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C H  A P T E R

The kidney plays a central role in the sodium and 
water retention and edema formation associated with 
cardiac failure. Heart failure, like liver disease and the 

nephrotic syndrome, represents another edematous state in 
which renal sodium and water retention is observed despite 
an excess of total body sodium and water. This   nding of 
continued renal sodium and water retention despite total 
body sodium and water excess, in part, de  nes the clinical 
syndrome of heart failure. In this regard, the pathophysi-
ology of heart failure has been described as a cardiorenal 
syndrome, where left ventricular systolic and/or  diastolic
dysfunction leads to renal sodium and water retention that 
in turn produces the clinical syndrome of heart failure. 
Manifestations of cardiac failure are almost always associ-
ated with   uid volume retention resulting in hemodynamic 
and clinical congestion, where the former is measured as 
elevated ventricular   lling pressures and the latter is seen 
as congestive signs and symptoms. Although an abnormal 
cardiac output initiates renal sodium and water retention, 
as will be discussed later in this chapter, most of the cardi-
nal signs and symptoms of heart failure are attributable to 
  uid retention rather than to an abnormal cardiac output 
(Table 67.1). 

Moreover, worsening   uid retention is the proximate 
cause of heart failure hospitalization (i.e., morbidity) in 
nearly 90% of cases. 1,2 As will be discussed in subsequent 
text of this chapter, renal dysfunction as measured sim-
ply by elevated blood urea nitrogen (BUN) and/or serum 
creatinine portends a very poor prognosis in both acutely 
decompensated patients and patients with chronic heart 
failure. 3–6 Consequently, the kidney provides a sensitive 
bioassay for prognosis in patients with heart failure. This 
observation underscores the importance of cardiorenal 
interactions in the natural history of heart failure. This 
chapter reviews the mechanisms of edema formation and 
sodium and water retention associated with cardiac fail-
ure, discusses the clinical implications of cardiorenal in-
teractions in heart failure, and reviews current and future 
treatment options. 

 THE MECHANISM OF EDEMA 
FORMATION 
Edema is a clinical sign that indicates an increase in the 
volume of sodium and water in the interstitial space. This 
increase in interstitial-space volume is caused by an altera-
tion of the Starling forces that govern the transfer of   uid 
from the vascular compartment into the surrounding tissue 
spaces.7 Edema may result from local factors such as an ob-
struction of lymphatic or venous   ow. However, the type of 
edema considered in this chapter re  ects a generalized dis-
turbance of sodium and water balance and is associated with 
a net increase in extracellular   uid (ECF) volume, a situation 
that is usually not present when edema results from a  local
disruption of normal capillary mechanisms. Generalized 
edema results when altered Starling forces affect all capillary 
beds. The development of generalized edema thus indicates 
a widespread disturbance in the normal balance between tis-
sue capillary and interstitial hydrostatic and colloid osmotic 
pressures, which control the distribution of ECF between 
the vascular and extravascular (interstitial) compartments. 
In edematous disorders such as cardiac failure, sodium and 
water retention by the kidney leads to the progressive expan-
sion of the ECF volume and alteration of the Starling forces 
that subsequently result in edema formation. 

Transcapillary solute and   uid transport consists of two 
types of   ow: convective and diffusive. Bulk water movement 
occurs via convective transport induced by the imbalance 
between transcapillary hydraulic pressure and colloid osmotic 
pressure. 7 Transcapillary hydraulic pressure is in  uenced by 
a number of factors, including systemic arterial and venous 
blood pressures, regional blood   ow, and the resistances im-
posed by the precapillary and postcapillary sphincters. Cardiac 
output, intravascular volume, and systemic vascular resistance, 
in turn, determine systemic arterial blood pressure. Systemic 
venous pressure is determined by right atrial pressure, intra-
vascular volume, and venous capacitance. These latter hemo-
dynamic parameters are largely determined by  sodium and 
water balance and by various neurohormonal  factors. For 
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concentration, and increased interstitial   uid volume with 
a resultant augmentation of tissue hydraulic pressure. For 
example, increased net   ltration itself, such as that associated 
with hypoalbuminemia and the resultant decreased plasma 
oncotic pressure, leads to a dissipation of capillary hydraulic 
pressure, a dilution of interstitial   uid protein concentration, 
and a corresponding rise in intracapillary protein concentra-
tion, all of which alter the balance of the Starling forces to 
mitigate further interstitial   uid accumulation. 

These buffering factors directed against interstitial   uid 
accumulation may explain why, in patients with congenital 
analbuminemia, positive sodium and water balance, and 
edema formation do not occur consistently and sodium 
loads are excreted. 9 Because the continued loss of intra-
vascular   uid volume to the interstitial space without renal 
sodium and water retention may result in the cessation of 
interstitial   uid formation, the presence of generalized ede-
ma, therefore, implies concomitant renal sodium and water 
retention. This is unquestionably the case in cardiac failure, 
as well as in liver disease and the nephrotic syndrome. The 
disturbances in microcirculatory hemodynamics associated 
with edema and expansion of the ECF volume are described 
in Table 67.2. 

 THE MECHANISMS OF FLUID 
RETENTION IN CARDIAC FAILURE 
Cardiac failure may be de  ned as the inability of the heart 
to deliver enough blood to peripheral tissues to meet meta-
bolic demands. In the case of low-output cardiac failure, a 
decrease in cardiac output initiates a complex set of com-
pensatory mechanisms in an attempt to maintain circula-
tory integrity. The adjustments that serve to stabilize cardiac 
performance and arterial perfusion in such patients include 
increases in plasma volume, atrial and ventricular   lling 
pressures, peripheral vasoconstriction, and cardiac contrac-

example, right atrial pressure or right ventricular preload is 
modulated both by changes in the intravascular volume, 
which are largely determined by the kidney, and  alterations 
in venous capacitance, which are governed in part by neuro-
endocrine mechanisms such as the sympathetic nervous sys-
tem, the renin–angiotensin system, the nonosmotic release of 
arginine vasopressin (AVP), and the natriuretic peptides. As 
discussed in this chapter, activation of these two mechanisms 
(i.e., renal sodium and water retention and neurohormonal 
activation), which may in  uence transcapillary hydraulic and 
oncotic pressures, is observed with cardiac failure. 

Several mechanisms are capable of minimizing edema 
formation or diminishing the transudation of solute and water
across the capillary bed. In several vascular beds, the local 
transcapillary hydraulic pressure gradient exceeds the oppos-
ing colloid osmotic pressure gradient throughout the length 
of the capillary bed, so that   ltration occurs across its entire 
length.8 Filtered   uid consequently must return to the circu-
lation via lymphatics. Increased lymphatic drainage and the 
ability of lymphatic   ow to increase may thus be seen as one 
protective mechanism that minimizes edema formation. Oth-
er protective mechanisms that reduce interstitial   uid accu-
mulation include precapillary vasoconstriction, increased net 
  ltration with a resultant rise in intracapillary plasma protein 

TA B L E

Primarily Related to Fluid 
Retention/Increased 
Ventricular Filling Pressures

Primarily Related 
to Abnormal 
Cardiac Output

Ascites  Cool extremities

Dyspnea (at rest or with exertion)  Fatigue

Hepatomegaly (RUQ 
fullness, pain)

Low blood pressure/
narrow pulse 
pressure

Jugular venous distension  Poor capillary re  ll

Orthopnea

Paroxysmal nocturnal dyspnea

Peripheral edema

Pleural effusions

Pulmonary rales

Third heart sound

Common Signs and Symptoms of 
 Congestive Heart Failure

67.1

RUQ, right upper quadrant.

TA B L E

Disturbances in Microcirculatory 
 Hemodynamics Associated with 
Edema and Expansion of 
Extracellular Fluid Volume 

67.2

Increased venous pressure transmitted to the capillary

Adjustments in precapillary and postcapillary resistances 
to favor interstitial   uid accumulation

Inadequate lymphatic   ow of drainage

Altered capillary permeability (Kf)
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tility and heart rate. The retention of sodium and water is 
a major renal compensation for a failing myocardium, but 
it also accounts to a great extent for the familiar clinical 
 syndrome of heart failure, which consists of pulmonary and/
or peripheral edema and exercise intolerance. In fact, the 
inability to excrete a sodium load has been used as an index 
of the presence of heart failure, 10  and a defect in water excre-
tion is regularly encountered in such patients. 11  

 Classically, two theories have attempted to explain how 
the kidney becomes involved in renal sodium and water 
 retention of heart failure. According to the “backward  failure” 
hypothesis advanced by Hope 12  and Starling, 7  central venous 
pressure rises and then peripheral venous pressure  rises as the 
cardiac pump fails. With this increase in  peripheral venous 
pressure, the hydraulic pressure in the capillaries exceeds 
opposing forces and causes the transudation of   uid from the 
intravascular compartment to the interstitial space, and thus 
the development of edema. This loss of intravascular   uid 
volume then signals the kidney to retain sodium and water in 
an attempt to restore the circulating volume to normal. The 
“forward failure” theory states that as the heart fails, there is 
inadequate perfusion of the kidney, resulting in decreased 
sodium and water excretion. 13  As will become apparent from 
the following discussion, both an increase in central venous 
pressure, or “backward failure,” and a decrease in cardiac 
output, or “forward failure,” may contribute to the sodium 
and water retention of low-output cardiac  failure via systemic 
and renal hemodynamic effects and through the activation of 
various vasoconstrictor and antinatriuretic neuroendocrine 
systems. According to our unifying hypothesis of body    uid–
volume regulation, 14–21  neurohormonal activation plays 
a central role in the efferent limb of the sodium and water 
retention in cardiac failure,  liver disease, and the nephrotic 
syndrome, whereas the afferent limb of this  volume regula-
tory system is initiated by altered systemic hemodynamics. 
The following discussion addresses this unifying hypothesis 
of body   uid–volume  regulation and the afferent and efferent 
mechanisms for sodium and water retention in edematous 
disorders, in particular, heart failure. 

 Afferent Mechanisms for Renal Sodium and 
Water Retention in Heart Failure 
 The kidney alters the amount of dietary sodium excreted in 
response to signals from volume receptors and chemorecep-
tors in the circulation. These receptors may affect kidney 
function by altering renal sympathetic nerve activity and 
changing levels of circulating hormones with vasoactive and 
nonvasoactive (e.g., direct sodium-retaining) effects on the 
kidney. Important “effector” hormones include angiotensin 
II (AT-II), aldosterone, AVP, endothelin, nitric oxide (NO), 
prostaglandins (PGs), and the natriuretic peptides, espe-
cially atrial and brain natriuretic peptides (ANP and BNP, 
respectively). Both high- and low-pressure baroreceptors as 
well as cardiac and hepatic chemoreceptors have been im-
plicated in the activation of these neurohormonal systems. 

 High-Pressure Baroreceptors 
 In humans, evidence for the presence of volume-sensitive re-
ceptors in the arterial circulation originated from  observations 
in patients with traumatic arterial-venous (AV)    stulae. 22

Closure of AV   stulae is associated with a  decreased rate of 
emptying of the arterial blood into the venous circulation, as 
demonstrated by closure-induced increases in diastolic arte-
rial pressure and decreases in cardiac output. This results in 
an immediate increase in renal sodium and water excretion 
without changes in either glomerular   ltration rate (GFR) or 
renal blood   ow. 22  This observation  implicates the “fullness” 
of the arterial vascular tree as a “sensor” in modulating renal 
sodium and water excretion. In fact, the fullness of the arte-
rial vascular compartment, or the so-called effective arterial 
blood volume (EABV), 23  has been proposed as a major de-
terminant of renal sodium and water handling according to 
the unifying hypothesis of body   uid volume regulation. 14–21

 The EABV is a measure of the adequacy of arterial blood 
volume to “  ll” the capacity of the arterial circulation.  Normal 
EABV exists when the ratio of cardiac output to peripheral 
vascular resistance maintains venous return and cardiac 
 output at normal levels. Arterial or high- pressure volume 
receptors, therefore, may be stimulated when  either  cardiac 
output falls or peripheral vascular resistance  diminishes 
to such an extent that the arterial circulation is no longer 
effectively “full” (Fig. 67.1). Therefore, in the case of low-
output cardiac failure, it is the diminution of cardiac output 
that is perceived by the arterial circulation as  inadequate to 
maintain EABV. In high-output cardiac failure, decreased 
 peripheral vascular resistance may serve as the signal for 
 arterial under  lling. 14–21  The concept of arterial under  lling 
in low- and high-output cardiac failure is discussed in the 
following paragraphs. 

 Studies using one model of low-output cardiac  failure—
constriction of the vena cava in the dog—support the no-
tion that a fall in cardiac output may be a primary stimulus 
for sodium and water retention by the kidney.  Using this 
model, Schrier and associates 24–26  showed that  constriction 

FIGURE 67.1 Peripheral vascular resistance and cardiac output as 
the determinants of arterial   lling or the “effective arterial blood 
volume.” Here, either a decrease in vascular resistance or dimin-
ished cardiac output results in decreased fullness of the arterial 
circulation with unloading of high-pressure volume receptors and 
activation of various neurohormonal responses (see text).
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failure animals.  Exogenous administration of ANP to such 
levels prevented sodium retention, renal vasoconstriction, 
and activation of the renin– angiotensin–aldosterone system. 
These observations support the notion that decreased cardiac 
output is a stimulus for renal sodium retention in heart fail-
ure and suggest an important role for the natriuretic peptides 
in acutely attenuating this renal response. A further discus-
sion of the role of ANP and BNP in heart failure is presented 
elsewhere in this chapter. 

Other experimental evidence supports a role for dimin-
ished cardiac output as a determinant of sodium and water 
retention in heart failure. Rats with small-to-moderate myo-
cardial infarctions and decreased cardiac outputs exhibit de-
creased fractional sodium excretion despite normal right and 
left ventricular end-diastolic pressures. 30 Using the model of 
TIVC constriction, Priebe et al. 31 demonstrated that the  renal 
retention of sodium and water was reduced markedly when 
cardiac output was restored to normal by autologous blood 
transfusions. Moreover, a reduction of pressure or stretch at 
the carotid sinus, like that produced by decreased cardiac out-
put or arterial hypotension, activates the sympathetic nervous 
system and promotes renal sodium and  water retention. 32,33

Pharmacologic or surgical interruption of sympathetic affer-
ent neural pathways emanating from high-pressure barore-
ceptor sites also inhibits the natriuretic response to volume 
expansion.25,26,34–38 High-pressure baroreceptors also appear 
to be important factors in regulating the nonosmotic release 
of AVP, thereby affecting renal water excretion. 39,40 Finally, the 
juxtaglomerular apparatus, an arterial baroreceptor located in 
the afferent arterioles within the kidney, has been implicated 
in the modulation of renal renin release 32,41,42 and thus may 
stimulate increases in circulating AT-II and aldosterone, both 
of which promote sodium retention by the kidney. 

Low cardiac output cannot be the only cause of sodium 
and water retention in heart failure, because diminished re-
nal sodium and water excretion is also observed in states 
of high-output cardiac failure. In heart failure secondary to 
beriberi, anemia, thyrotoxicosis, or AV   stulae, cardiac out-
put is increased as a consequence of a decrease in peripheral 
vascular resistance. This decrease in vascular resistance di-
minishes EABV (i.e., causes arterial under  lling) and serves 
as the stimulus for neurohormonal activation and renal so-
dium and water retention in these instances of high-output 
heart failure. 14–21 As noted already in humans 22 and dogs, 43

closure of an AV   stula causes increased sodium excretion, 
whereas opening an AV   stula decreases urinary sodium ex-
cretion. These changes in renal sodium excretion correlate 
with changes in arterial pressure and peripheral vascular re-
sistance rather than GFR or renal blood   ow, supporting the 
importance of arterial circulatory “fullness” as a determinant 
of the renal response to heart failure. 

These observations of decreased sodium and water ex-
cretion in both low- and high-output cardiac failure support 
the theory that arterial under  lling initiates re  ex stimuli for 
the kidneys to retain sodium and water. In this regard, high-
pressure baroreceptors in the carotid sinus, aortic arch, left 

of the thoracic inferior vena cava (TIVC) is associated with 
a decrease in cardiac output, arterial pressure, and urinary 
sodium excretion, even when renal perfusion pressure 
and renal venous pressure were held constant. Of note, 
renal denervation and adrenalectomy did not abolish this 
antinatriuresis. Furthermore, sodium retention did not cor-
relate with changes in GFR or renal vascular resistance. 
Constriction of the superior vena cava to cause a decrease in 
cardiac output similar to that observed in the TIVC  studies
resulted in a similar decrease in urinary sodium excretion 
despite the absence of concomitant hepatic, renal, and 
abdominal venous congestion. These   ndings support the 
hypothesis that the kidney decreases sodium excretion in 
response to a decrease in cardiac output and the associated 
arterial under  lling. 

Migdal et al. 27 questioned this hypothesis by comparing 
the renal response in three different models of experimen-
tal heart failure. Speci  cally, they compared models of TIVC 
constriction, pulmonary artery occlusion (which is similar 
to caval constriction except that right-sided heart pressures 
are increased rather than decreased), and acute left ventricu-
lar infarction, another model of low-output heart failure but 
with increased left-sided heart pressures. This investigation 
demonstrated that with comparable decrements in cardiac 
output in all three models, only the TIVC constriction ani-
mals exhibited antinatriuresis. The authors concluded that 
low cardiac output per se is not the afferent signal for so-
dium retention in low-output heart failure. These authors 27

and others 28 suggested that in some way, decreased right-
sided heart pressure mediates the antinatriuresis. 

An alternative interpretation of the   ndings of Migdal 
et al. 27 is that a decrease in cardiac output is a stimulus for 
renal sodium and water retention, but an acute rise in atrial 
or ventricular end-diastolic pressures, in animals with acute 
pulmonary hypertension or acute left ventricular infarction, 
with the release of the natriuretic peptides ANP and BNP, ini-
tially obscures this effect. Support for this interpretation may 
be found in a report from Lee et al., 29 who examined sodium 
excretion in two models of low-output heart failure in the 
dog, acute heart failure produced by rapid ventricular pacing, 
and a TIVC constriction model. Similar to the animals in the 
study of Migdal et al., the dogs with TIVC constriction dem-
onstrated diminished cardiac outputs and arterial pressures 
without an increase in atrial pressures or plasma ANP level 
but with avid renal sodium retention. Of note, plasma renin 
activity (PRA) and plasma aldosterone concentrations were 
substantially elevated in these TIVC-constriction animals. In 
the case of pacing-induced heart failure, cardiac output and 
arterial pressure were similarly decreased, whereas atrial pres-
sures and the plasma ANP concentration were signi  cantly 
increased. In the animals with elevated rather than normal 
circulating ANP concentrations, urinary sodium excretion 
was maintained and PRA and plasma aldosterone concentra-
tions were not increased. Finally, dogs with TIVC constriction 
were given exogenous ANP to achieve circulating concentra-
tions comparable to that seen in the pacing-induced heart 
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In these animal models, the increase in right atrial pressure 
was associated with avid renal sodium retention rather than 
the expected natriuresis. However, a concomitant fall in 
cardiac output could explain the sodium retention. Alterna-
tively, alterations in cardiopulmonary baroreceptor function 
may occur in chronic but not acute heart failure. 

Zucker et al. 68 demonstrated that the inhibition of re-
nal sympathetic nerve activity seen during acute left atrial 
distention is lost during chronic heart failure in the dog. 
Moreover, a decrease in cardiac preload fails to produce 
the expected parasympathetic withdrawal and sympathetic 
activation in humans with heart failure. 69–71 Nishian et al. 71

described paradoxical forearm vasodilation and hemody-
namic improvement during acute unloading of cardiopul-
monary baroreceptors in patients with severe chronic heart 
failure. This paradoxical response to lower body negative 
pressure was associated with static plasma norepinephrine 
levels,71 rather than the expected increase in plasma nor-
epinephrine concentrations, further demonstrating this 
altered response to low-pressure baroreceptor unloading 
in heart failure. These observations con  rm those made 
in heart failure patients during other forms of orthostatic 
stress. 69,70 These   ndings are also consistent with the ob-
servation of a strong positive correlation between left atrial 
pressure and coronary sinus norepinephrine, a marker of 
cardiac  adrenergic  activity, in patients with chronic heart 
failure. 72 Finally, Fonarow et al. 73 have shown that a re-
duction in left ventricular   lling pressure rather than an 
increase in cardiac output during tailored hemodynam-
ic management of heart failure improves survival over a 
2-year period of follow-up. Taken together, these   ndings 
suggest that the normal inhibitory control of sympathetic 
activation accompanying increased atrial pressures is lost 
in heart failure patients and somehow may be converted to 
a stimulatory signal. 

 Cardiac and Pulmonary Chemoreceptors 
In the heart and lungs, both vagal and sympathetic afferent 
nerve endings respond to a variety of exogenous and endog-
enous chemical substances, including capsaicin, phenyldi-
guanidine, bradykinin, substance P, and PGs. Baker et al. 74

demonstrated stimulation of sympathetic afferent nerve end-
ings by bradykinin in the heart of the cat. In conscious dogs, 
the administration of PGE 2 and arachidonate inhibited the 
cardiac barore  ex. 75 Moreover, Zucker et al. 76 showed that 
PGI2 attenuates the barore  ex control of renal nerve activ-
ity via an afferent vagal mechanism.  Because substances such 
as bradykinin and PGs may circulate at increased concentra-
tions in subjects with heart failure, 77 it is possible that altered 
central nervous system input from chemically sensitive cardi-
ac or pulmonary afferents  contributes to the neurohormonal 
activation and sodium retention of chronic heart failure. This 
possibility may have important implications for the treatment 
of heart failure, because commonly prescribed medications 
such as angiotensin-converting enzyme (ACE) inhibitors may 
alter circulating bradykinin and PG levels. At the present 

ventricle, or the juxtaglomerular apparatus may comprise an 
important part of this re  ex loop. Although these data sup-
port a role for arterial under  lling as the primary stimulus of 
the renal sodium and water retention of heart failure, low-
pressure baroreceptors also may play an important role. 

 Low-Pressure Baroreceptors 
In addition to the high-pressure arterial baroreceptors, the 
venous side of circulation seems to be a logical place for re-
ceptors sensitive to changes in blood volume to be found. 
In fact, 85% of blood volume may be found in the venous 
circulation, whereas just 15% of circulatory volume resides 
in the arterial circulation. 44 Although the smaller arterial 
blood volume may result in a higher sensitivity to detect 
blood volume changes, the larger amount of venous blood 
volume also may constitute an important component of the 
body   uid–volume regulatory system. 

The atria of the heart are highly distensible and  densely
populated with nerve endings that are sensitive to small 
changes in passive distention. 45 Similar afferent low- pressure 
volume receptors may also be found in the pulmonary vas-
culature. 46 Increased   lling of the thoracic vascular and 
cardiac atria would be expected to signal the kidney to in-
crease urinary sodium excretion in order to return the blood 
volume to normal. As expected, maneuvers that increase this 
thoracic or “central” blood volume, such as weightlessness, 
negative-pressure breathing, head-out water immersion, 
recumbency, and exposure to cold, all produce a natriure-
sis.47–52 Similarly, measures that decrease intrathoracic blood 
volume,  including positive-pressure breathing, upright 
posture, and the application of tourniquets to the lower 
extremities, result in renal sodium retention. 49,53,54 There-
fore, effective “central” blood volume, in addition to EABV, 
may serve as the afferent stimulus for the regulation of renal 
sodium and water excretion. 

Considerable evidence implicates the left atrium as an 
important site of low-pressure receptors. 55–57 It is believed 
that changes in pressure or distention within the left atrium 
modulate electrical activity of the atrial receptors, which in 
turn may regulate renal sympathetic nerve activity. Left atrial 
nerves, therefore, can alter blood volume through changes in 
sodium excretion 57–59 as well as solute-free water excretion 
by in  uencing AVP release. 60–62 Acutely increasing left atrial 
volume by in  ation of a balloon within the left atrium results 
in increased urinary volume excretion, 56 whereas hypoten-
sive hemorrhage 63,64 and atrial tamponade 65 cause decreased 
atrial volume and diminish urine volume. However, in the 
setting of chronic heart failure, renal sodium and water re-
tention occur despite left atrial distention and, frequently, 
loading of the other central baroreceptors (pulmonary veins, 
right atrium). Therefore, in chronic heart failure, diminished 
cardiac output with arterial under  lling may exert the pre-
dominant effect via the unloading of high-pressure arterial 
baroreceptors. Chronic studies in animals employing either 
experimental tricuspid insuf  ciency 66 or right atrial disten-
tion with an in  atable balloon 67 support this hypothesis. 

1942



CHAPTER 67   CARDIAC FAILURE AND THE KIDNEY 1943

not be  confused with additional mechanisms that may be 
implicated in the setting of acute decompensated heart 
failure, where increased central venous pressure and renal 
venous congestion may also contribute to worsening renal 
function and sodium and water retention, as discussed later 
in this chapter. 

 Efferent Mechanisms for Renal Sodium and 
Water Retention in Heart Failure 
 The Neurohormonal Response to Cardiac Failure 
 As mentioned, the activation of various neurohormonal 
 vasoconstrictor and antinatriuretic systems mediates to a 
large extent the renal sodium and water retention associated 
with the edematous disorders. Arterial under  lling second-
ary to a diminished cardiac output or peripheral vasodilation, 
perhaps in association with an alteration in low-pressure 
baroreceptor function, elicits these “compensatory” neuro-
endocrine responses in order to maintain the integrity of the 
arterial circulation by promoting peripheral vasoconstriction 
and expansion of the ECF volume through renal sodium and 
water retention (Fig. 67.2). The three major  neurohormonal 
vasoconstrictor systems activated in response to arterial 
 under  lling are the sympathetic nervous system, the renin– 
angiotensin–aldosterone system, and the nonosmotic release 
of AVP. Although other vasoconstrictor hormones may also 
be activated in heart failure (e.g., endothelin), their role in 
heart failure pathophysiology remains unclear. 

 The baroreceptor activation of the sympathetic nervous 
system appears to be the primary integrator of the hormonal 
vasoconstrictor systems involved in renal sodium and  water 
retention. The nonosmotic release of AVP involves  sympathetic 
stimulation of the supraoptic and paraventricular nuclei in 
the hypothalamus, 86  whereas activation of the renin–angio-
tensin–aldosterone system involves renal    - adrenergic stim-
ulation. 87  However, this latter system may provide positive 
feedback stimulation of the sympathetic  nervous system and 

time, however, the exact roles of these hormones and cardiac 
and pulmonary chemoreceptors in heart failure are incom-
pletely understood. 

 Hepatic Receptors 
 Theoretically, the liver should be in an ideal position to 
 monitor dietary sodium intake and thus adjust urinary so-
dium excretion. Indeed, when compared with peripheral 
venous administration, infusion of saline solution into the 
portal circulation was reported to result in greater natriure-
sis. 78,79  Similarly, the increment in urinary sodium excre-
tion has been claimed to be greater when the sodium load is 
given orally than when given intravenously. 80–82  In addition, 
the pathophysiologic retention of sodium in patients with 
severe liver disease is also consistent with an important role 
for the liver in the control of sodium excretion. However, 
some investigators 83,84  were unable to demonstrate a dif-
ference in sodium excretion between animals infused with 
5% sodium chloride systemically and animals receiving the 
same solution via the portal vein. Moreover, Obika et al. 85

found similar sodium excretions after sodium loads given 
intravenously or by gastric lavage. Therefore, the experimen-
tal evidence in favor of sodium or volume hepatic receptors 
remains controversial. 

 In summary, the afferent mechanisms for sodium and 
water retention in chronic heart failure may be preferen-
tially localized on the arterial or high-pressure side of the 
circulation where EABV may serve as the primary deter-
minant of the renal response. However, re  exes from the 
low-pressure cardiopulmonary receptor system also may be 
 altered so as to in  uence renal sodium and water handling 
in heart  failure. In this regard, increases in atrial and ven-
tricular end-diastolic pressures also stimulate the release of 
the  natriuretic peptides and inhibit AVP release, which may 
be important attenuating factors in renal sodium and water 
 retention.  Finally, these afferent mechanisms for initiating 
sodium and water retention in chronic heart failure should 

FIGURE 67.2 The mechanism explain-
ing the defect in renal sodium and water 
excretion in both high- and low-output 
heart failure. AVP, arginine vasopressin.
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patients with heart failure might account for or substantially 
contribute to the renal sodium retention observed. How-
ever, other investigators were not able to demonstrate such 
a redistribution of blood   ow in other models of cardiac 
failure. 92,93 At the present time, the role of redistribution of 
renal blood   ow in the sodium retention of cardiac failure 
therefore remains uncertain. 

The increased renal vascular resistance in heart fail-
ure could be caused by enhanced renal sympathetic ac-
tivity or increased circulating concentrations of AT-II, 
norepinephrine, vasopressin, or other vasoconstricting sub-
stances. Alternatively, or in addition, decreased synthesis of 
or the development of tachyphylaxis to known vasodilating 
substances such as the natriuretic peptides and PGE 2 and 
PGI2 may contribute to the increased renal vascular resis-
tance. Studies performed in rats demonstrated the ability of 
the adrenergic neurotransmitter norepinephrine and  AT-II 
to promote glomerular arteriolar constriction. 94,95 In a rat 
model of low-output heart failure caused by myocardial 
infarction, the marked elevation in efferent arteriolar resis-
tance was abolished after the infusion of an ACE inhibitor, 95

thereby implicating the renal vasoconstrictor properties of 
AT-II in heart failure. Clinical results from our laboratory 
also favor AT-II as a major renal vasoconstrictive substance 
in patients with heart failure. 96 In patients with advanced 
heart failure, GFR was improved after 1 month of treatment 
with the ACE inhibitor captopril. However, similar patients 
receiving another vasodilating agent, prazosin, with iden-
tical improvement in cardiac output and left ventricular 
end-diastolic pressure but without any effect on the renin–
angiotensin system had no improvement in GFR. 96 More-
over, a published review of the literature on renal function 
alterations induced by ACE inhibition during heart failure 
concluded that the net effect of ACE inhibitors in patients 
with heart failure is to augment renal blood   ow to a greater 
extent than cardiac output. 97 This observation also supports 
an important role for AT-II in the renal hemodynamic altera-
tions of heart failure. However, the renal response to ACE 
inhibition in patients with heart failure is variable; as a re-
sult, it is acknowledged that volume status and the degree of 
neurohormonal activation may in  uence this response (see 
the following). 

In heart failure, the interaction between norepinephrine 
or AT-II and PGs may also provide a means of preserving 
near constancy of renal blood   ow in response to arterial 
under  lling. Although the inhibition of PG synthesis does 
not generally impair GFR in normovolemic animals 98,99 or 
humans,100 in states of high plasma concentrations of en-
dogenous AT-II induced by volume depletion, the blockade 
of PG synthesis may be associated with substantial declines 
in renal blood   ow and GFR. 98,99 Recent clinical results have 
underscored the importance of PGs in the maintenance 
of renal function in patients with heart failure. 77,101 In pa-
tients with heart failure, PG activity is increased and cor-
relates with the severity of disease as assessed by the degree 
of hyponatremia. 77 In these 15 patients, plasma levels of the 

nonosmotic AVP release. Various counterregulatory, vasodila-
tory, and natriuretic hormones, including the natriuretic pep-
tides and PGs, are also activated in heart failure and the other 
edematous disorders, and may attenuate the renal  effects of 
vasoconstrictor hormone activation. The effects of these neu-
rohormonal systems, as well as the effects of alterations in sys-
temic hemodynamics, on renal hemodynamics, and tubular 
sodium and water reabsorption in heart failure, are discussed 
in the following section. 

 Glomerular Filtration Rate 
The GFR is usually normal in mild heart failure and is 
reduced only as cardiac performance becomes more severely 
impaired. Until 1961, it was generally accepted that the rate 
of glomerular   ltration was a major determinant of renal so-
dium excretion. In 1961, de Wardener et al. 88 published their 
classic paper indicating that acute expansion of ECF volume 
by saline loading was accompanied by a brisk natriuresis 
even when GFR was reduced. Moreover, in sodium-retaining 
heart failure patients, GFR is often normal and may even be 
elevated in states of high-output cardiac failure. These obser-
vations argue against an important role for diminished GFR 
in the sodium retention of heart failure per se (i.e., in the 
initiation of sodium retention), although a diminished GFR 
may be a contributing factor in patients with advanced heart 
failure or comorbid disorders that directly impair this aspect 
of renal function. It also should be emphasized that the con-
tribution of GFR to sodium balance is dif  cult to evaluate 
because very minute changes in GFR are dif  cult to measure 
and may account for important changes in sodium excre-
tion. For example, under normal conditions, with a GFR of 
100 mL per minute, the   ltered load of sodium amounts to 
approximately 20,000 mEq per day. This amount of   ltered 
sodium is enormous compared to the normal urinary so-
dium excretion of approximately 200 mEq per day. In view 
of this considerable difference, it is apparent that very small 
changes in GFR can result in major alterations in sodium 
excretion if tubular reabsorption remains unaltered. In any 
event, although GFR may be diminished in patients with ad-
vanced heart failure, a reduction in GFR alone is probably 
not an important cause of   uid retention in these patients 
because sodium retention can be observed in heart failure 
patients who have GFRs comparable to normal subjects who 
are capable of maintaining sodium balance. 

 Renal Blood Flow 
Heart failure is commonly associated with an increase in re-
nal vascular resistance and a decrease in renal blood   ow. 89

In general, renal blood   ow decreases in proportion to the 
decrease in cardiac output. Some investigators also showed 
a redistribution of renal blood   ow from the outer cortical 
nephron to juxtaglomerular nephrons during experimental 
heart failure. 90,91 It was proposed that deeper nephrons with 
longer loops of Henle reabsorb sodium more avidly. There-
fore, the redistribution of blood   ow to these nephrons in 
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oncotic pressure in the efferent arterioles and the peritubu-
lar capillaries that surround the proximal tubule. 95 Such an 
increase in peritubular oncotic pressure has been proposed 
to increase sodium and water reabsorption in the proximal 
tubule.109–113 Direct evidence for increased single-nephron 
  ltration fraction was provided by micropuncture stud-
ies in rats with myocardial infarction induced by coronary 
ligation.95 In rats with large myocardial infarctions involv-
ing approximately 40% of the left ventricular circumference, 
the single-nephron   ltration fraction was markedly elevated 
(0.38   0.02 versus 0.25    0.02,  P   .005) when com-
pared with that in sham-operated control rats. The mea-
surement of preglomerular, glomerular, and postglomerular 
pressures and   ows revealed that these reductions in glo-
merular plasma   ow rate and elevations in   ltration fraction 
were  associated with a profound constriction of the efferent 
arterioles. The effect of the latter was to sustain glomerular 
capillary hydraulic pressure, thereby preventing a marked 
fall in GFR. Signi  cantly, fractional proximal   uid reabsorp-
tion was elevated in this model. Of interest, in these ani-
mals with myocardial infarction, the intravenous infusion of 
the ACE inhibitor teprotide led to the return of glomerular 
plasma   ow rate, single-nephron   ltration fraction, single-
nephron GFR, efferent arteriolar resistance, and fractional 
proximal   uid reabsorption to or toward the levels found 
in the control rats. 95 Consistent with these experiments, 
micropuncture studies performed in other models of heart 
failure such as acute TIVC constriction 114 and acute cardiac 
tamponade115 in dogs showed that the proximal tubule was 
at least one major nephron site responsible for renal sodium 
retention or a blunted response to saline infusion. 

Despite the convincing nature of many studies, not all 
investigators have been able to detect an effect of peritubu-
lar oncotic pressure on proximal tubular sodium and water 
reabsorption. Rumrich and Ullrich, 116 Lowitz et al., 117 Bank 
et al., 118 and Holzgreve and Schrier 119 were unable to   nd 
changes in proximal reabsorption despite marked changes 
in peritubular oncotic pressures. Moreover, Conger et al. 120

directly perfused peritubular capillaries with either a pro-
tein-free or protein-rich solution and found that neither 
perfusate in  uences the rate of proximal reabsorption. Try-
ing to reconcile these observations, Ott et al. 121 found that 
proximal reabsorption was different after changes in peritu-
bular oncotic pressure in volume-expanded dogs compared 
with hydropenic animals. These authors suggested that the 
expansion of ECF volume resulted in an increased passive 
back leak that could be reversed by raising the peritubu-
lar oncotic pressure. During hydropenia, however, when 
passive back leak was relatively less, raising the peritubu-
lar capillary oncotic pressure did not in  uence proximal 
reabsorption. 

The effects of increased   ltration fraction might be expect-
ed to be exerted primarily on proximal tubular sodium reab-
sorption. Nevertheless, although clearance and micropuncture 
studies in animals with heart failure have  demonstrated in-
creased sodium reabsorption in the  proximal tubule, distal 

metabolites of vasodilator PGI 2 and PGE 2 were found to be 
elevated 3 to 10 times above those seen in normal subjects. 
Of note, plasma levels of both metabolites also correlated 
positively with PRA and plasma AT-II concentrations. The 
administration of the PG synthesis inhibitor indomethacin 
in three of the hyponatremic heart failure patients resulted 
in a marked increase in peripheral vascular resistance and a 
fall in cardiac output. Riegger et al. 101 recently evaluated the 
renal effects of another PG synthesis inhibitor, acetylsalicylic 
acid, in patients with moderate heart failure consuming a 
normal sodium diet. In these patients, acetylsalicylic acid in 
doses that decreased the synthesis of renal PGE 2 resulted in a 
signi  cant reduction in urinary sodium excretion. Moreover, 
the administration of a cyclooxygenase inhibitor in heart 
failure patients occasionally may result in acute reversible 
renal failure, an effect proposed to be due in part to the inhi-
bition of vasodilating renal PGs and the resultant renal vaso-
constriction.102 It should be noted, however, that the extent 
to which the effects on renal function and sodium and water 
handling result from renal hemodynamic or the tubular ac-
tions of the PGs remains unclear. 

As mentioned, norepinephrine may also contribute 
to the increased renal afferent arteriolar resistance in heart 
failure patients. In this regard, Oliver et al. 103 demonstrat-
ed that the venous to arterial norepinephrine concentration 
gradient across the kidney, a crude measure of renal nerve 
traf  c, is increased in response to acute reduction of cardiac 
output. Moreover, Hasking et al. 104 showed that during a 
steady-state tritiated norepinephrine infusion, the spillover 
of norepinephrine to plasma from the kidney is signi  cant-
ly elevated in patients with heart failure. In these patients, 
the increased renal norepinephrine spillover substantially 
contributed to the increase in whole-body norepinephrine 
spillover. These   ndings demonstrate that renal  adrenergic 
activity is increased in patients with heart failure, and thus 
contributes to the renal vasoconstriction. In support of this 
latter hypothesis, the administration of  -adrenergic  receptor 
antagonists increased renal blood   ow in  edematous patients 
with heart failure. 105 Renal denervation studies in patients 
with refractory hypertension also underscore the role of  renal 
sympathetic nerve activation in cardiovascular disease. In 
such patients, the catheter ablation of renal nerves reduces 
norepinephrine spillover from the kidneys and lowers blood 
pressure. 106–108 Ongoing renal denervation studies in patients 
with heart failure may shed further light on the role of renal 
sympathetic activation and the potential for catheter ablation 
of renal nerves in the treatment of heart failure. 

 Filtration Fraction, Proximal Tubular Sodium and 
Water Reabsorption, and Factors Acting Beyond 
the Proximal Tubule 
Because renal blood   ow falls as cardiac output decreases 
and GFR is usually preserved, the   ltration fraction often 
is increased in early heart failure. An increase in the   ltra-
tion fraction results in increased protein concentration and 
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peritubular factors and proximal reabsorption in the sodium 
retention characteristic of heart failure. 127  This observation 
suggests that other factors, such as the direct tubular effects 
of neurohormonal activation, may play a signi  cant role in 
the renal sodium and water retention of heart failure. The 
renal effects of these various neurohormonal systems are dis-
cussed in detail in the following section, starting with activa-
tion of the vasoconstrictor mechanisms. 

 Vasoconstrictor Systems 
 Activation of the sympathetic nervous system in heart 
failure. The sympathetic nervous system is activated early 
in patients with heart failure. Numerous studies have docu-
mented elevated peripheral venous plasma norepinephrine 
concentrations in heart failure patients. 104,128–131  In advanced 
heart failure, using tritiated norepinephrine to determine 
norepinephrine kinetics, Hasking et al. 104  and Davis et al. 130

demonstrated that both increased norepinephrine spillover 
and decreased norepinephrine clearance contribute to the 
elevated venous plasma norepinephrine levels seen in these 
patients, suggesting that increased sympathetic nerve activ-
ity is at least partially responsible for the high circulating 
norepinephrine levels. Our laboratory 131  has demonstrated 
that in earlier stages of heart failure, the rise in plasma nor-
epinephrine in patients with heart failure was due solely to 
increased norepinephrine secretion (Fig. 67.3), supporting 
the notion that sympathetic nervous system activity is in-
creased early in the course of heart failure. Signi  cantly, in 
our heart failure patients with mild-to-moderate symptoms, 
plasma epinephrine, a marker of adrenal activation, was not 
substantially elevated, con  rming the neuronal source of the 
increased norepinephrine. 

 The Studies of Left Ventricular Dysfunction (SOLVD) 
investigators 132  reported the presence of adrenergic activa-
tion in patients with asymptomatic left ventricular dysfunc-
tion. In this substudy of the SOLVD trials, neurohormonal 
activation was assessed in 56 control subjects, 151 patients 
with left ventricular dysfunction (ejection fractions     35%) 
but no overt heart failure, and 81 patients with overt heart 
failure, prior to randomization to receive placebo versus an 
ACE inhibitor. The plasma norepinephrine concentration 

sodium reabsorption also seems to be  involved. In this regard, 
clearance and micropuncture  studies performed in dogs with 
AV   stulae, 122   chronic  pericarditis, 115  and chronic partial tho-
racic vena caval  obstruction 123   documented enhanced distal 
nephron  sodium reabsorption. Levy 123  also showed that the 
 inability of dogs with chronic vena caval obstruction to ex-
crete a sodium load is a  consequence of enhanced reabsorp-
tion of sodium at the loop of Henle. This nephron segment 
was similarly  implicated in rats with AV   stulae. 93  Physical 
factors also could be involved in the augmented reabsorption 
of sodium chloride by the loop of  Henle in dogs with constric-
tion of the vena cava. 123  

 Intrarenal mechanisms, speci  cally decreased delivery 
of tubular   uid to the distal diluting segment of the  nephron, 
may also contribute to the impaired water excretion observed 
in heart failure. Evidence supporting this intrarenal mecha-
nism of water retention in heart failure has been provided 
by studies involving the administration of mannitol 124  or the 
loop diuretic furosemide 125  to patients with heart failure and 
hyponatremia. The administration of either of these agents 
converted the cardiac patient’s hypertonic urine to a dilute 
urine. 124,125  Both mannitol and furosemide may diminish 
the tubular reabsorption of sodium and water in the more 
proximal portions of the nephron, thus increasing   uid de-
livery to the more distal nephron sites of urinary dilution. 
Other factors may, however, be implicated to explain these 
results: (1) the infusion of mannitol may produce volume 
expansion, thereby suppressing the baroreceptor-mediated 
release of AVP; and (2) the furosemide-induced hypotonic 
urine was found to not be responsive to the administration 
of exogenous AVP, thus suggesting antagonism of AVP by fu-
rosemide. 125  In support of this latter hypothesis, Szatalowicz 
et al. 126  provided further evidence that furosemide interferes 
with the renal action of AVP in humans. 

 In summary, the exact contribution of proximal versus 
distal nephron sites in the augmented sodium and water re-
absorption seen in heart failure may depend on the severity 
of the heart failure and the concomitant degree of arterial un-
der  lling. The fact that changes in the   ltration fraction have 
been observed in patients with heart failure before changes 
in sodium balance occur may question the  dominance of 

FIGURE 67.3 Plasma norepinephrine secretion and 
clearance rates in patients with mild-to-moderate heart 
failure (CHF) and in normal control subjects (CON). The 
  ndings of increased norepinephrine secretion and nor-
mal norepinephrine clearance in the CHF patients are 
consistent with early activation of the sympathetic ner-
vous system in cardiac failure. NS, not signi  cant. (From 
Abraham WT, Hensen J, Schrier RW. Elevated plasma nor-
adrenaline concentrations in patients with low-output 
cardiac failure: dependence on increased noradrenaline 
secretion rates. Clin Sci. 1990;79:429, with permission.)
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reabsorption in this segment of the nephron. On the basis 
of results of an elegant series of studies, DiBona et al. 145

implicated the activation of the renal nerves in the sodium 
and water retention observed in the various edematous dis-
orders. Experiments were conducted in conscious, chroni-
cally instrumented rats with either heart failure (myocardial 
infarction), cirrhosis (common bile duct ligation), or the 
nephrotic syndrome (doxorubicin injection). In each experi-
mental model, renal sodium or water excretion of an acutely 
administered oral or intravenous isotonic saline load was 
signi  cantly less than that in control rats. Bilateral renal de-
nervation in the experimental rats restored their renal excre-
tory response to normal. Moreover, in response to the acute 
administration of a standard intravenous isotonic saline 
load, the decrease in efferent renal adrenergic nerve activity 
was signi  cantly less in all three experimental models than 
in control animals. These results support an increased basal 
efferent renal sympathetic nerve activity in heart failure and 
the other edematous disorders that fail to suppress normally 
in response to the isotonic saline load. These   ndings also 
are consistent with the aforementioned alterations in low-
pressure baroreceptor function observed in human heart 
failure, where adrenergic activation is seen despite chronic 
increased loading of these cardiopulmonary receptors. 

In dogs 146 and in humans 105 with heart failure,   -
adrenergic receptor blockade induces a natriuresis. More-
over, adrenergic blockade with either phenoxybenzamine 
or hexamethonium abolishes the sodium retention seen in 
acute TIVC constriction. 25 Furthermore, the comprehensive 
adrenergic blocking agent carvedilol, but not metoprolol, in-
creases renal blood   ow and GFR in patients with chronic 
heart failure. 147 Conversely, sodium retention persists in 
dogs with denervated transplanted kidneys and chronic 
vena caval constriction. 148 In addition, in dogs with pacing-
induced heart failure, no differences in renal hemodynamic 
or electrolyte excretion between innervated or denervated 
kidneys in compensated or decompensated animals were 
observed. 149 These latter observations implicate factors in 
addition to renal nerves in the sodium retention of heart 
failure. However, in these renal denervation experiments 
and in human heart failure, other hormonal factors (e.g., 
AT-II, aldosterone, AVP) may play an important role in the 
sodium and water retention. 

Experience with the partial  1-adrenergic receptor ago-
nist xamoterol in heart failure suggests a role for the renal 
 -receptor in modulating proximal tubular sodium reab-
sorption.150 Bøtker et al. 150 examined the acute renal effects 
of xamoterol in 12 patients with mild-to-moderate heart 
failure. Each patient was given xamoterol (0.2 mg per kilo-
gram) or placebo in random order separated by 2 weeks of 
a clinically stable drug washout period. Renal clearance and 
excretion measurements were made with the patient in the 
supine position at 30- to 60-minute intervals before, during, 
and up to 6 hours after infusion. Lithium clearance was used 
as a measure of proximal tubular sodium handling. 151 Blood 
pressure, heart rate, renal plasma   ow, GFR, and urinary 

was signi  cantly increased by 35% in subjects with asymp-
tomatic left ventricular dysfunction compared to healthy 
control subjects, and by 65% greater than control values in 
the overt heart failure patients. These data also demonstrate 
that adrenergic activation occurs early in the course of heart 
failure or left ventricular dysfunction and are consistent with 
the observation that plasma norepinephrine concentrations 
or the degree of adrenergic activation are directly correlated 
with the degree of left ventricular dysfunction in patients 
with heart failure. 128,129,133,134 Finally, studies employing 
peroneal nerve microneurography to directly assess sympa-
thetic nerve activity to muscle (MSNA) con  rmed increased 
adrenergic nerve traf  c in patients with heart failure. 135

As mentioned, studies in human heart failure demon-
strated the presence of renal adrenergic activation. 104 In this 
study of whole-body and organ-speci  c norepinephrine 
kinetics in heart failure patients, cardiac and renal norepi-
nephrine spillovers were increased 504% and 206%, respec-
tively, whereas norepinephrine spillover from the lungs was 
normal. These   ndings demonstrate the presence of selective 
cardiorenal adrenergic activation in heart failure. A discussion 
of the cardiac effects of this adrenergic activation is beyond 
the scope of this chapter. However, low heart rate variabil-
ity (indicative of high cardiac sympathetic and low cardiac 
parasympathetic activity) assessed continuously by implant-
able pacemaker and/or de  brillator devices is a predictor of 
hospitalization for worsening heart failure. 136 Of note, in this 
report most hospitalizations for worsening heart failure were 
associated with   uid–volume overload. Therefore, measur-
ing heart rate variability may provide insight into the sys-
temic as well as the cardiac effects of heightened adrenergic 
activity. Moreover, numerous adverse effects of increased 
cardiac adrenergic activity have been documented in hu-
mans,137 and positive experience with the use of   -adrenergic 
receptor antagonists in heart failure patients 137–143 supports 
the hypothesis that norepinephrine is harmful to the myo-
cardium. In this regard, blocking the  deleterious effects of 
norepinephrine on the heart results in the reverse of ven-
tricular remodeling; that is, the dilated  failing heart becomes 
smaller and stronger following chronic   -adrenergic block-
ade. Finally, it should be noted that a single resting venous 
plasma norepinephrine level provides a better guide to prog-
nosis than do many other commonly measured indices of 
cardiac performance in which high plasma  norepinephrine 
levels are associated with a poor prognosis in patients with 
heart failure. 144

 Renal tubular effects of adrenergic activation in heart 
failure. Renal nerves exert a direct in  uence on sodium 
reabsorption in the proximal tubule. Bello-Reuss et al. 58

demonstrated this direct effect of renal nerve activation to 
enhance proximal tubular sodium reabsorption in whole-
kidney and nephron studies in the rat. In these animals, re-
nal nerve stimulation produced an increase in the tubular 
  uid-to-plasma inulin concentration ratio in the late proxi-
mal tubule, a result of increased fractional sodium and water 
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demonstrated increased neuronal  norepinephrine release 
from the heart during AT-II infusion, whereas cardiac adren-
ergic activity was decreased by the  bolus injection of the ACE 
inhibitor enalaprilat. 165 In addition, Gilbert et al. 166 showed 
that chronic ACE inhibition with lisinopril lowers cardiac ad-
renergic activity in patients with chronic symptomatic heart 
failure. Thus, the activation of renal nerves is a stimulus for 
renal renin release, thereby activating the renin–angiotensin–
aldosterone system, whereas activation of the renin–angio-
tensin–aldosterone system may further stimulate adrenergic 
activity at the presynaptic level. 

 Renal tubular effects of angiotensin II and aldosterone 
in heart failure. In animal models, AT-II has a direct ef-
fect on enhancing proximal tubular sodium reabsorption. 167

In these studies of the rat proximal tubule, the administration 
of AT-II resulted in a marked increase in the rate of  sodium
chloride reabsorption, whereas the infusion of the AT-II 
receptor antagonist saralasin signi  cantly reduced proximal 
tubular sodium chloride reabsorption. Moreover, in a study 
from Abassi et al., 168 the administration of the AT-II recep-
tor antagonist losartan to decompensated sodium-retaining 
rats with heart failure secondary to AV   stulae produced 
a marked natriuresis. Although proximal tubular sodium 
handling was not examined in this study, the observation 
that losartan restored renal responsiveness to ANP is con-
sistent with a losartan-induced increase in the delivery of 
sodium to the distal tubular site of ANP action. The role of 
distal tubular sodium delivery in the renal sodium retention 
of heart failure is discussed in the following paragraphs. 

In humans with heart failure, the   nding that urinary 
sodium excretion correlates inversely with PRA and uri-
nary aldosterone excretion also supports a role for AT-II or 
aldosterone, or both, in renal sodium retention. 169 How-
ever, the administration of ACE inhibitors to patients with 
heart failure results in inconsistent effects on renal sodium 
excretion, despite a consistent fall in plasma aldosterone 
concentration.170 A simultaneous fall in blood pressure or 
a decline in renal hemodynamics owing to decreased cir-
culating AT-II concentrations, however, could obscure the 
bene  cial renal effects of lowered AT-II and aldosterone 
concentrations. Support for this hypothesis may be found 
in a report from Motwani et al. 171 These investigators ex-
amined the hemodynamic and hormonal correlates of the 
initial effect of ACE inhibition with captopril on blood pres-
sure, GFR, and  natriuresis in 36 patients with moderate 
heart failure. In these subjects, a captopril-induced fall in 
GFR was predicted by a decrease in renal plasma   ow, low 
pretreatment GFR,  and a low absolute posttreatment serum 
AT-II concentration. A decrease in urinary sodium excretion 
was related to this fall in GFR. Conversely, Good et al. 172

showed in eight patients with chronic heart failure that 
long-term AT-II suppression with captopril enhances renal 
responsiveness to the loop diuretic furosemide. This obser-
vation also supports a role for AT-II in the renal  sodium
retention of heart failure. 

  ow rate remained unchanged, whereas xamoterol signi  -
cantly decreased renal sodium excretion by 30%. This acute 
decrease in sodium excretion with xamoterol was associated 
with an increase in proximal tubular sodium reabsorption, 
as indicated by decreased lithium clearance. Of note, plas-
ma concentrations of AT-II and aldosterone were unaffected 
by xamoterol. These observations suggest a direct effect of 
acute xamoterol to enhance proximal tubular sodium reab-
sorption in heart failure. In patients with heart failure, the 
endogenous adrenergic receptor agonist and neurotransmit-
ter norepinephrine may exert a similar effect on the proximal 
renal tubule. 

Finally, as noted, renal nerves have been implicated as a 
stimulus for renin release from the kidney. 87 Therefore, with 
heart failure, adrenergic activation may lead to the activation 
of the renin–angiotensin–aldosterone system. Conversely, 
 -adrenergic receptor blockade may decrease renin release 
and improve the neurohormonal milieu in heart failure 
patients. In this regard, Eichhorn et al. 152 showed that the 
third-generation   -adrenergic receptor blocker bucindolol 
lowers PRA in patients with mild-to-moderate heart failure. 
The renal tubular effects of AT-II and aldosterone are dis-
cussed in the following paragraphs. 

 Activation of the renin–angiotensin–aldosterone  system 
in heart failure. The renin–angiotensin–aldosterone system 
is usually activated in patients with heart failure, as assessed by 
PRA and plasma aldosterone. 133,153,154 In the substudy  report 
from the SOLVD investigators, 132 PRA was increased not only 
in patients with established heart failure but also in subjects 
with asymptomatic left ventricular dysfunction. Of note, ac-
tivation of the renin– angiotensin–aldosterone system is as-
sociated with hyponatremia and an unfavorable prognosis in 
patients with heart failure. 77,155 Dzau et al. 77   rst described the 
association of PRA and hyponatremia in a group of 15 heart 
failure patients. These data showed that normal or suppressed 
PRA is associated with a normal serum sodium level, whereas 
the highest PRA is associated with the lowest serum sodium 
concentrations. Lee and Packer 155 subsequently con  rmed this 
association between PRA and hyponatremia in a larger cohort 
of heart failure patients. Moreover, these investigators demon-
strated the association of this hyponatremic, hyperreninemic 
state with poor survival. Finally, the proven bene  cial effects 
of ACE inhibition or AT-II receptor blockade (ARB) on symp-
toms, hemodynamics, exercise capacity, and survival in heart 
failure patients further underscore the deleterious effects of 
AT-II and aldosterone in these patients. 156–161

Recently, a positive feedback between the renin– 
angiotensin–aldosterone system and sympathetic activation 
was proposed. 162 This interaction is based in part on the abil-
ity of AT-II to augment neuronal norepinephrine release at the 
presynaptic level. 163 In humans, the presynaptic facilitation of 
norepinephrine release by AT-II may play a role in the cardio-
renal adrenergic activation of heart failure. Clemson et al. 164

demonstrated AT-II–mediated  increases in  norepinephrine 
spillover in the human forearm. In heart failure patients, we 
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patients demonstrated a signi  cant increase in urinary so-
dium excretion to 131     13 mmol per day. Moreover, the 
urine sodium-to-potassium concentration ratio signi  cantly 
increased during spironolactone administration, which is 
consistent with a decrease in aldosterone action in the dis-
tal nephron. Of note, norepinephrine concentration and 
PRA increased and ANP decreased during spironolactone 
 administration, suggesting a possible explanation for the at-
tenuation of the natriuretic effect of spironolactone in long-
term studies. Therefore, the combined use of an aldosterone 
antagonist with other neurohormonal antagonists (e.g., ACE 
inhibitors, ARBs, and    -blockers) may result in an optimal 
long-term bene  t. Several observations support this no-
tion, including randomized controlled trials in patients with 
chronic heart failure or postmyocardial infarction (MI) left 
ventricular dysfunction. 177–180  For example, the Randomized 
Aldactone Evaluation Study (RALES) demonstrated that the 
addition of spironolactone (25 mg per day) to ACE inhibi-
tion decreased both hospitalizations and mortality by more 
than 30% as compared to controls in patients with advanced 
heart  failure. 179   Another trial 180  of the selective aldosterone 
antagonist, eplerenone, demonstrated a 15% reduction in 
all-cause mortality in patients with post-MI heart failure. 
 Although blocking  aldosterone-mediated cardiac   brosis was 
proposed to explain these survival  bene  ts of aldosterone 
antagonism, a contribution to improved survival  attributable 
to the renal effects of these agents cannot be excluded. 

 The nonosmotic release of vasopressin in heart 
 failure. Plasma AVP is usually elevated in patients with 
advanced heart failure and correlates with the clinical and 
hemodynamic severity of disease and the serum sodium 
concentration. 181–186  Several clinical and experimental ob-
servations indicate that nonosmotic mechanisms are respon-
sible for increased AVP release in heart failure. A study from 
our laboratory 186  found plasma AVP concentrations to be 
inappropriately elevated in 30 of 37 hyponatremic patients 
with heart failure. The 30 patients with detectable plasma 
AVP levels had higher levels of BUN and serum creatinine 
and higher ratios of BUN to serum creatinine than did the 
7 patients with undetectable plasma AVP levels. This latter 
  nding could be dissociated from diuretic use because it 
was also observed in 14 patients who had never received 
 diuretics. The presence of prerenal azotemia in these patients 
is consistent with diminished cardiac output as a mediator 
of the nonosmotic AVP release. Alternatively, this observa-
tion of prerenal azotemia in association with hyponatremia 
also supports an intrarenal component of the impaired water 
excretion. 

 Osmotically inappropriate elevations of plasma AVP 
in human heart failure were also later reported by Riegger 
et al., 184  Rondeau et al., 185  and Goldsmith et al. 181  The study 
by Riegger et al. 184  demonstrated a decrease in the elevated 
plasma AVP levels after improvement in cardiac function 
by hemo  ltration, whereas no change in plasma AVP was 
observed after decreasing left atrial pressure with prazosin. 

 The role of aldosterone in the renal sodium retention 
of heart failure has been debated for many years. In the 
 presence of a high sodium intake, dogs with caval constric-
tion retain sodium even after surgical removal of the adre-
nal source of aldosterone. 173  Moreover, patients with heart 
failure do not always show increased urinary sodium excre-
tion after the administration of the aldosterone antagonist 
spironolactone. 174  In addition, Chonko et al. 175  showed 
that patients with heart failure may have edema without 
increased aldosterone secretion. However, a normal plasma 
aldosterone level in heart failure patients may be relatively 
high in the presence of excess total body sodium. A role for 
aldosterone in the renal sodium retention of human heart 
failure was demonstrated by our group. 176  We examined the 
effect of spironolactone on urinary sodium excretion in pa-
tients with mild-to-moderate heart failure who were with-
drawn from all medications prior to the study. Sodium was 
retained in all subjects throughout the period prior to al-
dosterone antagonism (Fig. 67.4). With an average sodium 
intake of 97     8 mmol per day, the average sodium excre-
tion before spironolactone treatment was 76     8 mmol per 
day. During therapy with spironolactone, all heart failure 

FIGURE 67.4 Reversal of sodium retention with aldosterone 
antagonism in patients with heart failure. The net positive cu-
mulative sodium balance, by day, for the period before spirono-
lactone therapy (upper panel) and the net negative cumulative 
sodium balance after the initiation of spironolactone, 400 mg 
per day (lower panel) are shown. (From Hensen J, et al. Aldoste-
rone in congestive heart failure: analysis of determinants and 
role in sodium retention. Am J Nephrol. 1991;11:441, with per-
mission of S. Karger AG, Basel.)
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release as a mediator of “resetting” the osmotic threshold for 
AVP in patients with heart failure. Improved cardiac function 
secondary to afterload reduction diminishes this resetting of 
the osmotic threshold. Of interest, our results are reminis-
cent of earlier studies that suggested that an occasional hy-
ponatremic cardiac patient responds to a large water load by 
the prompt onset of a water diuresis. 11 Also, more recently, 
AVP secretion was found to respond in exaggerated fashion 
to osmotic loading in patients with heart failure undergo-
ing radiologic procedures with radiocontrast hyperosmolar 
agents.188 This latter   nding also suggests a form of reset 
osmostat.

 The renal effects of vasopressin in heart failure. Vaso-
pressin, via the stimulation of its renal V 2 receptor, 189 induces
the insertion of the aquaporin-2 (AQP2) water channel into 
the collecting duct apical membrane with resultant  water re-
absorption. Elevations in plasma vasopressin concentration 
and AQP2 are believed to contribute to water retention in 
heart failure. In animal models of heart failure, the absence 
of a pituitary source of AVP is associated with normal or 
near normal water excretion. 190,191 For example, in intact 
dogs with diminished cardiac outputs owing to TIVC con-
striction, the removal of the pituitary with glucocorticoid 
replacement results in the normalization of the impaired wa-
ter excretion. 190 In these animals, acute constriction of the 
TIVC caused a signi  cant fall in cardiac output associated 
with a marked increase in urinary osmolality and a decrease 
in solute-free water clearance. The effects of TIVC constric-
tion were dissociated from renal hemodynamic changes and 
the presence or absence of renal sympathetic innervation. 
However, in hypophysectomized, steroid-replaced animals, 
both urinary osmolality and solute-free water clearance were 
maintained at basal levels during constriction of the TIVC. 
Impaired water excretion also occurs in rats with heart 
failure because of AV   stulae. 191 Signi  cantly, the impair-
ment in water excretion seen in this high-output model of 
heart failure was not demonstrable in Brattleboro rats with 
central diabetes insipidus (i.e., AVP de  ciency), support-
ing a role for persistent AVP release in the abnormality in 
water excretion associated with high-output cardiac failure. 
Similar results were obtained by Riegger et al. 192

Further evidence implicating a role for AVP in the  water
retention of heart failure comes from studies using selec-
tive peptide and nonpeptide V 2 receptor AVP antagonists 
in  several animal models of heart failure. 193–196 Ishikawa 
et al. 193 assessed the antidiuretic effect of AVP in a low-out-
put model of acute heart failure secondary to TIVC constric-
tion in the rat. In these animals, plasma AVP concentrations 
were increased and a peptide antagonist of the V 2 receptor 
of AVP reversed the defect in solute-free water excretion. 
Yared et al. 194 showed a similar reversal of water retention 
using another peptide antagonist to the antidiuretic effect 
of AVP in rats with cardiac failure owing to coronary  artery 
ligation. An orally active nonpeptide V 2 receptor AVP an-
tagonist,  OPC-31260, was described. 197 The  intravenous

Moreover, the elevated plasma AVP levels seen in patients 
with heart failure often, 183,187 but not always, 11 failed to sup-
press normally in response to acute water loading. Taken 
together, these observations demonstrate that there is an en-
hanced nonosmotic release of AVP in heart failure and sup-
port the hypothesis that diminished cardiac output, rather 
than alterations in atrial pressures, is responsible. As pre-
viously mentioned, the baroreceptor activation of the sym-
pathetic nervous system in response to arterial under  lling 
likely mediates this nonosmotic AVP release. 86

To shed further light on the mechanism of nonosmotic 
stimulation of AVP in heart failure patients and, more spe-
ci  cally, to determine the precise relationship between AVP 
release, cardiac hemodynamics, and the renin–angiotensin 
system, we studied 25 consecutive patients with severe heart 
failure (cardiac index 2.1    0.1 L/minute/m 2 and pulmo-
nary capillary wedge pressure 27.5    1.5 mm Hg). 96 These 
patients received two water loads of 15 mL per kilogram 
of body weight, the   rst load without drugs on day 1 and 
the second on day 3 after receiving vasodilator therapy with 
either captopril or prazosin for 2 days. Baseline and hourly 
hemodynamic, renal, and hormonal measurements were 
obtained for 5 hours following the water load. Basal plasma 
AVP was detectable (mean 3.0    0.4 pg per milliliter) in 17 
of the 25 patients (group 1) despite a diminished plasma 
sodium concentration (P Na, 133.5 mmol per liter) and low 
effective plasma osmolality (E osm, 262   3 mOsm per kilo-
gram of H 2O). The remaining eight patients (group 2) had 
appropriately suppressed plasma AVP (   0.5 pg per millili-
ter, undetectable) for their P Na (136.5   0.9 mmol per liter) 
and E osm (268    2 mOsm per kilogram of H 2O). Cardiac in-
dex (1.9 versus 2.6 L/minute/m 2, P   .005) and the percent-
age of water load excreted (31.4% versus 57.1%,  P  .005)
were lower in group 1 than in group 2 patients, but GFR 
was similar (55 versus 54 mL/min/1.73 m 2). The PRA and 
plasma aldosterone concentrations were higher in group 1 
patients, suggesting arterial under  lling. In group 1 patients, 
vasodilators increased the cardiac index from 1.9 to 2.1 L/
min/m2 and the percentage of water load excreted from 31% 
to 53% (both P   .001). In these same patients, plasma AVP 
decreased from 3.0 to 1.8 pg per milliliter ( P   .01), platelet- 
associated AVP decreased from 8.6 to 5.1 pg per milliliter 
(P   .005), and minimal urinary osmolality decreased from 
375 to 208 mOsm per kilogram of H 2O ( P   .001). There 
was no change in GFR. In group 1 patients in the control 
condition as well as after vasodilator therapy, plasma AVP de-
creased with plasma osmolality during the water load, sug-
gesting some preservation of the osmoregulation of AVP, but 
with a lower osmotic threshold in these patients. Moreover, 
changes in the renin–angiotensin– aldosterone system were 
unrelated to changes in water excretion after vasodilator 
therapy. We consequently concluded that plasma and plate-
let AVP levels were the major determinants of the abnormal 
water excretion in many patients with heart  failure. These 
results, therefore, favor a role of impaired cardiac function 
to cause arterial under  lling with resultant  nonosmotic AVP 
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cells, endothelial cells, epithelial glomerular cells, and inner
medullary collecting duct cells are capable of synthesiz-
ing endothelin. 212 In this regard, recent studies in experi-
mental heart failure demonstrate the early activation of the 
cardiac and renal endothelin systems. 213 Unfortunately, the 
role of increased endothelin in the pathogenesis of the re-
nal sodium and water retention of heart failure is currently 
unknown. However, endothelin may be a potent mediator 
of renal vasoconstriction via the stimulation of endothelin 
A (ETA) receptors and thus may in  uence renal sodium 
and water handling. In experimental cardiac failure, en-
dothelin has been associated with an antinatriuresis. 214–217

Conversely, experimental evidence suggests that the endo-
thelin B (ETB) receptor may play a role in renal vasodilation 
and/or natriuresis. 216,217 In this regard, the clinical effects of 
investigational nonselective endothelin antagonists in heart 
failure have been disappointing. The use of these agents has 
been associated with a greater likelihood of worsening heart 
failure—associated with   uid volume overload—and worse 
clinical outcomes. 218 Consistent with the aforementioned 
postulated differences between ETA and ETB receptor func-
tions, the selective antagonism of ETA receptors may pro-
duce a more desirable effect on renal function and excretory 
capacity in heart failure. 

In summary, the activation of the three major neuro-
hormonal vasoconstrictor systems—the sympathetic ner-
vous system, the renin–angiotensin–aldosterone system, 
and the nonosmotic release of AVP—is implicated in the re-
nal sodium and water retention of heart failure. The role of 
other vasoconstrictor systems (e.g., endothelin) is less well 
de  ned. These neuroendocrine systems exert direct (tubu-
lar) and indirect (hemodynamic) effects on the kidneys to 
promote the retention of sodium and water. Furthermore, 
these observations provide the rationale for the use of neu-
rohormonal antagonists in the treatment of heart failure (see 
the following paragraphs). In this regard, endogenous coun-
terregulatory vasodilatory and natriuretic hormones may 
play an important attenuating role in heart failure, and the 
exogenous administration of these agents may be important 
in the treatment of heart failure. 

 Vasodilator Systems 
 Natriuretic peptides in heart failure. The natriuretic pep-
tides, including but not limited to ANP and BNP, circulate at 
increased concentrations in patients with heart  failure. 219–225

These peptide hormones possess natriuretic and vasore-
laxant properties as well as renin, aldosterone, and possi-
bly AVP and sympathetic-inhibiting properties. 226–231 Both 
of these peptide hormones appear to be released primarily 
from the heart in response to increased atrial or ventricu-
lar end-diastolic pressure or to increased transmural cardiac 
pressure. 232,233 In a study of ANP kinetics in patients with 
cardiac dysfunction, we demonstrated that increased ANP 
production rather than decreased metabolic clearance was 
the major factor contributing to the elevated plasma ANP 
concentrations in these patients. 234 This    nding is consistent 

administration of OPC-31260 during a dose-ranging 
study in normal human subjects increased urine output 
to a similar extent as 20 mg of furosemide given intrave-
nously. 198 In these healthy volunteers, urine osmolality was 
signi  cantly lower after administration of the V 2 receptor 
antagonist, thus indicating an increase in solute-free water 
clearance. Moreover, this agent reversed the impairment in 
renal  water excretion in rats with experimental heart failure 
owing to myocardial infarction 195 and in dogs with pacing-
induced heart failure, 196 further supporting a role for AVP 
in the renal water retention of heart failure. This effect of 
the nonosmotic release of AVP to cause water retention in 
cardiac failure was associated with increased transcription of 
messenger RNA (mRNA) for the AVP preprohormone in the 
rat hypothalamus.199

The effects of V 2 receptor antagonists on water metabo-
lism in heart failure have now been studied at the molecular 
level. Kidney AQP2 expression is increased in experimen-
tal heart failure. Rats with cardiac failure due to coronary 
ligation demonstrate an increase in renal AQP2 expres-
sion200,201 that was reversed with nonpeptide V 2 receptor 
antagonism.186 The V 2 receptor antagonism also reversed 
water retention in rats with heart failure. Recent studies 
have been undertaken in hyponatremic heart failure patients 
treated with various V 2 receptor antagonists. 202–206 One 
investigational agent, lixivaptan, produced a dose-related 
increase in water excretion, a correction of hyponatremia, 
and a decrease in urinary AQP2 excretion. 202,205 It is known 
that 3% to 6% of AQP2 water channels that traf  c to the 
luminal membrane are excreted in the urine. 207 Therefore, 
urine AQP2 excretion can serve as an index of AVP effect 
and thus V 2 receptor antagonism in vivo in humans and 
experimental animals. Other investigational agents, such 
as tolvaptan and conivaptan, have demonstrated similar 
effects on diuresis (aquaresis) and a correction of hypo-
natremia in heart failure. 203,204,206 The SALT-1 and SALT-2 
studies demonstrated this effect of V 2 receptor antagonism 
to correct hyponatremia not only in cardiac failure but also 
in cirrhosis and the syndrome of  inappropriate antidiuretic 
hormone secretion. 208 Interestingly, preliminary data suggest 
that AVP antagonists, like inhibitors and antagonists of the 
sympathetic and renin– angiotensin–aldosterone systems, 
may prolong survival in heart failure patients. 206 However, 
the large  randomized Ef  cacy of Vasopressin Antagonism in 
Heart  Failure Outcome Study with Tolvaptan (EVEREST) 
study failed to demonstrate such an effect on survival in car-
diac failure patients. 209

 Endothelin in heart failure. Endothelin is a potent va-
soconstrictor, and its concentration is increased in patients 
with heart failure. 210 Results of a study from Teerlink et al. 211

suggest that endothelin plays an important role in the main-
tenance of arterial pressure in experimental heart failure, as 
shown by a signi  cant decrease in blood pressure following 
the administration of the endothelin antagonist bosentan in 
rats with coronary artery ligation. In the  kidney, mesangial 
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cardiac index 1.84    0.15 L/minute/m 2, pulmonary capil-
lary wedge pressure 27    3 mm Hg), the administration of 
BNP at either 0.025 or 0.050  g/kg/min for 4 hours pro-
duced a natriuresis in only 4 patients. The effect of BNP on 
GFR and renal blood   ow was inconsistent in these patients 
and did not predict the natriuretic response. It is notewor-
thy that the doses of BNP infused in this study were 2.5 to 
5 times greater than that currently approved as an initiating 
dose for the treatment of heart failure. In any event, although 
the renal effects of BNP were blunted in some of these heart 
failure patients, BNP did produce a signi  cant (50%) de-
crease in pulmonary capillary wedge pressure. At the higher 
dose, BNP also signi  cantly lowered peripheral vascular 
resistance and improved cardiac performance. Wang et al.’s 
study251 demonstrated essentially the same lack of bene  cial 
renal effects of infused BNP in a similarly small group of 
patients with heart failure. 

Concern has been raised regarding the renal effects of 
BNP in heart failure. A meta-analysis of   ve trials suggested 
a higher rate of worsening renal dysfunction (de  ned as an 
increase in serum creatinine of at least 0.5 mg per decili-
ter) in nesiritide-treated subjects compared to controls. 252

However, this analysis had several limitations including the 
pooling of studies using different starting doses of  nesiritide.
Because it is likely that the renal hemodynamic effects of BNP 
in heart failure relate to the relative degree of renal versus pe-
ripheral vasodilation (i.e., the distribution of regional blood 
  ow) induced by the drug, higher doses associated with 
more profound reductions in  peripheral vascular resistance 
and systemic blood pressures may be expected to produce 
worsening renal function, whereas lower doses may actually 
preserve (or perhaps improve) renal  hemodynamics. Sup-
port for this hypothesis and for the renal safety of nesiritide, 
when used as recommended, may be found in the results 
of the Acute Study of Clinical Effectiveness of  Nesiritide
in Decompensated Heart Failure (ASCEND-HF) trial. 253

In  ASCEND-HF, 7,141 patients who were hospitalized 
with acute heart failure were randomized to receive either 
nesiritide or placebo for 24 to 168 hours in addition to stan-
dard care. Using the approved dose of nesiritide, there were 
no signi  cant differences in rates of death from any cause 
at 30 days or rates of worsening renal function, de  ned by 
more than a 25% decrease in the estimated glomerular   ltra-
tion rate, between the two groups. 

In contrast to the previously mentioned   ndings of ANP 
and BNP resistance in heart failure, Elsner et al. 254 recently 
suggested that renal responsiveness to urodilatin (ANP 95–

126), a slightly extended form of ANP 99–126, is preserved in 
heart failure. Urodilatin appears to be produced in the kid-
ney by different posttranslational processing of the ANP pro-
hormone ANP 1–126.255 Endogenous urodilatin appears to be 
con  ned to the kidney 256; that is, it is not a circulating hor-
mone like ANP and BNP. In normal humans, exogenously 
administered urodilatin produces hemodynamic and renal 
effects similar to those of ANP. 228,257 In the report from Elsner 
et al., 219 12 patients with class II or III heart failure received 

with the observed increase in the expression of both ANP 
and BNP mRNA in the cardiac ventricles of humans and ani-
mals with heart failure. 235,236 However, given the peripheral 
vasoconstriction and sodium retention associated with heart 
failure, these elevated circulating natriuretic peptide levels 
must be inadequate to fully block vasoconstrictor hormone 
activation. In this regard, volume expansion experiments 
performed in dogs with heart failure demonstrated a de  -
ciency to further increase the elevated ANP levels. 237 This 
relative de  ciency of ANP secretion may contribute to the 
body’s limited ability to maintain hemodynamic and renal 
function during the advanced stages of heart failure. In a 
coronary ligation model of heart failure in the rat, the infu-
sion of a monoclonal antibody shown to speci  cally block 
endogenous ANP in vivo caused a signi  cant rise in right 
atrial pressure, left ventricular end-diastolic pressure, and 
peripheral vascular resistance. 238 Alternatively, a study by 
Colucci et al. 239 found that a 6-hour infusion of the recom-
binant human BNP, nesiritide, signi  cantly decreased pul-
monary-capillary wedge pressure and improved symptoms 
in patients hospitalized with symptomatic heart failure. In 
a pivotal trial leading to U.S. Food and Drug Administra-
tion (FDA) approval of nesiritide, infused BNP was shown to 
improve both hemodynamics and symptoms of decompen-
sated heart failure. 240

 Renal effects of the natriuretic peptides in heart 
 failure. In normal humans, ANP and BNP increase GFR 
and urinary sodium excretion with no change or only a slight 
fall in renal blood   ow. 232,241 The changes in renal hemody-
namics are likely mediated by afferent arteriolar vasodilation 
with constriction of the efferent arterioles, as indicated by 
micropuncture studies in rats. 242,243 In addition to increas-
ing GFR and   ltered sodium load as a mechanism of their 
natriuretic effect, ANP and BNP are speci  c inhibitors of so-
dium reabsorption in the collecting tubule. 244–246 An impor-
tant role for endogenous ANP in the renal sodium balance of 
heart failure was demonstrated by the aforementioned study 
of Lee et al. 28 However, the administration of synthetic ANP 
to patients with low-output heart failure results in a much 
smaller increase in renal sodium excretion and less signi  -
cant changes in renal hemodynamics as compared to normal 
subjects.232 Like ANP, the  natriuretic effect of BNP is blunted 
in rats with high-output heart failure produced by AV   stu-
lae.247 Nevertheless, in hypertensive patients with mild-to-
moderate heart failure and normal renal sodium excretory 
capacity, the natriuretic effect of BNP appears comparable 
to that in control subjects. 248 Because ANP and BNP appear 
to share the same receptor sites, 249 it is possible that the na-
triuretic effect of BNP is also blunted in sodium-retaining 
patients with more advanced heart  failure. Support for this 
hypothesis may be found in reports from our group 250 and 
from Wang et al. 251 In our study, in 16 patients with advanced 
decompensated New York Heart  Association (NYHA) class 
III heart failure due to either  ischemic or idiopathic dilated 
cardiomyopathy (left ventricular ejection fraction 18    2%, 
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supports the active biologic responsiveness of renal ANP 
 receptors in heart failure and thus suggests that diminished 
distal tubular sodium delivery may be involved in the natri-
uretic peptide resistance observed in patients with cardiac 
failure. Further support for this hypothesis is found in our 
experience with cirrhosis, another edematous disorder as-
sociated with renal ANP resistance, in which maneuvers that 
de  nitely increase distal tubular sodium  delivery reversed 
the ANP resistance 267  (see the following). In addition, heart 
failure maneuvers that are expected to increase distal tubu-
lar sodium delivery, such as the administration of an AT-II 
receptor antagonist or furosemide, also improve the renal 
response to ANP. 170,268  Finally, studies in rats with experi-
mental heart failure demonstrated that renal denervation 
reverses the ANP resistance. 269  Because proximal tubular 
sodium reabsorption is enhanced by adrenergic stimulation, 
this effect of renal denervation to enhance ANP sensitivity in 
experimental cardiac failure is also compatible with a role in 
distal sodium delivery. The proposed role of diminished dis-
tal tubular sodium delivery in natriuretic peptide resistance 
and impaired aldosterone escape is shown in Figure 67.5. 

 Summary 
 As the heart begins to fail, the renal tubule reabsorbs sodium 
and water more avidly. The afferent stimuli for this “compen-
satory” volume retention may involve aspects of both the for-
ward and backward theories of heart failure. An acute fall in 
cardiac output may inactivate (unload) high-pressure baro-
receptors located in the aortic arch, the carotid sinus, and the 
juxtaglomerular apparatus and thus may activate the afferent 
adrenergic nervous system. Diminished renal perfusion and 
increased renal sympathetic tone enhance the release of re-
nin and thus activate the renin–angiotensin–aldosterone sys-
tem. In acute high-output heart failure, in which the cardiac 
output is insuf  cient to meet circulatory demands, the fall 
in peripheral vascular resistance provides the stimulus for 
arterial under  lling and deactivates high-pressure receptors. 
Although acute loading of the low-pressure receptors of the 
thorax may inhibit AVP release and stimulate the release of 

urodilatin, 15 ng/kg/min, or placebo ( n      6 in each group) 
for 10 hours. Although the  urodilatin-treated patients did 
demonstrate a modest natriuresis during urodilatin infusion, 
it should be noted that (1) digoxin and furosemide were 
continued during the study, (2) the patients were maintained 
on an 8 g of sodium per day intake, and (3) the patients 
received a 500-mL water load (300 mL orally and 200 mL 
intravenously) during the hour preceding the study drug in-
fusion. In the former instance, furosemide likely facilitated 
the delivery of sodium to the distal nephron. In the latter 
two cases, the high daily sodium intake and oral  water load 
would be expected to diminish the degree of vasoconstric-
tor neurohormone activation. In fact, plasma vasoconstrictor 
hormone concentrations were, at most, mildly elevated in 
these patients. Therefore, these   ndings do not exclude the 
existence of renal resistance to urodilatin in patients with 
heart failure and more advanced degrees of neurohormonal 
activation. On the other hand, urodilatin is less sensitive to 
degradation by the neutral endopeptidase (EC 3.4.24.11) 
and thus, more stable in comparison to ANP. 258  Further-
more, in the kidney, ANP solely binds to cortical receptors, 
whereas urodilatin can also be found in medullary struc-
tures. 259  Thus, the renal effects of urodilatin in human heart 
failure remain uncertain. Ongoing studies of urodilatin in 
heart failure promise to clarify these issues. 

 The mechanism of the relative resistance to the natriu-
retic effect of ANP (and possibly BNP and urodilatin) in heart 
failure remains controversial. Possible mechanisms include: 
(1) the downregulation of renal ANP receptors, 260,261  (2) the 
secretion of inactive immunoreactive ANP, 262  (3) enhanced 
renal neutral endopeptidase activity limiting the delivery 
of ANP to receptor sites, 263  (4) hyperaldosteronism by an 
increased sodium reabsorption in the distal renal tubule, 264

and (5) diminished delivery of sodium to the distal renal 
tubule site of ANP action. 244–246  In sodium-retaining patients 
with heart failure, we found a strong positive correlation be-
tween plasma ANP and urinary cyclic guanosine monophos-
phate (cGMP, the second messenger for the natriuretic effect 
of ANP, BNP, and urodilatin in vivo). 265,266  This observation 

FIGURE 67.5 The proposed mechanism of natri-
uretic peptide resistance and impaired aldosterone 
escape in states of arterial under  lling. GFR, glomeru-
lar   ltration rate. (From Schrier RW, Better OS. Patho-
genesis of ascites formation. Eur J Gastroenterol. 
1991;3:721, with permission.)
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renal function during the treatment of decompensated heart 
failure. 272 However, cardiac output remains a signi  cant 
predictor of change in GFR during hospitalization in those 
patients without signi  cant right ventricular dysfunction. 272

These   ndings speak to the importance of venous conges-
tion and con  rm the primacy of cardiac output in determin-
ing cardiorenal interactions in heart failure. 

 THE CLINICAL SIGNIFICANCE OF 
CARDIORENAL SYNDROME 
As mentioned in the introduction to this chapter, the kidney 
represents an important marker of heart failure clinical status 
and a sensitive predictor of clinical outcomes in both  chronic 
and acutely decompensated heart failure. In the PRIME II 
trial, an estimated GFR less than 60 mL per minute was asso-
ciated with a signi  cantly worse mortality in 1,708  chronic 
heart failure patients who were followed for more than 
2 years. 3 Reduced GFR was a more potent predictor of mor-
tality than many other common predictors of outcome such 
as the left ventricular ejection fraction, NYHA functional 
class ranking, hypotension, tachycardia, and the presence of 
comorbidity. Similarly, in 2,086 chronic heart failure patients 
followed in the Italian Network Project (IN-CHF), a serum 
creatinine level greater than 2.5 mg per deciliter was associ-
ated with a relative risk for 1-year mortality of 4.33 (95% 
con  dence interval, 1.79 to 10.44). 4 In multivariable regres-
sion analysis, other independent clinical predictors of poor 
outcome included advanced NYHA class, advanced age, the 
presence of a third heart sound, and no ACE- inhibitor ther-
apy. However, none of these predictors was as strong as an 
elevated serum creatinine. Even modest elevations of serum 
creatinine have been associated with an increased risk for 
morbidity and mortality in cardiac  failure patients. A retro-
spective analysis of 6,797 heart failure  patients enrolled in 
the SOLVD trial demonstrates this association. 5 The SOLVD 
trial excluded patients with baseline serum creatinine levels 
greater than 2.0 mg per deciliter. Dries et al. 5 strati  ed pa-
tients on the basis of serum creatinine  levels into two groups, 
those with serum creatinine  levels less than 1.5 mg per deci-
liter and those with serum creatinine levels between 1.5 mg 
per deciliter and 2.0 mg per deciliter. Those in the elevated 
serum creatinine group demonstrated increased risk for all-
cause mortality (relative risk, 1.41; 95% con  dence interval, 
1.25 to 1.59), mortality due to pump failure (relative risk, 
1.5; 95% con  dence interval, 1.25 to 1.8), and sudden car-
diac death (relative risk, 1.28; 95% con  dence interval, 0.99 
to 1.63). Therefore, impairment in glomerular   ltration as 
measured by serum markers represents a potent predictor of 
mortality in patients with chronic heart failure. 

Similarly, renal dysfunction predicts in-hospital mor-
tality in patients with acutely decompensated heart failure. 
De  nitive observations come from the Acute Decompen-
sated Heart Failure National Registry (ADHERE), which has 
enrolled more than 150,000 patients from approximately 
275 community, tertiary, and academic hospitals in the 

natriuretic peptides, this counterregulatory response to so-
dium and water retention may become ineffective because 
of progressive insensitivity of the cardiopulmonary receptors 
in the setting of chronic heart failure. Further cardiac com-
promise, resulting from either the progression of the primary 
cardiac pathology or increased cardiac demand, results in 
further renal sodium and water retention, expansion of the 
ECF volume, and overt edema formation. The development 
of increased cardiac   lling pressures with subsequent pul-
monary or peripheral edema substantially contributes to the 
high morbidity and mortality of heart failure. 

The efferent mechanisms for renal sodium and water 
retention in heart failure are multifactorial. Inactivation 
of receptors in the high-pressure circulation and blunting 
of receptors in the low-pressure system initiate re  exes in 
which renal sympathetic tone is augmented and renal vaso-
constriction results. Renal blood   ow decreases to a greater 
extent than GFR, and therefore the   ltration fraction rises. 
This increase alters the ultra  ltration of plasma and peritu-
bular physical forces, which may in turn increase proximal 
tubular sodium reabsorption. Changes in cardiac output, 
ventricular   lling pressures, and renal perfusion pressure 
also activate the renin–angiotensin–aldosterone system and 
the nonosmotic stimulation of AVP, and increase the secre-
tion and/or production of PGs and the natriuretic peptides. 
At some point in the natural history of cardiac failure, the 
vasoconstrictive forces overcome the vasodilating effects of 
PGs, natriuretic peptides, and other vasodilating substances, 
and peripheral vasoconstriction and renal sodium and wa-
ter retention occur. Increases in ventricular preload and af-
terload ensue, resulting in a further deterioration in cardiac 
performance and a further stimulation of neurohormonal 
vasoconstrictor systems. 

Once initiated by arterial under  lling, sodium and wa-
ter retention in heart failure leads to another vicious cycle of 
increasing central venous pressure, venous congestion, and 
worsening heart failure signs and symptoms often leading to 
acute decompensation, hospitalization, and worsening renal 
function. This cardiorenal syndrome of heart failure is asso-
ciated with poor outcome (as discussed in the following sec-
tion) and may be perpetuated not only by arterial under  lling 
but also by renal venous congestion.  Support for this no-
tion comes from a prospective cohort study of 145 patients, 
where an elevated central venous pressure was the most 
important hemodynamic factor associated with worsening 
renal function in patients with acute decompensated heart 
failure. 270 Moreover, in a retrospective analysis of 2,557 pa-
tients who underwent cardiac catheterization for hemody-
namic assessment, elevated central venous pressure was the 
single most important prognostic factor for worsening renal 
function and mortality. 271 These observations are mechanis-
tically plausible, because the transmission of venous pres-
sure to renal veins impairs renal blood   ow and glomerular 
  ltration. Of note, diuresis in patients with right ventricular 
dysfunction, despite decreased cardiac output, leads to a de-
crease in venous congestion and a resultant  improvement in 
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 THE PHYSIOLOGIC BASIS FOR THE 
TREATMENT OF SODIUM AND WATER 
RETENTION IN HEART FAILURE 
 In heart failure, as in all of clinical medicine, effective therapy 
should be dictated by an understanding of the pathophysi-
ologic process involved. Depressed ventricular function is 
associated with a vicious cycle of maladaptive responses, 
including increased neurohormonal activation, systemic 
 vasoconstriction and renal sodium and water retention, 
and increased ventricular preload and afterload (Fig. 67.7). 
Treatment of heart failure should be directed at modifying 
the afferent and efferent factors responsible for the salt and 
water retention. Therefore, the primary goal in the treat-
ment of cardiac failure is to improve the function of the 
heart as a pump. This increases the integrity of the arterial 
circulation and decreases the venous hypertension, thereby 
interrupting two of the major afferent mechanisms leading 
to sodium and water retention. Unfortunately, this goal of 
improving the contractile state of the heart is often dif  cult 
to accomplish. In certain cases of heart failure, however, left 
ventricular function may be improved by surgical interven-
tion. For example, some patients with coronary artery dis-
ease and ischemic cardiomyopathy may exhibit improved 
cardiac function and less severe heart failure after surgical or 
percutaneous transluminal revascularization of the ischemic 
myocardium. However, a randomized controlled compari-
son of medical versus surgical therapies for ischemic heart 
failure failed to demonstrate the superiority of surgical re-
vascularization on outcomes in a large cohort of patients. 274  
Moreover, the assessment of myocardial viability did not 
identify patients with a differential survival bene  t from by-
pass surgery, as compared with medical therapy alone, in 
this study. 275  A more classic example of surgically correct-
able heart failure is that seen in the setting of severe aortic 
stenosis. Patients with critical aortic stenosis often exhibit 
a severe degree of low-output heart failure with very avid 

 United States. 1,6  Using classi  cation and regression tree 
(CART) analysis to de  ne covariate adjusted odds ratios of 
death, a practical user-friendly bedside tool for risk strati-
  cation of patients hospitalized with acute decompensated 
heart failure was developed. 6  Speci  cally, CART analysis 
of the ADHERE database was performed using the   rst 
65,235 discharges enrolled. The   rst 33,046 hospitaliza-
tions (from October 2001 through February 2003) served 
as the derivation cohort and were analyzed to develop the 
risk-prediction model. Then, the validity of the model was 
prospectively tested using data from 32,229 subsequent 
hospitalizations (validation cohort) enrolled in ADHERE 
from March 2003 through July 2003. In-hospital mortality 
was similar in the derivation (4.2%) and validation (4.0%) 
cohorts. Recursive partitioning of the derivation cohort for 
39 variables indicated that the best single predictor for mor-
tality was high admission levels of BUN (    43 mg per deci-
liter), followed by low admission systolic blood pressure 
(    115 mm Hg), and then by high levels of serum creati-
nine (    2.75 mg per deciliter). A simple risk tree identi  ed 
patient groups with mortality ranging from 2.1% to 21.9% 
(Fig. 67.6). The odds ratio for mortality between patients 
identi  ed as high and low risk was 12.9 (95% con  dence 
interval, 10.4 to 15.9) and similar results were seen when 
this risk strati  cation was applied prospectively to the vali-
dation cohort. These results suggest that acute decompen-
sated heart failure patients at low, intermediate, and high 
risk for in-hospital mortality can be easily identi  ed using 
vital sign and laboratory data obtained on hospital admis-
sion. In the context of the present chapter, it is noteworthy 
that two of the three most potent predictors of in-hospital 
mortality in ADHERE are measures of renal function. The 
importance of serum creatinine as a predictor of in-hospital 
mortality for acute decompensated heart failure was also 
demonstrated by the Organized Program to Initiate Lifesav-
ing Treatment in Hospitalized Patients with Heart Failure 
(OPTIMIZE-HF). 273  

FIGURE 67.6 The ADHERE risk assess-
ment tree from CART analysis. Numbers 
and percentages come from the deriva-
tion dataset and have been con  rmed 
in a separated validation dataset (not 
shown). Note that two of the three 
predictors are measures of renal func-
tion. BUN, blood urea nitrogen; SYS BP, 
 systolic blood pressure; Cr, creatinine. 
(From Fonarow GC, et al., for the ADHERE 
Scienti  c Advisory Committee, Study 
Group, and Investigators. Risk strati  ca-
tion for in-hospital mortality in acutely 
decompensated heart failure: classi  ca-
tion and regression tree [CART] analysis. 
JAMA. 2005;293:572, with permission.)
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of a   xed dose of isosorbide dinitrate plus  hydralazine to 
standard therapy for heart failure including neurohormon-
al blockers has been shown to improve  survival among 
black patients with advanced heart failure. 280  The ef  cacy 
of ACE inhibitors in heart failure is discussed in the fol-
lowing paragraphs. Investigational nonglycoside inotropic 
agents may acutely improve cardiac output, but longer term 
use has been shown, thus far, to increase  mortality. 281–283 . 
   - Adrenergic receptor antagonists, once thought to be con-
traindicated in patients with low-output heart failure, can 
exhibit a favorable effect on cardiac function and outcome 
in patients with chronic heart failure. In fact, these agents 
improve the left ventricular ejection fraction to a greater ex-
tent than do any other forms of heart failure drug therapy. 137  
Carvedilol, a nonselective third-generation    -blocker/va-
sodilator with     1 -adrenergic receptor–blocking properties, 
produces a dose-related improvement in  ejection fraction 

renal sodium and water retention that is usually  completely 
reversible following a replacement of the stenotic aortic 
valve. An emerging alternative to surgical replacement of a 
critically stenosed aortic valve is transcatheter aortic-valve 
implantation (TAVI). In patients with severe aortic stenosis 
who are not candidates for surgery, TAVI has been shown to 
signi  cantly improve outcomes as well as cardiac symptoms, 
as compared with standard therapy. 276  

 In other instances of heart failure, cardiac function may 
be augmented by the cardiac glycosides, such as digoxin, 
which modestly improve cardiac contractility and may favor-
ably in  uence baroreceptor function. 277  However, digoxin 
does not improve survival in heart failure patients 278  and is 
thus used much less frequently than before in the treatment 
of chronic heart failure. Vasodilators, such as nitrates and hy-
dralazine, and ACE inhibitors may improve cardiac function 
by decreasing cardiac preload and afterload. 279  The  addition 

FIGURE 67.7 The pathophysiology of heart failure. Unloading of high-pressure baroreceptors (circles) in the left ventricle, carotid 
sinus, and aortic arch generates afferent signals (black) that stimulate cardioregulatory centers in the brain, resulting in the activation 
of efferent pathways in the sympathetic nervous system. The sympathetic nervous system appears to be the primary integrator of the 
neurohumoral vasoconstrictor response to arterial under  lling. Activation of renal sympathetic nerves stimulates the release of renin 
and angiotensin II, thereby activating the renin–angiotensin–aldosterone system. Concomitantly, the sympathetic stimulation of the 
supraoptic and paraventricular nuclei in the hypothalamus results in the nonosmotic release of arginine vasopressin (AVP). Sym-
pathetic activation also causes peripheral and renal vasoconstriction, as does angiotensin II. Angiotensin II constricts blood vessels, 
stimulates the release of aldosterone from the adrenal gland, and also increases tubular sodium reabsorption and causes remodeling 
of cardiac myocytes. Aldosterone may have direct cardiac effects, in addition to increasing the reabsorption of sodium and the secre-
tion of potassium and hydrogen ions in the collecting duct. The lines designate circulating hormones. (From Schrier RW, Abraham WT. 
Hormones and hemodynamics in heart failure. N Engl J Med. 1999;341:577, copyright © 2000, Massachusetts Medical Society. All rights 
reserved.)
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also decreases the degradation of bradykinin, which is a 
well-known vasodilator that can reduce cardiac afterload. 
The proven bene  cial effects of ACE inhibition on symp-
toms, hemodynamics, exercise capacity, and survival in heart 
failure patients support this hypothesis. 147,156,282 Moreover, 
in the patients of the Cooperative North Scandinavian Enala-
pril Survival Study (CONSENSUS), all with class IV heart 
failure, signi  cant reductions in mortality were consistently 
found in the patients treated with enalapril who had baseline 
hormone levels greater than median values. 156 In the group 
of patients treated with the ACE inhibitor, there were signi  -
cant reductions from baseline to 6 weeks in levels of AT-II, 
aldosterone, norepinephrine, and ANP, but not epinephrine. 
These results suggest that the effect of enalapril on  mortality
was related to diminished hormonal activation in general 
and to the renin–angiotensin system in particular. 294 In the 
SOLVD studies 157 of less severe heart failure, the addition of 
enalapril to conventional therapy also signi  cantly reduced 
mortality and hospitalization rates. Studies support the use of 
ACE inhibition in post-MI left ventricular dysfunction with 
or without clinical heart failure, as well. 158 Recent data sup-
port the noninferiority of ARBs in the treatment of post-MI 
ventricular dysfunction or chronic heart failure. 159–161 Such 
studies have led to the perceived interchangeability of ACE 
inhibitors and ARBs. Hospital-based quality measures from 
the Centers for Medicare and Medicaid Services endorse the 
equivalency of ACE inhibitors and ARBs in the treatment of 
heart failure, as do the 2005 Update to the American College 
of Cardiology/American Heart Association Guidelines for the 
Evaluation and Management of Chronic Heart Failure in the 
Adult.295

Diuretics are indicated to restore the ECF volume 
toward normal as heart failure becomes more advanced and 
when edema formation occurs. Diuretic therapy is discussed 
extensively elsewhere. Of note, although most patients 
with cardiac failure respond to a potent loop diuretic (e.g., 
furosemide), and this agent can increase solute-free water 
clearance in patients with cardiac edema, 125 cardiac  output
mayactually decline during acute treatment due to the further 
activation of vasoconstrictor hormone systems. 296 Volume 
depletion owing to overzealous diuretic treatment must also 
be considered in any acute or chronic heart failure patient 
with worsening signs or symptoms of a low-output state. 
For example, diminished renal  perfusion may occur in the 
setting of excessive diuretic treatment, resulting in  elevations
in BUN and serum creatinine concentrations. On the other 
hand, the belief that heart failure patients  require elevated 
ventricular   lling pressures to maintain an  adequate cardiac 
output has been proved erroneous, because recent  experience
with heart failure  management guided by implantable 
hemodynamic  monitors  demonstrates that most patients 
with chronic heart failure can be treated with  diuretics to 
normalize or nearly normalize intracardiac and  pulmonary 
artery pressures to reduce the risk of hospitalization for 
worsening heart  failure. 297,298 One  particular challenge in 
diuretic therapy, however, is the common  circumstance of 

and a reduction in mortality in patients with class II to IV 
heart failure. 139 In the U.S. Carvedilol Heart Failure Trials 
Program, this agent reduced all-cause mortality by 65% 
compared to placebo in patients with mild-to-moderate 
heart failure. 140 Likewise, the Second Cardiac Insuf  ciency 
Bisoprolol Study  demonstrated a 34% reduction in all-cause 
mortality versus placebo during the treatment of heart fail-
ure with this   1 selective agent. 141 In a randomized study 
of metoprolol CR/XL treatment of 3,991 patients with class 
II to IV heart failure, treatment with metoprolol CR/XL was 
associated with a 34% decrease in all-cause mortality, a 38% 
decrease in  cardiovascular  mortality, a 41% decrease in sud-
den death, and a 49% decrease in death owing to progres-
sive heart failure as compared to controls. 142  -Blockers
have also been shown to improve outcome in post-MI left 
ventricular dysfunction with or without heart failure and in 
severe heart failure. 133,143 However, these effects are not seen 
with all  -blockers.284

Another strategy for improving pump function and 
outcome in selected heart failure patients (i.e., those with 
ventricular dyssynchrony) is the use of cardiac resynchro-
nization therapy. This device-based treatment for heart 
failure works to optimize ventricular   lling and to improve 
the contraction pattern via atrial-synchronized biventricular 
pacing. Resynchronization therapy has been shown to im-
prove hemodynamics, quality of life, functional status, and 
exercise capacity while reducing the risks of heart failure 
hospitalization and all-cause mortality. 285–291 Cardiac resyn-
chronization has been associated with the preservation of 
renal function 292 and, anecdotally, a reduction in the diuretic 
dose in patients with chronic heart failure. 

Because an improvement in pump function is a  primary 
goal in the treatment of heart failure, agents that might 
further impair cardiac contractility should be avoided in 
this setting. Unfortunately, many medications that have 
been demonstrated to produce a negative effect on car-
diac inotropy are commonly prescribed in cardiac disease 
patients. For example, most antiarrhythmic drugs and the 
commonly prescribed   rst-generation calcium channel an-
tagonists exhibit some degree of negative inotropy in vivo. 293

Newer vascular-selective calcium channel blockers may be 
better tolerated in patients with heart failure but should not 
be used as a heart failure therapy per se. 

The neuroendocrine activation in patients with heart 
failure provides another target for therapy. In fact, recent ex-
perience with various neurohormonal antagonists suggests 
that the inhibition or antagonism of neurohormonal vaso-
constrictor systems may be more bene  cial than nonspeci  c 
diuretic or vasodilator therapy. This is certainly the case with 
adrenergic blockade, as noted in the preceding text. AT-II is 
known to mediate myocardial hypertrophy, increase   bro-
sis and collagen deposition, and cause the activation of the 
sympathetic nervous system. Therefore, the administration 
of ACE inhibitors would be anticipated to decrease myocar-
dial remodeling and hypertrophy and to decrease the acti-
vation of the sympathetic nervous system. ACE  inhibition
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 Water restriction remains the mainstay of therapy in pa-
tients with heart failure who are hyponatremic. Studies also 
suggested that in hyponatremic patients with heart failure 
receiving furosemide and captopril, plasma sodium  values 
tended to normalize, whereas they did not in patients re-
ceiving other vasodilators. 306,307  These data support the 
concomitant use of ACE inhibitors and loop diuretics in 
hyponatremic heart failure patients. Alternatively, selective 
V 2 -receptor AVP antagonists have been shown to correct the 
hyponatremia of heart failure. 

 Finally, other measures, including sodium restric-
tion and oxygen administration, contribute to the overall 
management of patients with heart failure. Special empha-
sis should be placed on the salutary in  uence of bed rest, 
which increases osmolar and solute-free water clearances, 
cardiac output, renal plasma   ow, and GFR and decreases 
plasma catecholamines and PRA. 308  Such considerations lay 
the foundation for the physiologic basis of therapy in heart 
failure. 
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FIGURE 67.8 The “iatrogenic” cardiorenal syndrome of heart 
failure. A scheme by which diuretic therapy may worsen the 
neurohormonal and renal hemodynamic milieu of heart failure, 
leading to diuretic resistance and poor outcomes in heart failure 
patients.
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