleagues, 169  Perez and colleagues, 185  and oth-
ers 186,187  have demonstrated that long-term sodium and vol-
ume depletion in these patients is associated with a signi  cant 
increase in the PRA. However, comparable data in normal 
controls with the same degree of volume depletion were not 
provided. In the report of Oh and colleagues, 169  after 3 to 
6 weeks of salt depletion, the PRA rose into the normal range, 
but plasma aldosterone remained subnormal. In the study by 
Chan and coworkers, 8 of the 12 patients with hyporrenin-
ism responded to 2 weeks of furosemide with an increase in 
PRA without a similar response in plasma aldosterone. 187  In 
a study of four patients with acute postinfectious glomeru-
lonephritis, 155  plasma renin and aldosterone concentrations 
were low during the acute phase, but returned to normal 
following recovery from acute nephritis. Interestingly, in two 
patients, the renin and aldosterone levels remained low dur-
ing the acute phase despite an excellent response to diuret-
ics. These two patients, however, responded appropriately to 

often with HCA, our discussion is limited to the distur-
bances associated with renal insuf  ciency. 

 Hyperkalemic Renal Tubular 
Acidosis Owing to a Defect in Renin–
Angiotensin–Aldosterone Axis 
 This group comprises approximately 80% of the patients 
with renal insuf  ciency and hyperkalemia. 171,181–183  The 
hallmark of this group is a low plasma aldosterone concen-
tration. The majority (80%) of this group also has low plasma 
renin activity (PRA) and therefore represents the classic syn-
drome of HHA. However, 20% have a normal PRA. Clini-
cally and physiologically, these patients present with fairly 
uniform features. Several large series 166,184  have de  ned the 
characteristics of these patients   rst summarized in a review 
by DeFronzo. 171  These include: (1) a mean age of about 
60 years, (2) the presence of diabetes mellitus in about 50%, 
(3) the presence of mild-to-moderate renal failure in the ma-
jority, and (4) a lack of symptoms referable to hyperkalemia 
in 75%. Physiologic features include: (1) low or low-normal 
baseline and/or stimulated aldosterone levels, (2) normal 
plasma cortisol, (3) low baseline and/or stimulated renin 
values in 80%, (4) normal aldosterone response to angioten-
sin or adrenocorticotropic hormone (ACTH) stimulation in 
the minority, (5) presence of hyperchloremic acidosis in well 
over 50%, and (6) a lack of signi  cant salt wasting. 

 To gain an understanding of the physiologic basis of this 
syndrome, we initially review the defect in renin secretion 

TA B L E

Etiology of Chronic Hyperkalemia Due to Disturbances in Renal Potassium Excretion
TA B L E

72.2

I. Decrease in GFR
 A. Acute renal failure
 B. Chronic kidney disease (GFR   15–20 mL/min)
II. Defect in renal tubular secretion of potassium
 A. Disturbance in the renin–angiotensin–aldosterone axis
  1. Hyporeninism: associated with renal insuf  ciency (diabetes mellitus, interstitial nephritis)
  2. Disturbance in angiotensin II activation or function (captopril, saralasin)
  3. Hypoaldosteronism
   a. With glucocorticoid de  ciency (Addison disease, enzyme de  ciency)
   b. Block in aldosterone synthesis (heparin, 18-methyloxidase de  ciency)
   c. Primary hypoaldosteronism
 B. Tubular resistance to the action of aldosterone (renal tubular hyperkalemia)
  1. Pseudohypoaldosteronism
  2. Hyperkalemia, hypertension, and normal renal function
  3.  Hyperkalemia with mild-to-moderate renal insuf  ciency and variable plasma aldosterone levels (sickle cell 

disease, systemic lupus erythematosus, renal transplant, obstructive uropathy, miscellaneous)
  4.  Pharmacologic inhibition of the tubular action of aldosterone (spironolactone, eplerenone, triamterene, 

amiloride, pentamidine, trimethoprim) in distal nephron

GFR, glomerular   ltration rate.
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indomethacin, a potent prostaglandin inhibitor 204 as well as 
selective cyclooxygenase-2 (COX-2) inhibitors, 205 suggesting 
that a defect in prostaglandin synthesis may play a role in the 
development of HHA in some hyperkalemic patients. Con-
sistent with this possibility, Tan and colleagues 206 found a 
strong correlation between urinary PGE 2 levels and the ratio 
of active to inactive renin in normal controls and in patients 
with the syndrome of hypoaldosteronism. In four of the nine 
patients, low urinary PGE 2 was associated with a low ratio 
of active to inactive renin. In normal controls, the inhibition 
of prostaglandin synthesis with indomethacin resulted in a 
similar decrease in this ratio. These authors postulated that 
prostaglandins may play a critical role in the activation of re-
nin, and therefore hypoaldosteronism in these patients may 
be secondary to a prostaglandin de  ciency. In two patients 
with diabetes mellitus and hypoaldosteronism, the total re-
nin concentration was normal, whereas PRA was low. 207 The 
fractionation of the plasma yielded an inactive renin precur-
sor (prorenin or “big renin”); unfortunately, prostaglandin 
levels were not measured in these diabetic patients. It should 
be noted, however, that other investigators have failed to 
  nd an association between prostaglandin de  ciency and 
the development of HHA. 208

Another hypothesis that links CKD with hyporrenin-
ism is   brosis of the juxtaglomerular apparatus owing to 
intrinsic renal disease. Although occasional reports of jux-
taglomerular apparatus   brosis have appeared, 187 this is 
a rare   nding. Besides, the presence of juxtaglomerular 
apparatus damage alone does not explain the development 
of hypoaldosteronism. 

Hyper  ltration hypothesis has been linked to the de-
velopment of HHA in both diabetic and nondiabetic CKD 
patients.209 According to this hypothesis, as the number of 
nephrons is reduced, there is an adaptive increase in the 
renal plasma   ow and GFR by the remaining functioning 
glomeruli. These alterations in renal hemodynamics serve 
to inhibit renin synthesis and release, leading secondarily to 
the development of hypoaldosteronism. 

 Hypoaldosteronism 
The hallmark of the syndrome of HHA is a low basal or low 
stimulated plasma aldosterone level in spite of normal levels 
of glucocorticoids and other ACTH-dependent steroids such 
as DOCA or corticosterone. Aldosterone secretion is primar-
ily stimulated by the renin–angiotensin system. However, 
ACTH and serum potassium, as well as other regulators, 
play independent roles. 

As stated previously, hyporreninemia is present in 80% 
of patients with hypoaldosteronism, 171,179,183 and therefore it 
is logical to consider that the primary defect in these patients 
lies in renin synthesis or release. Schambelan and colleagues 183

showed that the stimulation of renin by volume contraction 
resulted in a rise in plasma aldosterone that was appropriate 
for the increase in PRA. The slope of the curve relating plas-
ma renin and aldosterone was similar in patients with HHA 
and normal controls. Surprisingly, for any given level of PRA, 

physiologic doses of   udrocortisone. This study, 155 coupled 
with previous studies of acute glomerulonephritis, 188,189

supports the concept that although physiologic suppression 
of the renin–aldosterone axis by volume expansion may play 
a signi  cant role in certain patients with glomerular disease, 
hypertension, and edema, other factors such as decreased 
GFR and damage to the juxtaglomerular apparatus play an 
important contributory role. Gordon and colleagues 190 have 
described a patient with hypertension, acidosis, hyperkale-
mia, and normal renal function associated with HHA. Pro-
longed sodium restriction resulted in a correction of these 
abnormalities. A similar pathophysiologic mechanism has 
been postulated in hypertensive patients with hyperkalemia 
and renal insuf  ciency. 191

The autonomic nervous system plays an important 
physiologic role in the regulation of renin secretion. Sym-
pathetic nerve terminals are known to innervate the juxta-
glomerular apparatus, and renin secretion is stimulated by 
epinephrine.192,193 Therefore, autonomic insuf  ciency could 
result in a state of hyporreninemia. This hypothesis has 
been investigated primarily in diabetic patients, in whom 
autonomic neuropathy is common and circulating catechol-
amine levels are often low. 194 In   ve diabetic patients with 
autonomic neuropathy, Tuck and colleagues 195 reported low 
basal PRA as well as diminished plasma aldosterone and 
norepinephrine concentrations. In addition, the infusion of 
isoproterenol, a   -adrenergic agonist, did not increase PRA, 
indicating a possible block at or beyond the receptor level. 
In contrast, normal circulating catecholamine levels have 
previously been reported in diabetic patients with the syn-
drome of hypoaldosteronism. 154,167,196,197 Fernandez-Cruz 
and coworkers 198 compared stimulated PRA in 16 normo-
tensive diabetic patients without overt nephropathy and 
9 age-matched controls. The stimulated PRA was signi  cant-
ly lower in these patients and correlated directly with the de-
gree of autonomic dysfunction as measured by the velocity 
of esophageal peristalsis. de Chatel and colleagues, 199 how-
ever, were unable to demonstrate in a large group of diabetic 
individuals any correlation between the plasma epinephrine 
concentration and abnormalities in the renin–aldosterone 
axis. Therefore, although autonomic neuropathy may play a 
role in the development of hypoaldosteronism in some dia-
betic patients, it is not a uniform   nding and certainly can-
not explain the occurrence of this syndrome in nondiabetic 
patients.

Hyperkalemia is known to inhibit PRA 200; consequent-
ly, one could hypothesize that hyporreninemia is not a 
primary defect but is secondary to hyperkalemia. In two 
studies,166,170 short-term normalization of serum potassium 
did not increase PRA signi  cantly; however, long-term stud-
ies have not been undertaken to examine this very important 
question.

Prostaglandins E 2, I 2, and D 2 are known stimulators of 
renin release, 201,202 whereas prostaglandins E 1 and E 2 directly 
increase aldosterone biosynthesis in vitro. 203 Furthermore, 
hyperkalemia has been reported following treatment with 
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mechanism for its action possibly through the stimulation of 
cyclic guanosine monophosphate (cGMP). 218

Several investigators have explored the possibility of an 
enzymatic defect in aldosterone biosynthesis, 185,197,200 and 
an enzymatic block involving the conversion of 18-hydroxy-
corticosterone to aldosterone has been postulated, but these 
  ndings have not been supported by other studies. 219,220

As indicated, diabetic patients constitute a large percent-
age of patients with HHA. To explain this high incidence, 
two other postulates have been presented. Insulin is an im-
portant regulator of potassium uptake by a variety of tissues, 
and chronic hypoinsulinemia (absolute or relative) might be 
expected to result in a state of intracellular potassium de  -
ciency. Furthermore, intracellular potassium concentration is 
an important regulator of aldosterone synthesis. 171 Potassium-
de  cient cultured zona glomerulosa cells have a blunted al-
dosterone response to AT-II and ACTH. 210,221 Insulinopenia, 
by decreasing intracellular potassium, may lead to a defect in 
aldosterone synthesis and the syndrome of hypoaldosteronism. 
A second hypothesis is offered by Smith and DeFronzo 222 and 
involves the concept of tubuloglomerular feedback. Normal tu-
buloglomerular balance is disrupted in the presence of osmotic 
agents in the renal tubule, 223,224 including glucose. 225–227 It is 
postulated that, in diabetic patients with a high   ltered glucose 
load, sodium chloride delivery out of the proximal tubule is 
enhanced, leading to an increased delivery of solute to the loop 
of Henle. Enhanced chloride reabsorption by the thick ascend-
ing limb of Henle (TALH) may inhibit renin secretion, 228 which 
secondarily leads to the development of hypoaldosteronism. 

In summary, at present, a uni  ed etiologic hypothesis 
cannot explain the occurrence of the syndrome of HHA 
in different patients. It is likely that this syndrome is quite 
heterogeneous and can be explained only by multiple etio-
logic abnormalities. In a given patient, the role of different 
regulatory systems (i.e., volume status, prostaglandins, ANF, 
autonomic nervous system, structural damage to the juxta-
glomerular apparatus, enzymatic defects in aldosterone and 
renin biosynthesis, and intracellular adrenal potassium de  -
ciency) should be considered and evaluated. 

 Hyperkalemic Renal Tubular Acidosis Owing 
to a Renal Tubular Secretory Defect 
This group of disorders (see Table 72.2 and Fig. 72.8) in-
cludes patients who have hyperkalemia out of proportion to 
the degree of renal failure or hypoaldosteronism. The primary 
defect is a partial resistance to the physiologic effect of aldo-
sterone to promote potassium secretion. Perez and cowork-
ers229 named this syndrome renal tubular hyperkalemia and 
divided it into three groups: group I, patients with pseudo-
hypoaldosteronism; group II, patients with hyperkalemia, 
hypertension, and normal renal function; and group III, 
patients with hyperkalemia, mild-to-moderate renal insuf-
  ciency, and normal-plasma aldosterone (group IIIa), low-
plasma aldosterone (group IIIb), or high-plasma aldosterone 
(IIIc) (Table 72.2). 

the plasma aldosterone concentration was disproportionately 
elevated, probably because of the independent stimulatory 
effect of plasma potassium on aldosterone secretion. Never-
theless, the highest levels of renin and aldosterone achieved 
in these patients were comparable only to the basal levels in 
control subjects. In contrast, as indicated, other investigators 
have found a clear disconnect between renin and aldosterone 
level after stimulation with volume depletion 185–187 and cap-
topril.187 In all studies, however, the response of aldosterone 
was signi  cantly blunted despite increased renin and persis-
tent hyperkalemia. In addition, most investigators have re-
ported a marked impairment in the ability of angiotensin II 
(AT-II) to stimulate aldosterone secretion. 171,183 This   nding, 
coupled with a subnormal aldosterone response to ACTH 
stimulation, and the failure of hyperkalemia to stimulate al-
dosterone secretion, has strengthened the possibility of a pri-
mary adrenal defect in some patients with hypoaldosteron-
ism. This is further supported by the observation that 20% of 
patients with hypoaldosteronism have normal PRA. 171,179,183

It is possible that the poor response of aldosterone to ACTH, 
AT-II, and hyperkalemia may be secondary to long-term atro-
phy of the zona glomerulosa of the adrenal gland rather than 
to a speci  c enzymatic defect in aldosterone production. Con-
sistent with this possibility, Fredlund and colleagues 210 pro-
vided evidence in isolated adrenal glomerulosa cells that the 
aldosterone response to hyperkalemia is dependent on the 
circulating angiotensin level. However, no study so far has 
evaluated the response of the adrenal gland to prolonged 
stimulation by AT-II in patients. 

The serum potassium concentration is an important 
regulator of the plasma aldosterone level. 211–213 In nephrec-
tomized patients, a signi  cant correlation between serum 
potassium and plasma aldosterone exists, 214 and this rela-
tionship is independent of renin or ACTH. Therefore, in 
interpreting a given plasma aldosterone level, the effect of 
serum potassium must be considered. Schambelan and col-
leagues183 categorized 31 patients into two groups based on 
the ratio of urinary aldosterone excretion to serum potas-
sium concentration. Group A (23 patients) had a low ratio 
and was considered to have hypoaldosteronism. Group B 
(8 patients) had a normal ratio and was considered to have 
a primary tubular defect in potassium secretion. In group A, 
20% had a normal PRA. Therefore, hypoaldosteronism in 
this group, in spite of normal PRA and high plasma potas-
sium, is probably owing to a defect in aldosterone synthesis. 

Another regulator of aldosterone secretion and plasma 
volume is atrial natriuretic factor (ANF). ANF has been 
shown to be a strong inhibitor of baseline as well as stimu-
lated aldosterone in humans. 215,216 In normal humans, ANF 
also prevents a potassium-stimulated rise in the aldosterone 
level.217 In addition, the ANF level is markedly elevated 10- 
to 50-fold in patients with hypoaldosteronism. 217 Although 
the rise in ANF (and the suppression of aldosterone) could 
be secondary to volume expansion, ANF also suppresses 
potassium, angiotensin, and ACTH-stimulated aldosterone 
secretion, supporting the presence of a common cellular 
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aldosterone levels were normal in all subjects, these patients 
were unable to excrete a potassium load normally. The infu-
sion of potassium chloride, sodium sulfate, and furosemide 
failed to augment potassium secretion normally. This defect 
is thought to result from ischemic damage to the collecting 
tubules and medullary area by sickle cells. An immunologic 
reaction against a renal tubular antigen also has been sug-
gested. It should be noted that the syndrome of HHA also 
occurs in sickle cell disease. 171,230  

 Systemic Lupus Erythematosus 
 Patients with systemic lupus erythematosus (SLE) may have 
multiple tubular defects, including type I and IV RTA. 176,177

In the largest study of 30 patients with active SLE, 18 pa-
tients had defects in the handling of potassium, sodium, 
and/or hydrogen ions. Eight patients had distal renal tubu-
lar acidosis (dRTA) due to an isolated proton secretory de-
fect. Five had dRTA of the gradient or acid back leak type. 

 Groups I and II represent examples of a pure tubular 
secretory defect without renal insuf  ciency and are not 
discussed here. In this section we deal only with group III 
patients, who present with mild-to-moderate renal insuf-
  ciency, hyperkalemia, hyperchloremic acidosis, variable 
plasma renin and aldosterone levels, and resistance to physi-
ologic doses of mineralocorticoids. This clinical entity has 
been described in patients with sickle cell disease, systemic 
lupus erythematosus, renal transplant, obstructive uropathy, 
AIDS, and a group of miscellaneous diseases including lead 
nephropathy and chronic interstitial nephritis. 

 Sickle Cell Disease 
 A renal tubular potassium secretory defect in sickle cell dis-
ease was   rst reported in patients with normal renal function 
and normal serum electrolyte concentrations 7  and, later, in 
patients with sickle cell nephropathy, 171,230  sickle cell trait, 172

and sickle cell disease. 173  Although basal and stimulated 

FIGURE 72.8 A schematic representation of potential hormonal, renal, and extrarenal defects resulting in hyperkalemia. Hyperkale-
mia may result from one of the following conditions: (1) decreased renin production, (2) decreased aldosterone production despite 
normal renin secretion (adrenal defect), (3) a renal tubular secretory defect, or (4) an abnormal distribution of potassium between 
intracellular and extracellular   uid compartments. ACTH, adrenocorticotropic hormone. (From DeFronzo RA, et al. Nonuremic hypoka-
lemia: a possible role for insulin de  ciency. Arch Intern Med. 1979;137:842, with permission.)
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The  hyperkalemia was transient, disappearing spontane-
ously, and did not correlate with clinical or laboratory evi-
dence of rejection. In contrast, in two patients studied by 
Batlle and coworkers, 235 hyperkalemia was associated with 
very low levels of aldosterone, which did not respond to 
volume contraction. Urinary potassium was low and did not 
respond to the infusion of sodium sulfate or acetazolamide. 
The etiology of this disorder is not clear, but immunologic 
damage to the renal tubular cells is postulated. 180 In the cy-
closporine era, hyperkalemia is more common in kidney 
transplant recipients. 180,237,238

In a study of 12 transplant patients on cyclosporine, 
Kamel et al. 238 noted low renin and aldosterone levels 
associated with a poor response to   udrocortisone. Trans-
tubular potassium gradients (TTKGs), however, rose sig-
ni  cantly with bicarbonaturia initiated with acetazolamide, 
supporting the hypothesis that a tubular defect was due to 
an inability to generate a favorable electrical and chemical 
gradient in the cortical collecting duct. 238 In a recent series 
of 567 transplant patients for more than 12 months and 
GFR   40 mL per minute, RTA was diagnosed in 76 (13%). 
Using standard tools including urine pH, urine anion gap, 
as well as bicarbonate loading, the authors divided the 
group as follows: 28 (37%) with classical RTA, 11 (14%) 
with classical RTA but with elevated potassium, and 37 
(49%) with type IV RTA (some with normal potassium). In 
multivariate analysis, the presence of RTA correlated with 
lower GFR, higher parathyroid hormone (PTH) level, the 
use of tacrolimus, and renin–angiotensin blockers. It was 
estimated that the use of renin–angiotensin blockers ac-
counted for 25% of patients with RTA. 180

 Hyperkalemic Renal Tubular Acidosis Associated 
with AIDS 
Acid–base and electrolyte disturbances, with or without re-
nal failure, are common in patients with AIDS. As reviewed 
by Perazella and Brown, 239 the incidence varies from 5% to 
53% and is owing to a variety of causes including adrenal 
insuf  ciency, renal failure, type IV RTA, and   nally as a com-
plication of drugs used in these patients. 240 The syndrome of 
hyporenin–hypoaldosteronism is relatively uncommon and 
usually is associated with HIV-related nephropathy. Patients 
with AIDS are exposed to a variety of drugs that could result 
in hyperkalemia, which is often associated with HCA and/or 
renal insuf  ciency. 

 Miscellaneous Conditions 
Renal tubular hyperkalemia has been reported in a variety 
of other renal diseases. These include chronic interstitial ne-
phritis of unknown etiology, 241 nephrosclerosis, 184 diabetes 
mellitus,183 postinfectious glomerulonephritis, 188,189 lead 
nephropathy, 242 and drug-induced acute interstitial nephri-
tis.243 Although in our experience this entity seems to be 
relatively common in nonspeci  c interstitial nephritis, no 
incidence or prevalence data are available. 

Three had voltage-dependent dRTA. One individual had 
hyporeninemic hypoaldosteronism and one had dRTA plus 
hypoaldosteronism. Clinically, patients with the abnormal 
tubular study results more often presented with nephritis 
or nephrotic sediment, peripheral edema, or anemia. 176

A defect in potassium secretion, similar to the defect in 
sickle cell disease, has also been reported in several patients 
with SLE. 174,175 The defect is often accompanied by a defect 
in hydrogen ion secretion. 174,175,231 In a study of two pa-
tients with SLE and hyperkalemic RTA, Bastani and associ-
ates232 showed the presence of autoantibodies to collecting 
duct cells in one patient. The serum from the patient with 
autoantibodies labeled the intercalated cell in rat kidney 
section. However, the serum from both patients did not 
react with the af  nity-puri  ed bovine H  ATPase or human 
H ATPase beta subunit. This is in contrast to the   nding 
in a single patient with Sjögren syndrome who had an ab-
sence of vacuolar H  ATPase in intercalated cells. 233 These 
  ndings support the concept that cellular and molecular 
mechanisms in these patients probably are heterogeneous 
in nature. 

 Obstructive Uropathy 
Hyperkalemic RTA, as a complication of obstructive uropa-
thy, is common and best described in a report of 13 pa-
tients by Batlle and associates. 181 Two patterns were noted: 
(1) Five patients had normal plasma aldosterone levels but 
failed to increase urinary potassium excretion after the ad-
ministration of acetazolamide,   udrocortisone, and sodium 
sulfate. The primary defect in this group is renal tubular 
unresponsiveness to aldosterone. (2) Eight patients had low 
plasma aldosterone levels but failed to augment renal po-
tassium excretion with mineralocorticoid administration. 
As noted, this re  ects a combined defect in this group. 
Furthermore, urinary acidi  cation in response to systemic 
acidosis and sodium sulfate infusion was abnormal in 8 of 
13 patients. In a rat model of acute ureteral obstruction, 
no change in the number or tubular distribution of vacu-
olar H  ATPase was noted; however, the intracellular distri-
bution was changed with a signi  cant decrease in plasma 
membrane bound pumps in intercalated cells. 234 This   nd-
ing may explain hyperchloremic metabolic acidosis (HMA), 
which is commonly noted in these patients. 

 Renal Transplantation 
In the precyclosporine era, hyperkalemia was a relatively 
unusual phenomenon following a successful renal trans-
plantation.179,180,235 However, two series from Australia 
and the United States 179,180 and a series from Israel 236 have 
reported the occurrence of renal tubular hyperkalemia in 
this group. In the largest series, 23 of 75 patients with a 
successful kidney transplant had hyperkalemia unrelated 
to rejection episodes, renal failure, oliguria, or acidosis. 180

The renin–angiotensin–aldosterone axis was normal in these 
patients, and hyperkalemia did not respond to furosemide. 
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hospitalized patients. 244–248  Of note, kidney disease and 
older age (    60 years) were important predisposing risk 
factors in many studies. 244–246  

 Increased Potassium Input 
 Enteral and parenteral inputs of potassium are very common 
causes of hyperkalemia in hospitalized patients. Nonethe-
less, chronic hyperkalemia does not occur with these prod-
ucts unless an underlying defect in potassium homeostasis 
also is present. Deliberate potassium intake often lies at the 
root of hyperkalemia, although unsuspected potassium de-
livery also occurs. A 3.6% incidence of hyperkalemia among 
4,921 patients taking physician-prescribed potassium sup-
plements was documented in the Boston Collaborative Drug 

 Drugs Associated with Hyperkalemia in 
Patients with Kidney Disease 
 In patients with underlying kidney disease, prescribed 
drugs or over-the-counter medications and supplements 
play an increasingly dominant role in the development of 
hyperkalemia. It is therefore important to recognize that a 
variety of products are capable of elevating serum potas-
sium concentration through multiple mechanisms (Table 
72.3). Hyperkalemia, depending on the criteria used, has 
been reported to develop in anywhere from 1.3% to 10% 
of patients and is often multifactorial. Of the many factors 
involved, culprit medications, either alone or in association 
with other disturbances in potassium homeostasis, were 
a contributing cause of hyperkalemia in 35% to 75% of 

TA B L E

Common Drugs That Cause Hyperkalemia and the Mechanism of Action
TA B L E

72.3

Medication  Mechanism of Action

Potassium supplement  Increase intake

Salt substitutes  Increase intake

Nutritional/herbal supplements  Increase intake

 2-blocking agents Decrease potassium movement into cells, decrease renin/aldosterone

Digoxin intoxication Decrease Na -K -ATPase activity

Lysine, arginine, and  -aminocaproic acid Shift of potassium out of cells

Succinylcholine  Shift of potassium out of cells

Potassium-sparing diuretics

Spironolactone, eplerenone, drospirenone  Aldosterone antagonism

Triamterene Block Na  channels in principal cells

Amiloride Block Na  channels in principal cells

NSAIDs, COX-2 selective inhibitors  Decrease renin/aldosterone
Decrease RBF and GFR

ACE inhibitors and AT-II  Decrease aldosterone synthesis

receptor antagonists  Decrease RBF and GFR

Heparin  Decrease aldosterone synthesis

Trimethoprim and pentamidine Block Na  channels in principal cells

Cyclosporine and tacrolimus  Decrease aldosterone synthesis
Decrease Na -K -ATPase activity
Decrease K  channel activity

NSAIDs, nonsteroidal anti-in  ammatory drugs; COX-2, cyclooxygenase-2; GFR, glomerular   ltration rate; ACE, angiotensin-converting enzyme; AT-II, 
angiotensin II.
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monly prescribed drugs can impair this protective cellular 
response.   -Adrenergic–blocking drugs through the inhibi-
tion of renin secretion as well as cellular uptake of potassium 
have been associated with the development of mild and, on 
rare occasions, life-threatening hyperkalemia. 257,258 Hyper-
kalemia often develops rapidly, as one would expect with the 
disruption of cellular potassium homeostasis, but rarely de-
velops in the absence of heavy exercise or other risk factors 
for hyperkalemia. 3,258 As an example, three renal transplant 
recipients developed severe hyperkalemia (K   range 6.0 to 
8.3 mEq per liter) within hours of treatment with intrave-
nous labetalol. 259 Most studies evaluating hyperkalemia in 
hospitalized patients have shown that  -adrenergic blockers 
have caused or at least contributed to hyperkalemia in any-
where from 4% to 17% of patients. 248,260–262 Not unexpect-
edly, the hyperkalemic potential of   -adrenergic blockers is 
increased by underlying renal insuf  ciency, the coexistence 
of diabetes mellitus or hypoaldosteronism, and concurrent 
therapy with other medications that reduce renal potassium 
excretion. 256,257

Digoxin, by blocking the Na-K-ATPase pump function, 
has also been demonstrated to disrupt potassium homeosta-
sis.263 As a result of this effect, the impaired cellular uptake 
of potassium as well as reduced renal potassium excretion 
occurs. In general, therapeutic digoxin levels do not lead to 
hyperkalemia but, in rare circumstances, can be a contribut-
ing factor. 263 Nonetheless, digoxin intoxication will result in 
hyperkalemia, which at times is fatal. 263,264

Both natural (lysine, arginine) and synthetic ( -amino-
caproic acid) amino acids have been associated with hyper-
kalemia.265–269 This is owing to the shift of potassium out of 
cells.265–269 Levinsky and colleagues 265 demonstrated lysine 
uptake into isolated rat muscle within 1 hour in an amount 
equivalent to the potassium lost from the muscle tissue. In 
intact animals, the infusion of lysine was associated with hy-
perkalemia, with a 1.0 to 1.5 mEq per liter rise in plasma K  
concentration noted for every 10 mEq per liter increase in 
plasma lysine concentration. 266 Hyperkalemia has also been 
described with intravenous arginine administration. 267–269

In normal humans, serum potassium increased by approxi-
mately 1 mEq per liter following the infusion of 30 to 60 g 
of arginine, whereas patients with ESRD developed a mean 
increase in serum K   of 1.5 mEq per liter at 2 hours after 
30 g of intravenous arginine. 268 In two patients with mild 
renal insuf  ciency and liver disease, K   concentrations were 
7.5 and 7.1 mmol per liter, respectively, after the infusion 
of arginine. 269 Serum potassium concentrations increased 
as early as 45 minutes after arginine infusion and peaked 
between 2 to 6 hours following injection, bespeaking a dis-
turbance in cellular potassium homeostasis. 268,269 Hyperka-
lemia can also develop in subjects treated with the synthetic 
amino acid,  -aminocaproic acid, which is structurally simi-
lar to both lysine and arginine. 270 A study in nephrectomized 
dogs demonstrated a signi  cant rise in serum K   in animals 
administered intravenous  -aminocaproic acid as either a 
constant infusion (2 or 4 g per hour) or a bolus injection 

Surveillance Program. 244 The mean peak K   concentration 
in these patients was 6.0 mEq per liter, whereas a level great-
er than 7.5 mEq per liter was noted in 13 of the 179 patients 
(7.3%). Azotemia and older age were more frequent among 
those with hyperkalemia. In addition, several other studies 
reveal that potassium supplements cause or contribute to 
hyperkalemia in 15% to 40% of hospitalized patients. 245–248

The new Dietary Guidelines for Americans stresses the 
importance of reducing sodium intake and increasing di-
etary potassium. As a result, food manufacturers have fo-
cused on meeting these guidelines by replacing sodium in 
their products with potassium-based alternatives. Potassium 
salt substitutes and alternatives, which provide a rich source 
of potassium, are not new but are recently receiving a sec-
ond look from food processors. 249 Pressure exerted by the 
government and public health advocates to reduce dietary 
sodium has led the food industry to experiment with salt 
substitutes. Manufacturers also assert that improved prod-
uct formulas signi  cantly reduce the metallic aftertaste of-
ten noted with potassium chloride, thereby making it more 
palatable. Some potassium salt substitutes contain 10 to 
13 mEq of potassium per gram. 250

A number of nutritional supplements contain as much as 
49 to 54 mEq of potassium per liter, whereas foods prepared 
as low sodium contain greater amounts of potassium (be-
cause potassium replaces sodium in these foods). As a result, 
enteral feeds employing these products and some herbal rem-
edies, such as noni juice (K  , 56.3 mEq per liter) can deliver 
excessive amounts of potassium to patients with impaired 
potassium homeostasis. 251 An emerging source of potassium 
in foods is so-called “enhanced” fresh meat, which is injected 
with a solution of water with sodium and potassium salts. 
Food companies claim that this salt-based injection ensures 
that meat will be tender and tasty despite how it is cooked 
by the consumer. In an analysis of the potassium content of 
36 fresh meat products purchased from local grocery stores, 
enhanced products often contained 2 to 3 times more potassi-
um than comparable cuts of nonenhanced meat. 252 Most con-
cerning was the absence of potassium content on most labels. 

Another unsuspected source of potassium excess in 
the hospital includes the antibiotic penicillin G potassium 
(1.7 mEq of K   per 1 million units), which can cause hy-
perkalemia if administered in suf  ciently high doses. 254

The urinary alkalinizing agent potassium citrate (2 mEq of 
potassium per 1 mL), and packed red blood cells transfused 
after 10 or more days of storage (7.5 to 13 mEq of K   per 
liter) can precipitate hyperkalemia in at risk patients. 255,256

A potassium-containing cardioplegia solution employed 
during cardiac surgery may also cause hyperkalemia in pa-
tients with a defect in potassium handling. 

 Impaired Cellular Potassium Homeostasis 
As discussed previously, the cellular uptake of a potassium 
load is the primary mechanism by which the body acutely 
prevents the development of hyperkalemia. Several com-
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cell.280,281 Amiloride and triamterene directly block sodium 
channel activity in the luminal membrane of the principal 
cell, effectively inhibiting sodium reabsorption through the 
epithelium and decreasing the driving force for potassium 
secretion. 282,283 Moderate-to-severe hyperkalemia has been 
reported in 4% to 19% of patients treated with these medica-
tions.261,280–292 In one small study, treatment with the com-
bination of triamterene and hydrochlorothiazide resulted 
in hyperkalemia in 26% of the patients. 283 In a retrospec-
tive chart review,   ve patients were noted to develop severe 
hyperkalemia (K   concentrations in the 9.4 to 11 mEq per 
liter range) within 8 to 18 days of combination therapy 
with amiloride/hydrochlorothiazide and an angiotensin-
converting enzyme (ACE) inhibitor. 286 All of these patients 
had diabetes and three had underlying CKD. 

The combination of spironolactone and losartan in-
creased plasma K   by 0.8 mEq per liter (up to 5.0 mEq 
per liter) and decreased urinary potassium excretion (from 
108 to 87 mEq per liter) in eight normal subjects studied. 288

Hyperkalemia occurred most frequently in patients with pre-
existing renal insuf  ciency or diabetes mellitus, and those 
taking K   supplements or another medication that also im-
pairs potassium excretion. 285,286,289–292 Several studies have 
demonstrated a brisk increase in the incidence of hyperka-
lemia from the use of either spironolactone or eplerenone 
in patients with heart failure following the publication of 
the Randomized Aldactone Evaluation Study (RALES) and 
Eplerenone Post-Acute Myocardial Infarction Heart Failure 
Ef  cacy and Survival Study (EPHESUS) trials. 293,294 For ex-
ample, the spironolactone prescription rate increased from 
34 per 1,000 patients in 1994 to 149 per 1,000 patients in 
2001 following the publication of RALES. 294 This was as-
sociated with an increase in the rate of hospitalization for 
hyperkalemia (2.4 per 1,000 patients in 1994; 11.0 per 
1,000 patients in 2001) (Fig. 72.9) and mortality (0.3 per 
1,000 patients in 1994; 2.0 per 1,000 patients in 2001) 
in heart failure patients treated with ACE inhibitors. 294

In the EPHESUS trial, signi  cant hyperkalemia (K   
6.0 mEq per liter) developed in 5.5% of treated patients ver-
sus 3.9% in placebo-treated patients. 295 Hyperkalemia (K  
  6.0 mEq per liter) was most prevalent in patients with 
impaired kidney function (creatinine clearance    50 mL per 
minute) as 10.1% of eplerenone-treated patients developed 
this complication as compared with 5.9% of placebo-treated 
patients.295 However, these data are refuted by a population-
based longitudinal analysis of patients in Scotland who were 
treated with spironolactone for heart failure, cirrhosis, and 
resistant hypertension before and after the publication of 
RALES.296 Using the record linkage database, the number 
of spironolactone prescriptions, hospital admissions for hy-
perkalemia, and hyperkalemia and kidney function without 
admission were analyzed. The authors found that despite a 
signi  cant increase in spironolactone prescriptions (2,847 in 
the   rst half of 1999; 6,582 in the second half of 2001; and 
8,619 by 2007), there was not an increase in the number of 
admissions for hyperkalemia in 1995 before the publication 

of 2.5 g. 270 Clinical relevance in humans was demonstrated 
in a case report where hyperkalemia (potassium, 6.7 mEq 
per liter) developed acutely in a patient with chronic renal 
insuf  ciency treated with  -aminocaproic acid (three bolus-
es of 10 g) to reduce perioperative blood loss during car-
diac surgery. 271 The rapid onset of hyperkalemia following 
 -aminocaproic acid therapy in this patient suggested that 
a cellular release of potassium was the cause of this electro-
lyte disturbance. In addition, Perazella and coworkers 272 in 
a retrospective study in patients undergoing cardiac surgery 
noted higher intraoperative serum potassium concentrations 
(K , 5.9 mEq per liter) in 232 patients treated with intra-
venous  -aminocaproic acid as compared with 371 well-
matched controls (K  , 5.5 mEq per liter) who did not receive 
this medication. Other possible confounding factors did not 
explain the rapid development of hyperkalemia in these 
patients. It is therefore likely that intravenous  -aminocaproic 
acid causes hyperkalemia through the cellular release of 
potassium in exchange for this synthetic amino acid. 

The anesthetic agent succinylcholine, by the depolariza-
tion of the cell membrane, can cause hyperkalemia. 273–275 A 
rapid cellular potassium leak induced by these agents, result-
ing in the abrupt onset of hyperkalemia, has been demon-
strated in muscle preparations in intact animals and humans. 
Plasma K   increased by 0.5 mEq per liter within 3 to 5 min-
utes in patients with normal muscle, whereas increases as high 
as 3.0 mEq per liter occurred in patients af  icted by trauma 
or nervous system disease. 4,300 In 12 patients with renal insuf-
  ciency, plasma K   concentration rose by 1.2 mEq per liter in 
one patient and up to 0.7 mEq per liter in the rest. 275

An interesting study that examined the effect of the dual 
inhibition of the RAAS with 4 weeks of spironolactone and 
lisinopril as compared with placebo (randomized, cross-
over in 18 participants) noted a higher serum potassium 
concentration with drug therapy (4.87 mEq per liter versus 
4.37 mEq per liter). However, using an hourly measure-
ment of renal potassium excretion following a 35 mEq 
oral potassium challenge, the reduction in renal excretion 
(0.44 mEq per liter) did not entirely explain the increase in 
serum potassium (0.67 mEq per liter), suggesting an effect to 
reduce cellular potassium disposition. 276

 Impaired Renal Potassium Excretion 
Although an increase in K   intake can contribute to hyper-
kalemia, impaired renal excretion almost always plays the 
dominant role in this process. Potassium-sparing diuret-
ics are used to enhance renal sodium losses and dimin-
ish potassium excretion in patients with hypertension and 
edematous states. 277,278 Two basic mechanisms underlie the 
pharmacologic actions of these diuretics, which act to mod-
ulate principal cells residing in the collecting duct. 279 The 
aldosterone antagonists, spironolactone and eplerenone, 
compete with aldosterone binding to cytoplasmic aldoste-
rone receptors, thereby preventing the nuclear uptake of the 
receptor and blunting aldosterone’s effects on the principal 
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over-the-counter availability of these agents further in-
creases the risk of drug toxicity. 298  NSAIDs disturb potas-
sium homeostasis via the inhibition of renal prostaglandin 
synthesis, especially prostaglandin E2 (PGE2) and prosta-
glandin I2 (PGI2). 299  The inhibition of prostaglandin syn-
thesis decreases potassium secretion through (1) a lack of 
activation of the renin–angiotensin system, (2) the direct 
inhibition of potassium channels in principal cells, and (3) 
the decreased renal blood   ow and diminished delivery 
of sodium to the distal nephron. 204,298–301  Several reports 
have con  rmed the hyperkalemic complication of NSAIDs 
prescribed to normal subjects, diabetic patients, and pa-
tients with underlying renal insuf  ciency. 250,300–305  This is 
especially problematic in patients with reduced effective 
renal perfusion such as those with intravascular   uid de-
pletion, congestive heart failure (CHF), and third-spacing 
of intravascular   uid. 297–300  Predictably, NSAID-induced 
hyperkalemia occurs more often in patients with preexist-
ing hyporeninemic hypoaldosteronism, renal insuf  ciency, 
and concomitant therapy with potassium-sparing diuretics 
and ACE inhibitors. 298–304  As with the traditional NSAIDs, 
selective COX-2 inhibitors (celecoxib) cause hyperkalemia 
in at risk patients. 305  The induction of hyporeninemic hy-
poaldosteronism, reduced sodium delivery to the cortical 
collecting duct, and renal insuf  ciency are the mechanisms 
by which these drugs promote hyperkalemia. 305  

 A retrospective analysis of a large national cohort of pa-
tients cared for at the Veterans Health Administration (VHA) 
demonstrated an increased rate of hyperkalemia in CKD 
patients treated with RAAS antagonists (versus non-CKD 

of RALES and in 2001 and 2007 after the publication of 
RALES. A separate analysis of heart failure patients also pre-
scribed ACE inhibitors demonstrated a signi  cant increase 
in spironolactone prescriptions but no increase in outpatient 
hyperkalemia. Thus, it appears that spironolactone can be 
used safely with an appropriate monitoring in this group 
of patients. Another drug with the potential to induce hy-
perkalemia is drospirenone, which is combined with ethinyl 
estradiol, and is used for contraception, premenstrual syn-
drome, and postmenopausal osteoporosis. Drospirenone is 
a novel progestin and mineralocorticoid antagonist, which 
has the capacity to reduce renal potassium excretion and 
potentially cause hyperkalemia in patients with advanced 
kidney failure and/or in those who are receiving other medi-
cations that impair renal potassium excretion. Currently, no 
cases of serious hyperkalemia have been reported; however, 
plasma potassium does increase during therapy with this 
medication. A study in postmenopausal women aged 44 to 
70 years ( one third diabetes mellitus) all on either an ACE-
inhibitor or AT-II receptor blockers (ARB) were randomized 
to 28 days of drospirenone/ethinyl estradiol or placebo. 297  
Baseline creatinine clearance was greater than 100 mL per 
minute in both groups. Serum potassium was higher in 
the drug arm, with hyperkalemia (K        5.5 mEq per liter) 
developing in 7.3% of drug-treated versus 2.6% in placebo-
treated patients (P     .13). 

 Nonsteroidal anti-in  ammatory drugs (NSAIDs) are 
widely prescribed for a variety of in  ammatory diseases 
and pain syndromes. Hyperkalemia is one of the many 
renal complications associated with NSAID therapy, and 

FIGURE 72.9 The rate of hospital admissions for hyperkalemia among patients recently hospitalized for heart failure who were re-
ceiving angiotensin-converting enzyme (ACE) inhibitors. Each bar demonstrates the rate of hospital admission for hyperkalemia per 
1,000 patients during one 4-month interval. RALES, Randomized Aldactone Evaluation Study. (From Juurlink DN, et al. Rates of hyper-
kalemia after publication of the Randomized Aldactone Evaluation Study. New Engl J Med. 2004;351:543, with permission.)
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ACE inhibitor who were hospitalized for hyperkalemia were 
27 times more likely to have been prescribed a potassium-
sparing diuretic in the week prior to hospital admission. 318

Other notable risk factors include hypoaldosteronism and 
states of effective arterial volume depletion, such as CHF and 
cirrhosis. 250,307,308,319,320 Using patients with hypertensive 
CKD (GFR, 20 to 65 mL/min/1.73 m 2) from the AASK trial, 
Weinberg et al. 321 noted that ACE-I therapy was associated 
with an increased hazard ratio for hyperkalemia than either 
calcium channel blockers or  -receptor blockers. Howev-
er, this effect was only present in patients with GFR 31 to 
40 mL/min/1.73 m 2 (heart rate [HR], 3.61) and GFR   
30 mL/min/1.73 m 2 (HR, 6.81), because risk was not in-
creased in those with GFR 41 to 50 mL/min/1.73 m 2. In 
addition, diuretic use reduced hyperkalemia risk by 59%. 321

Johnson et al. 322 analyzed a retrospective cohort of CKD pa-
tients in the Kaiser Health Maintenance Organization who 
were initiated on lisinopril and who developed hyperka-
lemia (potassium   5.5 mEq per liter or diagnosis code). 
They then used Cox regression to synthesize a risk score 
from a priori predictors in the medical record. They noted a 
90-day hyperkalemia risk of 2.8% in the population and 
found seven predictors: age, estimated GFR, diabetes melli-
tus, heart failure, potassium supplements, potassium sparing 
diuretics, and high lisinopril dose. The risk score was able 
to separate high-risk from low-risk patients with excellent 
accuracy (predicted and observed risks agreed within 1% for 
each quintile). Although the risk score must be validated in 
other populations, it has the potential to help guide clinician 
practice in avoiding potentially lethal hyperkalemia. 322

ARBs are a relatively new class of drugs marketed for the 
treatment of hypertension. Their action to block binding of 
AT-II to its receptor ultimately decreases AT-II–driven adre-
nal synthesis of aldosterone, causing hyperkalemia through 
the induction of hypoaldosteronism in a manner similar to 
ACE inhibitors. Data are con  icting with regard to the ef-
fect of this class of drugs on the development of hyperka-
lemia. In healthy patients with essential hypertension, the 
ARB, losartan (100 mg), and the ACE inhibitor, enalapril 
(20 mg), similarly depressed plasma aldosterone levels (50% 
decrease) and 24-hour urinary aldosterone excretion. 323 The 
effect of these two drugs on the RAAS did not include the 
evaluation of serum K   concentrations in these patients. 323

Data pooled from 16 double-blind clinical trials evaluating 
the safety of therapy with losartan as compared with ACE in-
hibitors in healthy patients with hypertension demonstrated 
no signi  cant difference in the development of hyperkale-
mia (K    5.5 mEq per liter) between the two drug classes 
(1.3% versus 1.5%). 324 It is important to remember that the 
patients evaluated in these studies were healthy and at very 
low risk of developing hyperkalemia. 324 The evaluation of 
the effect of losartan in elderly patients demonstrated a sig-
ni  cant rise in serum potassium (   0.5 mEq per liter) in 
19% of patients, whereas hyperkalemia actually developed 
in 7% of patients. 325 A clinical history of diabetic nephropa-
thy and a serum creatinine greater than 1.3 mg per deciliter 

patients). Most concerning was the increased odds ratio of 
death within 1 day of the hyperkalemic event in patients 
with moderate (   5.5 mEq per liter and    6.0 mEq per 
liter) and severe hyperkalemia (   6.0 mEq per liter) for all 
stages of CKD, suggesting that use of RAAS blockers in CKD 
patients should be monitored closely. 306

ACE inhibitors indirectly reduce renal potassium ex-
cretion by inducing a state of hypoaldosteronism. 250,307,308

These drugs may additionally impair renal potassium excre-
tion by reducing the effective GFR in patients with volume 
depletion, renal artery stenosis, and/or moderate-to-severe 
chronic renal insuf  ciency. In these conditions, ACE inhibi-
tors interfere with AT-II production and blunt the postglo-
merular arteriolar constriction induced by this hormone, 
thereby lowering the effective   ltration pressure and GFR. 
Ultimately, a reduction in the distal nephron delivery of so-
dium and water, together with decreased aldosterone pro-
duction, may precipitate hyperkalemia. 307 In hospitalized 
patients, ACE inhibitors have been noted to be the culprit 
drug in 9% to 38% of patients who developed hyperkale-
mia.261,262,309 In outpatients treated with an ACE inhibitor 
for 1 year, 10% developed a serum potassium concentration 
greater than 6.0 mEq per liter. 310 In this study, patients with 
renal impairment who were over the age of 70 years were 
at highest risk. Most studies suggest that the risk of ACE 
inhibitor–induced hyperkalemia is directly proportional to 
the existing degree of renal insuf  ciency. 261,262,307–309 How-
ever, serum potassium concentrations can rise signi  cantly 
in patients with only modest renal insuf  ciency. 307,308,311

For example, a rise in serum K   concentration, a positive 
cumulative potassium balance, and a reduction in both 
plasma and urinary aldosterone were demonstrated in 22 
of 23 patients treated with high-dose captopril for 10 days 
despite a creatinine clearance greater than 50 mL per min-
ute.308 In addition, another study noted a fall in aldosterone 
excretion and a rise in serum K   concentration (mean rise 
0.8 mEq per liter) in 23 of 33 hypertensive patients after 
1 week of captopril therapy. 307 In this study, all but 3 of the 
patients had a creatinine clearance above 60 mL per minute 
and the peak serum K   concentration was not predicted by 
the pretherapy serum creatinine concentration. In contrast, 
Memon and colleagues 309 demonstrated a signi  cant posi-
tive correlation of hyperkalemia with serum creatinine and 
a negative correlation with creatinine clearance, emphasiz-
ing the importance of the underlying level of renal function. 
In patients with renal impairment, reducing the dose of an 
ACE inhibitor and initiating a low-potassium diet has been 
shown to decrease the development of hyperkalemia in a 
signi  cant percentage of patients. 309,311 Unfortunately, as 
many as one-third of patients still require the discontinua-
tion of this medication because of ongoing hyperkalemia. 309

Predictably, combination therapy with an ACE inhibitor 
and other medications capable of altering potassium ho-
meostasis can increase plasma potassium and precipitate 
hyperkalemia in patients with only modest renal impair-
ment.250,307,308,312–317 As an example, elderly patients on an 
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lumen. 278,279,330  This action is identical to that exhibited 
by amiloride, which has a molecular structure very simi-
lar to both trimethoprim and pentamidine. 330  Hyperka-
lemia was   rst described in a patient treated with “high-
dose” trimethoprim (20 mg/kg/day) for  Pneumocystis carinii
pneumonia. 331  Subsequently, a 50% incidence of mild hy-
perkalemia (K        5.0 mEq per liter) and a 10% to 12% 
incidence of severe hyperkalemia (K        6.0 mEq per liter) 
were observed in HIV-infected patients receiving high-dose 
trimethoprim. 330  Shortly thereafter, 21% of hospitalized 
non-HIV patients treated with standard dose trimethoprim 
(360 mg per day) developed hyperkalemia (K        5.5 mEq 
per liter). 332  Mild renal impairment (serum creatinine     
1.2 mg per deciliter) was signi  cantly associated with the de-
velopment of a higher serum potassium concentration. 332  A 
prospective, randomized controlled study in healthy outpa-
tients treated with standard-dose trimethoprim revealed that 
18% (9/51) and 6% (3/51) of trimethoprim-treated patients 
developed serum K    concentrations greater than 5.0 and 
5.5 mEq per liter, respectively. 333  Older age, diabetes mel-
litus, and a higher serum creatinine level appeared to 
predispose a patient to more severe hyperkalemia. Addition-
ally, therapy with pentamidine also has been complicated by 
hyperkalemia. 334  A retrospective study in 32 patients with 
AIDS noted a signi  cant increase in mean serum K    from 
4.2 to 4.7 mEq per liter, with 24% of the patients developing 
severe hyperkalemia. 335  All cases of hyperkalemia were asso-
ciated with renal insuf  ciency, providing an underlying risk 
factor in these patients. A sevenfold risk for hyperkalemia-
associated hospitalization was noted within 14 days of con-
current trimethoprim-sulfamethoxazole and RAAS inhibitor 
therapy in a cohort of elderly patients. This population-

were predictors of a signi  cant increase in serum potassium. 
Bakris and colleagues 326  compared the effects of the ACE in-
hibitor, lisinopril, to the ARB, valsartan, on serum potassium 
concentration, urinary potassium excretion, and plasma 
aldosterone in 35 subjects with a mean GFR of approxi-
mately 71 mL/min/1.73 m 2 . 326  After 4 weeks of therapy 
with lisinopril, serum K    increased (0.2 mEq per liter), 
whereas plasma aldosterone and urinary potassium excre-
tion decreased. In contrast, serum potassium, plasma aldo-
sterone, and urinary potassium excretion were essentially 
unchanged in the valsartan group. 326  

 Combination therapy with ACE inhibitors and ARBs 
raises concerns that patients may experience an increase 
in the development of hyperkalemia from a more complete 
blockade of the RAS. The combined decline in GFR and the 
more pronounced suppression of aldosterone synthesis may 
promote serious hyperkalemia. A multicenter randomized 
active-controlled parallel group trial studied patients with 
renal insuf  ciency (average creatinine clearance 20 to 45 mL 
per minute). 327  Patients were randomized to either valsar-
tan alone or in combination with benazepril. Dual therapy, 
however, was associated with a very low risk of hyperka-
lemia. Serum K    concentration rose in each group ranging 
from 0.28 mEq per liter to 0.48 mEq per liter. An identi-
cal percentage (4.5%) of patients on monotherapy and dual 
blockade developed a serum K    concentration greater than 
6.0 mEq per liter. Other studies note similar rates of hy-
perkalemia, although small numbers of patients developed 
serum K   levels greater than 6.0 mEq per liter. 328  Weir and 
Rolfe 329  reviewed 39 studies that used RAAS inhibitors in 
the treatment of patients with hypertension, heart failure, 
or CKD and the rate of hyperkalemia. In patients without 
other risk factors for hyperkalemia, the incidence of hyper-
kalemia with drug monotherapy was     2%, whereas it in-
creased to 5% with dual drug therapy. In patients with CKD 
or heart failure, hyperkalemia incidence increased to 5% to 
10%, with serum potassium increases of 0.1 to 0.3 mEq per 
liter, but a low rate of drug withdrawal (1% to 5%). Thus, 
although RAAS inhibitor use in high-risk patients is fraught 
with more hyperkalemia, the actual increases are generally 
small and serious hyperkalemia is relatively rare. 329  Despite 
these generally reassuring data, a risk remains for the devel-
opment of hyperkalemia when these drugs are used alone or 
in combination. Clinicians should therefore monitor follow-
up serum K   levels within 1 to 2 weeks once therapy has 
been initiated. 

 Trimethoprim and pentamidine are antimicrobial agents 
employed to treat infections in both HIV-infected patients 
as well as other hosts. Hyperkalemia evolves through a re-
duction in renal potassium secretion, the result of competi-
tive inhibition of sodium transport channels in the luminal 
membranes of the distal nephron by these drugs. 330  The 
blockade of epithelial sodium channel transport indirectly 
inhibits potassium secretion (Fig. 72.10), 349  because po-
tassium movement into the distal nephron lumen is elec-
trogenically linked to the movement of sodium out of the 

FIGURE 72.10 The net potassium transport during perfusion 
of 14 distal tubules with control and trimethoprim (TMP) solu-
tions. Lines connect measurements in the same tubules. Black 
circles and vertical lines indicate means and con  dence intervals. 
Positive values indicate absorption; negative values indicate 
secretion. (From Velazquez H, Perazella MA, Wright F, et al. Renal 
mechanism of trimethoprim-induced hyperkalemia. Ann Intern 
Med. 1993;119:296, with permission.)
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of the basolateral Na-K-ATPase pumps in principal cells in 
the distal nephron. 340,341 Calcineurin, which modulates so-
dium pump function through its regulation of phosphatase 
activity, is inhibited by both cyclosporine and tacrolimus. 341

In vitro inhibition of calcineurin by these two drugs has been 
shown to decrease Na-K-ATPase pump activity and probably 
explains the observed reduction in renal potassium excre-
tion. Ling and Eaton 342 have also demonstrated the inhibi-
tion of apical secretory potassium channels by cyclosporine, 
providing yet another possible mechanism of decreased renal 
potassium excretion and hyperkalemia. Cyclosporine also 
impairs cellular potassium homeostasis and causes transient 
hyperkalemia by acutely increasing potassium ef  ux from 
cells.343 Although the mechanism is currently unknown, cy-
closporine may cause hyperkalemia through the impairment 
of Na-K-ATPase pumps in muscle and liver cell membranes. 

 Acute Treatment of Serious Hyperkalemia 
Severe hyperkalemia is a potentially life-threatening disorder 
because of its toxic effect on cardiac and other excitable neu-
romuscular tissues. Importantly, patients with underlying re-
nal disease and disturbances in potassium homeostasis can 
develop serious hyperkalemia. It is therefore imperative that 
this electrolyte disturbance is rapidly recognized and aggres-
sively treated. Symptoms of hyperkalemia are sometimes im-
pressive and quite obvious; however, serious hyperkalemia 
also may present with only very subtle symptoms or signs. 
Rarely, patients may have absolutely no clinical evidence of 
this disorder, the presence of renal impairment or other dis-
turbances in potassium homeostasis providing the only clues 
to hyperkalemia. Nonspeci  c muscle weakness and gener-
alized malaise are common, but severe muscle weakness, 
paresthesias, and ascending paralysis may rarely be seen in 
these patients with extreme elevations in serum potassium 
levels.344 The cardiac toxicity of hyperkalemia may mani-
fest as weakness or dizziness from arrhythmias that induce 
hypotension and cerebral hypoperfusion. 344 Cardiac moni-
toring or a 12-lead electrocardiogram (ECG) may reveal a 
rhythm suspicious of hyperkalemia. These include tenting 
of the T waves (K  , 5.5 to 6.0 mEq per liter), lengthening 
of the P-R interval and widening of the QRS complex (K  ,
6.0 to 7.0 mEq per liter), disappearance of the P waves (K  ,
7.0 to 7.5 mEq per liter), and   nally the sine wave pattern 
(K , 8.0 mEq per liter or greater). These ECG changes may 
occur at different concentrations (higher or lower) of potas-
sium, depending on underlying heart disease and acuity of 
hyperkalemia.344 The presence of hypocalcemia, hypomag-
nesemia, and hyponatremia potentiate the toxic effects of 
hyperkalemia on the cardiac conduction system and potas-
sium concentrations in the 6.0 to 6.5 mEq per liter range 
can precipitate life-threatening arrhythmias. 344 Additionally, 
patients with underlying cardiac disease may deteriorate 
directly to a ventricular arrhythmia in the absence of other 
ECG changes. 

Once the clinician judges that hyperkalemia warrants 
treatment (plasma K    6.0 to 6.5 mEq per liter, clinical 

based, nested case-control study in Canadian residents did 
not note such a risk with other antibiotics (amoxicillin, cip-
ro  oxacin, nor  oxacin, or nitrofurantoin), suggesting that 
the potassium-sparing effects of trimethoprim combined 
with RAAS blockade should be avoided or used cautiously 
in the elderly. 335 However, in a study using the same popu-
lation of patients, a further increased risk of trimethoprim-
sulfamethoxazole–associated hospitalization for hyperkale-
mia with concurrent   -blocker use was not noted. 336

Heparin and its congeners have been shown to inhibit 
adrenal aldosterone production and precipitate hyperka-
lemia in approximately 8% of patients treated with at least 
10,000 U per day. 337 This drug reduces both the number and 
af  nity of AT-II receptors in the adrenal zona glomerulosa, 
thus decreasing the principal stimulus for aldosterone syn-
thesis.337 Heparin also directly inhibits the   nal enzymatic 
steps of aldosterone formation (18-hydroxylation) and pro-
motes atrophy of the zona glomerulosa in rats following 
prolonged administration, further reducing aldosterone pro-
duction.337 Finally, excess anticoagulation with heparin may 
rarely precipitate adrenal hemorrhage and induce frank adre-
nal insuf  ciency. Although heparin-associated hyperkalemia 
has been reported in normal subjects, patients with preexist-
ing hypoaldosteronism, kidney disease, or diabetes mellitus 
and patients treated with other medications that disrupt K  
homeostasis more commonly develop hyperkalemia. 337

Cyclosporine and tacrolimus have been associated with 
the development of hyperkalemia in organ transplant re-
cipients. In the precyclosporine era, 31% (23/75) of renal 
transplant patients were noted to develop transient hyper-
kalemia because of an underlying disturbance in potassium 
excretion. 235 Not unexpectedly, therapy with cyclosporine 
and tacrolimus increases the risk of this disorder in these 
patients.180 Heering and Grabensee 237 documented the pres-
ence of incomplete RTA in 8 of 35 recipients on cyclosporine 
compared with none of the 15 on azathioprine. Four of the 
former group also had HHA syndrome. In a detailed study of 
12 cadaveric recipients with hyperkalemia on cyclosporine, 
Kamel and colleagues 238 documented the presence of low 
urinary potassium excretion that did not respond to 0.2 mg 
of   udrocortisone. Renal K   excretion, however, responded 
to bicarbonaturia initiated by acetazolamide, suggesting a 
defect in generating a favorable electrochemical gradient in 
the distal tubule, leading to hyperkalemia and varying de-
grees of hyperchloremic acidosis. Recently, Yu and cowork-
ers338 demonstrated higher serum potassium concentrations 
and lower TTKGs in 35 renal transplant recipients receiving 
cyclosporine as compared with matched normal controls, 
thus supporting a disturbance in renal potassium excretion. 
Tacrolimus has similarly caused hyperkalemia in solid or-
gan transplant patients. Hyperkalemia was noted in 26 of 49 
(53%) pediatric heart transplant recipients treated with ta-
crolimus. 339 Of note, the majority of subjects who developed 
hyperkalemia had impaired renal function. The reduction in 
renal potassium excretion that occurs with these two drugs 
is likely owing to a dose-dependent decrease in the activity 
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also effectively lowers potassium concentrations in patients 
with hyperkalemia (Table 72.4). 348  However, the potassium-
lowering effect of albuterol is less reliable in ESRD patients, 
and as many as 40% of these patients are resistant to the 
potassium-lowering effect of this    -agonist. 348  In general, 
the plasma potassium concentration declines signi  cantly 
at 30 minutes following albuterol inhalation and remains 
depressed for approximately 2 hours. 348  To date, no adverse 
cardiovascular effects from albuterol have been documented 
in ESRD patients. 348  Therefore, nebulized albuterol is use-
ful to acutely lower plasma potassium concentration in 
most hyperkalemic patients; however, it should not replace 
insulin as the most important therapy to move potassium 
into cells. Subcutaneous terbutaline (7    g per kilogram) was 
shown in a study of 14 CKD patients to signi  cantly lower 
serum potassium (mean reduction, 1.31    /    0.5 mEq per 
liter), with reasonably good safety because the major adverse 
effect was asymptomatic tachycardia. 349  

 Combined therapy with intravenous insulin and nebu-
lized albuterol has been shown to be additive in the reduction 
of plasma K    concentrations. 348  Plasma K    decreases approxi-
mately 0.6 mEq per liter with 10 U of insulin, whereas 20 mg 
of nebulized albuterol lowers plasma K    to a similar degree 347 ; 
however, the combination of these agents lowers plasma K    by 
approximately 1.2 mEq per L. 274  As a result, it is worthwhile to 
combine these two agents to treat severe hyperkalemia (Table 
72.4). Combined therapy with sodium bicarbonate and insulin 
reduced plasma K    more effectively, whereas sodium bicarbon-
ate plus nebulized albuterol was no better than monotherapy. 348

 Although sodium bicarbonate is listed as a useful 
treatment for hyperkalemia, the critical evaluation of the 

manifestations, or ECG changes), immediate therapy should 
be commenced. The stabilization of excitable cell mem-
branes—in particular, cardiac tissue—is the most urgent pri-
ority in the treatment of hyperkalemia. Intravenous calcium, as 
either calcium gluconate (10% solution, calcium ion at 3 mEq 
per milliliter) or calcium chloride (10% solution, calcium ion 
at 13 mEq per milliliter), is the treatment of   rst choice and 
should be administered in a monitored setting (Table 72.4). 
Calcium acts within 1 to 3 minutes, and the effect persists 
for approximately a half hour. 344  If no effect is noted within 
5 minutes following the   rst dose, repeated administration 
may provide bene  t. Patients who have been treated with 
digoxin should receive a slower infusion of calcium (calcium 
mixed in 100 mL of 5% dextrose) over 10 to 20 minutes. 344  

 Intravenous administration of regular insulin as a 10-U 
bolus followed by 50 mL of intravenous 50% dextrose (Table 
72.4) should be the next therapeutic choice. 345,346  Twenty 
units of intravenous insulin may promote an even greater 
reduction in plasma K   . 347  The bene  cial effect of insulin 
is observed within 15 minutes and lasts approximately 3 to 
6 hours. 345–347  Dextrose is given to prevent hypoglycemia in 
nondiabetic patients. However, because a high incidence of 
hypoglycemia occurs even with this regimen, it is prudent 
to monitor blood glucose levels and redose dextrose based 
on levels. 345–347  Dextrose should not be infused before insu-
lin because an acute worsening of hyperkalemia can occur 
with hyperglycemia through a shift of potassium out of cells. 
Glucose levels should be checked prior to the administration 
of dextrose to diabetic patients. 345–347  

 High-dose nebulized albuterol (10 to 20 mg), which 
is fourfold to eightfold higher than used to treat asthma, 

ECG, electrocardiogram.

Acute Treatment of Serious Hyperkalemia

TA B L E

Stabilize Excitable Tissues (Cardiac and Neuromuscular)
Calcium gluconate (10% solution), given as a 10- to 20-mL intravenous bolus. Calcium chloride (10% solution), given 

as a 5-mL intravenous bolus. Each may be repeated every 5 min, if ECG appearance does not improve. Calcium glu-
conate should be mixed in 100 mL of 5% and infused over 10–20 min if the patient has been treated with digoxin.

Shift Potassium into Cells
Regular insulin, 10 to 20 U plus 50% dextrose (50 mL), given as an intravenous bolus, followed by 10% dextrose at 

50 mL/min until de  nitive therapy. Check glucose levels at 1- to 2-hr intervals. Albuterol (5 mg/mL), 10–20 mg, 
nebulized over approximately 10 min. Terbutaline, 7 mcg/kg, subcutaneous injection. Combination therapy of 
insulin/dextrose and nebulized albuterol.

Remove Potassium from the Body
Acute hemodialysis (low potassium dialysate) to remove potassium in patients with severe renal insuf  ciency. Sodium 

polystyrene sulfonate (15–30 g) plus sorbitol (15–30 mL), oral ingestion (avoid in postsurgical patients and those 
with gastrointestinal disease).

A72.4
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function of water reabsorption in the collecting duct. The 
fractional excretion of potassium (FE K    ) normalizes potas-
sium excretion for GFR; however, because potassium is pri-
marily secreted (and therefore, less dependent on   ltration), 
its clinical use is questionable. 

 Halperin and colleagues 58,352–354  have suggested correct-
ing the urinary (U K ) to serum potassium (S K ) concentration 
by the ratio of urine (U Osm ) to serum osmolality (S Osm ) to 
normalize the data for water reabsorption. This ratio (U K    /
S K    X S Osm U Osm ), called the TTKG, attempts to approximate 
the gradient across potassium-secreting cells in the distal 
nephron. Despite several pitfalls (urine more diluted than 
the plasma or very low urinary sodium), a value less than 
6 in patients with hyperkalemia suggests a lack of aldoste-
rone or response to aldosterone; a value above 6 is in favor 
of an increase in potassium intake, with or without renal 
abnormality in potassium handling. It should, however, be 
noted that the published clinical experience with the use of 
TTKG is still very limited and often is limited to case reports. 
Therefore, the values given here should be used with caution 
and evaluated in light of other data. 355  If the TTKG is nor-
mal, one should search for excessive potassium intake, either 
externally (e.g., potassium supplements, salt substitutes) or 
internally (e.g., severe hemolysis, rhabdomyolysis, acido-
sis). In general, given the renal ability to handle a large oral 
potassium load (e.g., serum potassium rising by less than 
1.0 mEq per liter on a 400-mEq diet), a signi  cant increase in 
serum potassium is indicative of either a major internal shift 
of potassium or a decrease in urinary excretion output. If the 
TTKG is low in the face of hyperkalemia, the aldosterone 
level should be measured to separate the group with tubular 
unresponsiveness from that with low aldosterone. Patients 
also can be challenged with exogenous mineralocorticoids 
(0.05 to 1.0 mg of   udrocortisone). If the TTKG increases 
to 7 or above, hypoaldosteronism is probably the major fac-
tor in the development of hyperkalemia. 354,355  The role of 
renin–angiotensin in patients with hypoaldosteronism can 
be evaluated by measuring the renin level. A low renin as-
sociated with low aldosterone is the hallmark of the most 
common subgroup (i.e., hyporenin-hypoaldosteronism). 
If the renin level is normal, then either the generation of 

literature suggests that this agent is ineffective as an isolated 
therapy to acutely lower plasma potassium. 350,351  In stud-
ies where bicarbonate infusion successfully lowered plasma 
potassium concentrations in ESRD patients, the effect was 
not observed until at least 4 hours after treatment. Similarly, 
other studies have con  rmed the use of sodium bicarbon-
ate therapy in the chronic (not acute) lowering of plasma 
K    concentrations. 350,351  In contrast, patients with severe 
metabolic acidosis and concurrent hyperkalemia should re-
ceive bicarbonate to correct pH and stabilize cardiac tissue. 
In this setting, sodium bicarbonate (50 mEq) may be given 
intravenously to correct pH and serum bicarbonate levels in 
patients who are normokalemic and can tolerate the sodium 
load. 350,351  

 THE WORKUP AND MANAGEMENT 
OF CHRONIC HYPERKALEMIC RENAL 
TUBULAR ACIDOSIS 
 Although acute hyperkalemia with or without signi  cant 
HCA requiring immediate treatment occurs in patients 
with impaired potassium handling, the major challenge is 
the workup and treatment of chronic hyperkalemia seen in 
this setting. Given the frequency of this syndrome and the 
lack of individualized treatment for speci  c subgroups, most 
patients can be adequately managed without complex work-
ups. However, in certain patients, it may be important to 
make a more speci  c pathophysiologic diagnosis. Although 
HCA is the dominant   nding in some patients, hyperkale-
mia is the prominent presentation requiring workup and 
treatment. 

 Figure 72.11 summarizes a simple pathophysiologic ap-
proach to chronic hyperkalemia in these patients. The   rst 
question to be answered is, “Is the hyperkalemia owing to an 
increase in intake or a decrease in output?” Although dietary 
history and pertinent clinical data may be helpful, a spe-
ci  c laboratory test that would answer this question could 
simplify the workup. Urinary potassium concentration and 
the urinary to serum potassium ratio do not account for 
the variability in the urinary potassium concentration as a 

FIGURE 72.11 The pathophysiologic approach to 
chronic hyperkalemia. ACE, angiotensin-converting 
enzyme; TTKG, transtubular potassium gradient.
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studied a group of patients with classic RTA, hyperkalemic 
RTA, and selective aldosterone de  ciency and compared 
the results to controls with a serum pH 7.30 to 7.35. These 
investigators noted a urinary anion gap of    20     5.7 in 
controls and    23     4.1,    30     4.2, and    39     4.2 mEq 
per liter in patients, respectively. The major pitfall in using 
urinary anion gap is the presence of a signi  cant amount 
of bicarbonate or an unexpected charged molecule, such as 
penicillin or ketoacids, in the urine. In summary, urinary 
anion gap is a physiologic concept that indirectly assesses 
the amount of urinary ammonium. This measurement, in 
conjunction with other data, is helpful in establishing the 
pathogenesis of HCA in selected patients. 359  

 In patients with hyperkalemic RTA, the treatment of 
chronic hyperkalemia should be instituted only when abso-
lutely necessary (i.e., when clinical signs of hyperkalemia are 
present or plasma K   is over 6.0 mEq per liter). If therapy 
is deemed necessary, simple modalities should be tried   rst 
before more complex therapies with their associated side ef-
fects are instituted. 

 Discontinuation of Drugs That 
Cause Hyperkalemia 
 As these patients have an intrinsic dif  culty in the excretion 
of potassium, any drugs that can cause hyperkalemia should 

AT-II is abnormal (e.g., in patients on ACE inhibitors) or the 
synthesis and secretion of aldosterone are abnormal. The ad-
renal response to AT-II infusion would provide appropriate 
answers to this question. 

 In practice, this type of workup should be reserved for 
unusual patients who do not represent the commonly recog-
nized groups with this syndrome (e.g., diabetic, hyperten-
sive patients), or as part of a research protocol. In addition, 
it should be noted that this approach does not lead to an 
etiologic diagnosis, but only a pathophysiologic one. The 
etiologic diagnosis (as discussed elsewhere in this chapter) 
should depend on other diagnostic evaluations. 

 Some patients with type IV RTA present primarily with 
HCA. In these patients, the diagnostic workup should focus 
on the pathogenesis and etiology of this abnormality. The ma-
jor defect leading to HCA is either a loss of bicarbonate, often 
through the gastrointestinal tract, or a decrease in the regen-
eration of bicarbonate by the kidney through the stimulation 
of ammoniagenesis. Urinary ammonium should be high in 
the former and low in the latter group. However, urinary am-
monium is not commonly measured in clinical laboratories. 
Clinicians are forced to rely on measurements of surrogates 
for urinary ammonium excretion. The most commonly used 
surrogate is the urinary anion gap, which is the difference 
between major urinary cations (Na     K) and urinary anions 
(Cl     HCO 3 ). As the amount of bicarbonate is very small in 
acid urine (urine pH     6.5), the difference between urinary 
Na   , K  , and Cl    re  ects the major missing ion (i.e., ammo-
nium). Using this formula, one can demonstrate an inverse 
relationship between the urinary anion gap and the amount 
of ammonium in the urine (Fig. 72.12). 356,357  In the pres-
ence of extrarenal acidosis, the urinary ammonium excretion 
should increase severalfold, resulting in a very negative an-
ion gap value. In contrast, in distal RTA, the urinary ammo-
nium will remain low, resulting in a positive anion gap. The 
amount of ammonium in the urine also can be deduced from 
a modi  ed urinary osmolar gap using the following formula: 

 Urinary Ammonium     1/2 (Urine Osmolality 
    2(Na     K)     Urea Nitrogen/2.8
     Glucose/18)  (1)

 This is based on the concept that NH 4    , with its accom-
panying anion, is the major missing osmole accounting for 
the osmolar gap. 358  It should be noted that neither calcula-
tion predicts the exact amount of ammonium in the urine 
but rather provides a qualitative estimate of it. This is still 
helpful if used to answer the appropriate question in a pa-
tient with HCA. 

 The major use of urinary anion or osmolar gap is to 
differentiate renal from extrarenal causes of hyperchloremic 
acidosis such as diarrhea or the ingestion of hydrochloric 
acid or its equivalent where the gap is negative. However, 
a low or negative anion gap in itself does not establish the 
diagnosis of type IV RTA, because this is also seen in clas-
sic RTA as well as uremic acidosis. Batlle and colleagues 357

FIGURE 72.12 Urinary ammonium (NH4
 ) in relation to the uri-

nary anion gap (UAG). The 38 patients with altered distal urinary 
acidi  cation are represented by open circles; the 7 normal sub-
jects receiving ammonium chloride are represented by closed 
circles; and the 8 patients with hyperchloremic metabolic acido-
sis associated with diarrhea are represented by triangles. (From 
Batlle DC, et al. The use of urinary anion gap in the diagnosis of 
hyperchloremic metabolic acidosis. N Engl J Med. 1988;318:594, 
with permission.)
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be used to raise serum bicarbonate to   22mEq per liter. 
The bicarbonate needed in these patients is close to 0.5 to 
0.75 mEq/kg/day and can be easily supplied as citric acid-
sodium citrate (Shohl) solution, which contains 1 mEq of 
bicarbonate equivalent per milliliter. Interestingly, such ther-
apy is well tolerated and has not resulted in volume overload 
or worsening of hypertension. 

 Volume Expansion 
Volume expansion may enhance potassium excretion by in-
creasing distal   uid and sodium delivery. This therapy is es-
pecially effective in patients with chronic volume depletion 
owing to mild sodium wastage. 

 Diuretic Therapy 
Use of most diuretics, especially loop blockers and thiazides, 
results in hypokalemic, hypochloremic metabolic alkalosis. 
In patients with hyperkalemia, the previously mentioned 
side effects may ameliorate hyperkalemia and, when pres-
ent, metabolic acidosis. To prevent volume depletion with its 
resultant decrease in distal tubular sodium and   uid deliv-
ery, a high salt intake can be added to the diuretic regimen. 
Thiazide diuretics have proved effective in some patients 
with renal tubular hyperkalemia despite the failure of loop 
blockers such as furosemide. 

 Mineralocorticoids 
Mineralocorticoid replacement represents the most logical 
approach to therapy in these patients. DeFronzo 171 reported 
an 84% success rate with this therapy; however, the effective 
dose of   udrocortisone (up to 0.4 to 1.0 mg per day) was 
much higher than the true physiologic dose. This observa-
tion suggests that most of these patients possess some degree 
of tubular resistance to the potassium stimulatory effect of 
mineralocorticoids. Surprisingly, although such high doses 
were needed to augment renal potassium excretion and nor-
malize serum potassium levels, the sodium-retaining effects 
of aldosterone remained intact in some patients, resulting 
in marked edema formation, hypertension, and CHF. In 
general, if the dose of   udrocortisone required to maintain 
normokalemia exceeds 0.2 mg per day, side effects are com-
mon, and these drugs probably should be combined with 
diuretics or not employed at all. Use of mineralocorticoids 
should be limited to patients who have not responded to 
other maneuvers and continue to have clinically signi  cant 
hyperkalemia.

 Sodium-Potassium Exchange Resins 
Sodium polystyrene sulfonate (SPS) resin was   rst used as a 
therapy to treat hyperkalemia in 1958 and a study in 1961 
documented its ef  cacy in signi  cantly lowering serum po-
tassium (1.8 mEq per liter at the end of study) in 22 hyper-
kalemic patients. 370 Studies demonstrated a reliable lowering 
of serum potassium in hyperkalemic patients using oral SPS 
mixed either with water or the cathartic sorbitol, which was 

be immediately discontinued. The list of drugs that should 
be stopped includes those discussed in the previous section. 

 Dietary Intervention 
The next step in patients with mild-to-moderate hyperka-
lemia is to decrease K   intake to less than 60 mEq per day. 
This can be done by the elimination of potassium-rich foods. 
This may be dif  cult if the patient is on a low-sodium diet 
because such a diet, by de  nition, contains foods that are 
high in potassium content. Also, an increased replacement 
of sodium with potassium by the food industry as well as 
“meat enhancing” will make potassium-containing foods 
more prevalent. 

 Treatment of Acidemia 
Because HCA is commonly associated with hyperkalemia, 
the correction of the acidosis by sodium bicarbonate de-
creases the serum potassium concentration. The effect of bi-
carbonate is partly related to a change in H   concentration 
and is partly independent of pH change. As acidemia is cor-
rected, H   moves out of cells in exchange for potassium. The 
inhibitory effect of acidemia on renal K   secretion also is 
removed. In addition, sodium bicarbonate, through volume 
expansion and the delivery of both sodium and bicarbonate 
to the distal potassium exchange site, may also increase renal 
excretion of potassium. 

In some patients with signi  cant metabolic acidosis 
(HCO3   16 mEq per liter and/or pH    7.30), it is im-
portant to treat acidosis with base replacement to prevent 
mobilization of bone calcium and protein catabolism. Bone 
provides a buffer sink for the hydrogen ion, resulting in a re-
lease of calcium and its loss in the urine. 137,360 This phenom-
enon is independent of vitamin D, the parathyroid hormone, 
and calcitonin. 361,362 In addition, there is increasing evi-
dence for a catabolic role for metabolic acidosis independent 
of uremia in patients with chronic renal failure. 363 This is 
thought to result in muscle wasting secondary to the stimu-
lation of muscle protein degradation through the ubiquitin-
proteasome system. 364 Both effects can be reversed by alkali 
therapy. More recently, the relationship between serum bi-
carbonate and the rate of decline in renal function has been 
explored in several studies. Low serum bicarbonate in pa-
tients with CKD is associated with higher mortality. 365,366 In 
one study, the relationship between serum bicarbonate and 
mortality was U shaped, indicating that both low and high 
bicarbonate was associated with increased mortality. 366 Two 
studies have also shown that the treatment of metabolic aci-
dosis with alkali improves both the nutritional state as well 
as decreases the rate of decline in kidney function 367,368 and 
the need for dialysis. 368 The mechanism of acidosis- induced
injury is unclear and may involve complement activation 
and/or the induction of endothelin production resulting in 
tubulointerstitial injury. 368,369 Although these provocative 
  ndings will require further substantiation with randomized 
prospective studies, it is recommended that alkali therapy 

2108



CHAPTER 72  DISORDERS OF POTASSIUM AND ACID–BASE METABOLISM 2109

 13. DeFronzo RA, Sherwin RS, Felig P, et al. Nonuremic diabetic hyperkale-
mia: a possible role of insulin de  ciency.  Arch Intern Med. 1977;137:842. 
 14. Clausen T, Hansen O. Active Na-K transport and the rate of ouabain 
binding. The effect of insulin and other stimuli on skeletal muscle and adipo-
cytes. J Physiol. 1977;270:415. 
 15. DeFronzo RA, Felig P, Ferrannini E, et al. Effect of graded doses of insu-
lin on splanchnic and peripheral potassium metabolism in man. Am J Physiol.
1980;238:E421.
 16. Kahn CR. The molecular mechanism of insulin action. Ann Rev Med.
1985;36:429.
 17. Moore RD. Effects of insulin upon ion transport.  Biochim Biophys Acta.
1983;737:1.

18. McDonough AA, Youn JH. Role of muscle in regulating extracellular [K  ].
Semin Nephrol. 2005;25:335. 
 19. Benziane B, Chibalin AV. Frontiers: skeletal muscle sodium pump regula-
tion: a translocation paradigm. Am J Physiol Endocrinol Metab. 2008 Sep;295(3):
E553.
 20. Cohen P, Barzilai N, Lerman A, et al. Insulin effects on glucose and potas-
sium metabolism in vivo: evidence for selective insulin resistance in humans. 
J Clin Endocrinol Metab. 1991;73:564. 
 21. D’Silva JH. The action of adrenaline on serum potassium.  J Physiol (Lond).
1935;86:219.
 22. Lockwood RH, Lum BK. Effects of adrenergic agonists and antagonists on 
potassium metabolism. J Pharmacol Exp Ther. 1974;189:119. 
 23. Lockwood RH, Lum BK. Effects of adrenalectomy and adrenergic antago-
nists on potassium metabolism. J Pharmacol Exp Ther. 1977;203:103. 
 24. Hiatt N, Chapman LW, Davidson MB. In  uence of epinephrine and pro-
pranolol on transmembrane K transfer in anuric dogs with hyperkalemia. J Phar-
macol Exp Ther. 1979;209:282. 
 25. Brown MJ, Brown DC, Murphy MB. Hypokalemia from    2 receptor stimu-
lation by circulating epinephrine.  N Engl J Med. 1983;309:1414. 
 26. DeFronzo RA, Stanton B, Klein-Robbenhaar G, et al. Inhibitory effect of 
epinephrine on renal potassium secretion: a micropuncture study.  Am J Physiol.
1983;245:F303.
 27. Katz L, D’Avella J, DeFronzo RA. Effect of epinephrine on renal potassium 
excretion in the isolated perfused rat kidney.  Am J Physiol. 1984;247:F331. 
 28. Berend N, Marlin GE. Characterization of   -adrenoreceptor subtype medi-
ating the metabolic actions of salbutamol. Br J Clin Pharmacol. 1978;5:207. 
 29. Bia MJ, Lu D, Tyler K, et al.    adrenergic control of extrarenal potassium 
disposal. A  -2 mediated phenomenon. Nephron. 1986;43:117. 
 30. DeFronzo RA, Bia M, Birkhead G. Epinephrine and potassium homeosta-
sis. Kidney Int. 1981;20:83. 
 31. Flatman JA, Clausen T. Combined effects of adrenaline and insulin on ac-
tive electrogenic Na  -K  transport in rat soleus muscle. Nature. 1979;281:580. 
 32. Peterson KG, Shuter KJ, Kemp L. Regulation of serum potassium during 
insulin-induced hypoglycemia. Diabetes. 1982;31:615. 
 33. Wright FS. Potassium transport by successive segments of the mammalian 
nephron.  Fed Proc. 1981;40:2398. 
 34. Hayslett JP, Halevy J, Pace PE, et al. Demonstration of net potassium 
absorption in mammalian colon. Am J Physiol. 1982;242:G209. 
 35. Simpson SAS, Tait JF. Recent progress on methods of isolation, chemistry, 
and physiology of aldosterone.  Recent Prog Horm Res. 1955;11:183. 
 36. Conn JW. Aldosteronism in man. Some clinical and climatological aspects. 
JAMA. 1963;183:775. 
 37. Adler S. An extrarenal action of aldosterone on mammalian skeletal 
muscle. Am J Physiol. 1970;218:616. 
 38. Lim VS, Webster GD. The effect of aldosterone on water and electrolyte 
composition of incubated rat diaphragms. Clin Sci. 1967;33:261. 
 39. Alexander EA, Levinsky NG. An extrarenal mechanism of potassium adap-
tation. J Clin Invest. 1968;47:740. 
 40. Spital A, Sterns RH. Extrarenal potassium adaptation: the role of aldoste-
rone.  Clin Sci. 1989;76:213. 
 41. Spital A, Sterns RH. Paradoxical potassium depletion: a renal mechanism 
for extrarenal potassium adaptation.  Kidney Int. 1986;30:532. 
 42. Young DB, Jackson TE. Effects of aldosterone on potassium distribution. 
Am J Physiol. 1982;243:R526. 
 43. Ross EJ. Aldosterone and Aldosteronism. London, England: The Whitefriars; 
1975.
 44. Bia MJ, Tyler KA, DeFronzo RA. Regulation of extrarenal potassium 
homeostasis by adrenal hormones in rats.  Am J Physiol. 1982;242:F641. 
 45. Sugarman A, Brown RS. The role of aldosterone in potassium tolerance: 
studies in anephric humans. Kidney Int. 1988;34:397. 
 46. Furuya R, Kumagai H, Sakao T, et al. Potassium-lowering effect of miner-
alocorticoid therapy in patients undergoing hemodialysis.  Nephron. 2002;92:576. 

added to reduce SPS retention and prevent obstipation. 371

In general, a decline in serum potassium requires at least 
2 hours, peaks at 4 to 6 hours, and may take 10 hours or 
longer following oral administration. SPS retention enemas 
in water were found to be less ef  cacious. On average, SPS 
resin ef  ciency is approximately 33%; that is, 10 mEq of 
potassium is bound by 30 g of resin (compared with 1 mEq 
per gram of resin in vitro). 372 As a result, SPS mixed in sor-
bitol (33% or 70% sorbitol) became a standard therapy for 
hyperkalemia in both the acute and chronic setting. How-
ever, in 2009, the U.S. Food and Drug Administration (FDA) 
recommended against the “concomitant use of sorbitol” with 
SPS powder because of associated complications such as 
colonic necrosis, gastrointestinal injury (bleeding, ischemic 
colitis, perforation), and rectal stenosis. A close examination 
of the cases where complications developed reveals the fol-
lowing: (1) SPS enemas with 70% sorbitol were primarily 
associated with gastrointestinal injury, and (2) postsurgical 
patients and those with compromised gastrointestinal func-
tion were the group most often developing these complica-
tions. Although the incidence of complications is dif  cult to 
estimate, a study of 752 hospitalized patients treated with 
SPS resin mixed with sorbitol provides insight. 373 Only two 
cases of colonic necrosis developed and these patients were 
given the mixture within 1 week of surgery. This was an in-
cidence of 1.8% in postsurgical patients. If the entire SPS-
treated hospital group is examined, the incidence declines 
to 0.3%. Thus, it is reasonable to continue to use oral SPS 
mixed in 33% sorbitol in hyperkalemic patients who do not 
have gastrointestinal dysfunction or who are not in the im-
mediate postsurgical period. Also, SPS enemas should never 
be employed as therapy for hyperkalemia. 
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