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Historically, renal osteodystrophy (ROD) was a term 
used to describe the metabolic bone disease caused 
by abnormalities in mineral homeostasis resulting 

from kidney failure. 1 In recent years, the recognition of a 
complex endocrine regulation of mineral and bone metabo-
lism, the prominent extra skeletal manifestations of chronic 
kidney disease (CKD), and the association between abnor-
malities in mineral metabolism and increased morbidity and 
mortality in patients with kidney failure led to formulation of 
a new term—chronic kidney disease–mineral and bone dis-
order (CKD-MBD) (Table 77.1) 1—which describes a broader 
clinical syndrome, including metabolic/endocrine abnor-
malities, parathyroid gland dysfunction, bone disease, and 
unique CKD-associated cardiovascular risk factors as well as 
other adverse clinical outcomes, such as fractures and vas-
cular and soft tissue calci  cations (Fig. 77.1). In this chapter 
we review separate components of CKD-MBD, clinical mani-
festations, and general principles of CKD-MBD treatment. 

Four organ systems, including the  gut (absorption of 
calcium [Ca] and inorganic phosphate [Pi]),  kidneys (reab-
sorption and excretion of Ca, Pi, and calcitriol synthesis), 
bones (interchange of Ca and Pi with extracellular pool, and 
FGF23 secretion), and  parathyroid gland (parathyroid hor-
mone [PTH] secretion) are involved in regulating mineral 
homeostasis2 and each play a role in the pathogenesis of 
CKD-MBD (Fig. 77.2). 

 BIOCHEMICAL ABNORMALITIES 
IN CKD-MBD 
 Calcium 
There are three Ca pools in our body. The majority of Ca 
(99%) is found in bone. The remaining Ca is either intra-
cellular (mostly protein bound), and extracellular (45% 
protein bound and 55% free calcium). PTH is a key regula-
tor of serum calcium levels. The extracellular Ca concentra-
tion is tightly regulated by changes in PTH through  sensing
of calcium by the calcium-sensing receptor (CaSR) 3 and 
through actions of PTH on bone and kidney. In turn, Ca 
controls PTH secretion, synthesis, and degradation as well 

as parathyroid cell hypertrophy and hyperplasia. 4,5 PTH di-
rectly regulates the excretion of Ca by the kidney and also in-
  uences the exchange between bone and extracellular pools. 
PTH stimulates gut calcium absorption indirectly through 
the stimulation of 1,25(OH) 2D3 production by the kidney, 
which in turn activates calcium absorption through vitamin 
D receptor (VDR)-dependent mechanisms. Decrements in 
1,25(OH)2 D 3 levels occur prior to elevations of PTH during 
the progressive loss of glomerular   ltration rate (GFR). The 
increments in PTH maintain serum calcium concentrations 
in the normal range until late in the course of CKD (Fig. 
77.3A,B).6

 Phosphorus 
Pi is required for cellular function and skeletal mineraliza-
tion and excess phosphate is associated with soft tissue and 
vascular calci  cations. Serum Pi level is less tightly regulated 
than Ca, but is maintained in normal range through a com-
plex interplay between intestinal absorption, exchange with 
intracellular and bone storage pools, and renal tubular reab-
sorption. Pi is abundant in the diet, and intestinal absorption 
of Pi is stimulated by 1,25(OH) 2D. The kidney is a major 
regulator of Pi homeostasis, where increases or decreases 
in its Pi reabsorptive capacity under the control of  various
hormones determine serum Pi levels. The crucial regulated 
step in Pi homeostasis is the transport of Pi across the renal 
proximal tubule via the type II sodium- dependent phos-
phate (Na/Pi) cotransporter 2a (NPT2a) and 2c (NPT2c). 
PTH and FGF23 are the two principal hormones that regu-
late NPT2 translocation to the proximal tubular brush bor-
der membrane. PTH inhibits renal phosphate reabsorption 
due to reductions in membrane expression of NPT2. FGF23, 
a bone-derived hormone originally identi  ed as the caus-
ative factor in  inherited and acquired hypophosphatemic 
disorders also inhibits proximal tubular phosphate transport 
through mechanisms that remain to be de  ned. Increments 
in FGF23 appear to precede elevations of PTH in CKD, but 
both work in concert to prevent elevations in serum Pi by 
increasing renal phosphate excretion. 6–14 Like Ca, serum Pi 
levels remain in the normal range until late in the course of 
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available for uptake. Moreover, CKD leads to a decrease in 
kidney megalin content that is essential for the internaliza-
tion of 25- hydroxyvitamin D into proximal tubular cells. 20  

 The principal functions of 1,25(OH) 2 D are to pro-
mote active intestinal absorption of Ca and Pi, suppress 
PTH gene transcription in the parathyroid gland, stimulate 
bone formation and resorption in bone, as well as regulate 
the innate immune response in other tissues. Alterations 
in 1,25(OH) 2 D   directly suppresses PTH gene expression 
through a  genomic action 21  via VDR on parathyroid cells. 
1,25(OH) 2 D also indirectly regulates parathyroid gland 
function through  elevations in serum calcium and stimula-
tion of CaSR. Mouse genetic studies suggest that CaSR is 
dominant to VDR in regulation of parathyroid gland func-
tion, because calcium exerts PTH and VDR regulation in 
 absence of any vitamin D source, 22  whereas ablation of VDR 
in the parathyroid gland results in hyperparathyroidism that 
can be rescued by raising serum calcium levels. 23,24  Several 
additional factors lead to impaired action of 1,25(OH) 2 D on 
parathyroid gland in uremia, such as diminished activation 
of VDR with reduced 1,25(OH) 2 D levels in CKD, and de-
crease in parathyroid VDR content, especially when nodular 
parathyroid hyperplasia is present. 

 FGF23 
 Elevations in circulating FGF23 levels are one of the earli-
est abnormalities in CKD-MBD and are strongly associated 
with increased all-cause mortality. 25,26  Elevations of FGF23 

CKD, typically when glomerular   ltration rate (GFR) is    30 
to 40 mL/min/m 2 . 6,8,11,15  

 Vitamin D 
 Decrements in both 25(OH)D and 1,25(OH) 2 D occur early in 
the course of CKD-MBD. Low levels of vitamin D are  associated 
with increased mortality in CKD and treatment with vitamin D 
analogues are believed to have a survival bene  t. 16  The mecha-
nism for decreased circulating 25(OH)D levels in CKD are not 
well understood, but may result from poor nutritional status 
caused by chronic illness. Patients with CKD, however, may 
also be refractory to nutritional vitamin D supplementation, 
suggesting other mechanisms for decreased 25(OH)D levels. 

 1,25(OH) 2 D 3 , the active form of vitamin D, is synthe-
sized from 25 (OH)D by 1   -hydroxylase- cytochrome P450, 
family 27, subfamily B, polypeptide 1(CYP27B1) located in 
the kidney proximal tubule. CYP27B1 is stimulated by PTH 
and inhibited by FGF23. Both 25(OH)D and 1,25(OH) 2 D 
are catabolized by 25-hydroxyvitamin D324-hydroxylase 
(CYP24), which is also present in the proximal tubule. CYP24 
is stimulated by FGF23 and inhibited by PTH. Decrements in 
1,25(OH) 2 D occur early in CKD. Diminished 1,25(OH) 2 D   
levels are seen with early GFR decline to less than 60 to 70 
mL/min/m 2  and are inversely related to elevation in FGF23. 8
The reductions in 1,25(OH) 2 D in CKD were thought to be 
the result of reduced production of this hormone caused by 
the diseased kidney, but more recently it has been recog-
nized that the suppression of 1,25(OH) 2 D production is a 
regulated process due to the effects of FGF23 on CYP27B1-
mediated production and/or CYP24–mediated degradation 
of 1,25(OH) 2 D. 17–19  Reduced GFR can additionally contrib-
ute to 1,25(OH) 2 D de  ciency via decrease in renal uptake of 
25-hydroxyvitamin D by proximal tubular cells for its activa-
tion to 1,25(OH) 2 D through decrease in amount of   ltered 
25-hydroxyvitamin D bound to vitamin D-binding protein 

TA B L E

13.2 Classi  cation of Chronic Kidney 
 Disease: Mineral and Bone Disorder

TA B L ETA B L E

77.1

CKD-MBD is either one or combination of the following:
  Abnormalities of calcium, phosphorus, PTH, or 

vitamin D metabolism, as measured by laboratory 
values

  Abnormalities in bone turnover, mineralization, 
volume, linear growth, or strength, as measured 
mainly by bone histology

  Vascular or other soft tissue calci  cations

CKD-MBD, chronic kidney disease–mineral and bone disorder; PTH, 
parathyroid hormone.
Adopted from KDIGO clinical practice guideline for the diagnosis, 
 evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral 
and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009;(113):S1–130.
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FIGURE 77.1 Spectrum of pathology in chronic kidney disease–
mineral and bone disorder. (Modi  ed from KDIGO clinical practice 
guideline for the diagnosis, evaluation, prevention, and treatment 
of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). 
Kidney Int Suppl. 2009;(113):S1–130.)
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phosphorus. 1, Increase in FGF23; 2, suppression of calcitriol and increased urinary phosphate; 3, decreased gastrointestinal calcium 
and phosphorus absorption; 4, increased parathyroid hormone; 5, increased bone resorption/calcium and phosphorus bone ef  ux; 
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1,25(OH)2D counter-regulatory hormone 8,10,51 provided 
new insight for the understanding of SHPT. Primary de-
crease in Pi excretion due to loss of functioning renal mass 
when GFR falls below  70 mL/min/m 2 somehow leads to 
increase in FGF23 secretion from bone, which in turn in-
hibits renal Pi reabsorption and suppresses production of 
1,25(OH)2D.52 Reduction in 1,25(OH) 2D, leads to increase 
in PTH production. 12 Both PTH and elevated FGF23 work 
in concert to increase Pi excretion and to maintain normal 
serum Pi. Further loss of renal function and elevations of 
PTH further stimulate FGF23 in an abnormal positive feed 
forward loop. 

 Parathyroid Hormone 
As noted previously, elevations in PTH occur early in the 
course of CKD, just after increments in FGF23 and decre-
ments in 1,25(OH) 2D and before demonstrable alterations 
in serum calcium and phosphate levels. 

PTH actions are mediated through PTH receptor 
(PTH1R) in the kidney—which inhibits renal Pi reabsorp-
tion, increases renal tubular calcium excretion, and  increases 
1,25(OH)2D production—and in osteoblasts in bone, which 
stimulates bone formation and osteoclastic bone resorp-
tion.53 Chronic elevation of PTH in SHPT leads to  increased 
bone remodeling which plays a crucial role in mineral ho-
meostasis by providing access to the stores in bones’ Ca 
and Pi. PTH orchestrates a coordinated process of increased 
bone resorption by osteoclasts followed by new bone for-
mation by osteoblasts. PTH stimulates osteoclast formation 
indirectly by binding to its receptor (PTH1R) on osteoblastic 
cells. This in turn triggers production of receptor activator 
of NFkB ligand (RANKL) and suppresses the RANKL decoy 
receptor osteoprotegerin (OPG), thereby stimulating matu-
ration of osteocytes by RANKL. 54 PTH also increases osteo-
blast number and activity, possibly through release of growth 
factors from bone matrix during its resorption, although the 
mechanism is not entirely understood. 55 However, the net 
result of these changes by continuous PTH stimulation in 
SHPT is the loss of cortical bone and increased bone fragility. 
Additionally, PTH was implicated in reduced red cell pro-
duction by causing marked bone marrow   brosis. 56 Interest-
ingly, PTH can exert anabolic or catabolic action on the bone 
depending on whether it acts on the bone in continuous or 
pulsatile fashion. Intermittent administration of PTH inhib-
its osteoblast apoptosis and increases osteoblast number, 
whereas chronic administration of PTH increases mostly os-
teoclast number. 57 The PTH1R is also found in nonclassical 
PTH target tissues such as breast, skin, heart, blood vessels, 
liver, and other tissues. 

PTH is secreted as linear protein consisting of 84 amino 
acids also called intact PTH (iPTH). Interaction of the 1–34 
amino acid N-terminal portion of PTH is required for activa-
tion of PTH1R. In addition to full length PTH, other PTH frag-
ment are produced from 1–84 PTH in parathyroid gland and 
the liver, such as bioactive N-terminal fragment (1–34), as 
well as various C-terminal fragments that are found in blood. 

inversely correlate with GFR. 8,27–29 Patients with end-stage 
renal disease (ESRD) have markedly elevated levels of FGF23 
that parallels with degree of hyperphosphatemia 30 and sec-
ondary hyperparathyroidism (SHPT). 31

FGF23 is a 32-kDa protein with an N-terminal region 
containing the FGF-homology domain and a novel 71-ami-
no acid C terminus 32,33 that interacts with FGF receptor 
(FGFR) in the presence of the members of Klotho family of 
proteins. 34,35 In vitro studies indicate that Klotho is an essen-
tial cofactor for FGF23 to activate FGFR. 34,36,37 Circulating 
FGF23 is mainly produced and secreted by osteoblasts and 
osteocytes in bone. 38 The target organs for FGF23 are de-
  ned by the coexpression of the membrane form of Klotho 
and FGFR. 37,39 Klotho is expressed in high levels in para-
thyroid gland, kidney, and several other organs; however, 
the kidney is the principal physiologically de  ned target 
for FGF23, where it inhibits phosphate reabsorption and 
1,25(OH)2D synthesis. The parathyroid gland is also a target 
for FGF23 action, but it is not clear if FGF23 stimulates or 
inhibits PTH secretion. Elevated levels of FGF23 in human 
disease and mouse models are associated with hyperparathy-
roidism (HPT), 40,41 likely due to the effect of FGF23 to sup-
press 1,25(OH) 2D leading to the secondary development of 
HPT. In contrast, in vitro studies demonstrated that FGF23 
activates extracellular regulated kinases 1/2 -  Egr-1 pathway 
leading to inhibition of PTH mRNA expression and PTH 
secretion from parathyroid cells. 42,43 Additionally, FGF23 
suppresses parathyroid cell proliferation and increases CaSR 
and VDR expression in normal parathyroid gland. 44 In indi-
viduals with normal kidney function, FGF23 exerts negative 
feedback on the parathyroid gland; however, the fact that 
in CKD patients PTH remains high despite elevated FGF23 
suggests the presence of resistance to FGF23 action. This 
possibility was reinforced by a   nding of a reduced Klotho 
and FGFR expression in surgically removed parathyroid 
glands from uremic patients. 42

The mechanism of increased FGF23 in CKD is poorly 
understood. The increase in serum FGF23 is not explained 
by reduced FGF23 clearance; and the proximate stimulus 
in early CKD that leads to increments in FGF23 are not 
clear. Nevertheless, FGF23 production is likely increased 
to counteract Pi retention due to reduced nephron mass by 
promoting urinary Pi excretion. 45 Elevations in FGF23 pre-
cede increments in PTH in CKD 46 and animal studies show 
that blockade of FGF23 by neutralizing antibodies lead to 
normalization of 1,25(OH) 2D and PTH levels in models of 
CKD.47 On the other hand, there is also strong evidence 
supporting the ability of PTH to stimulate FGF23 expres-
sion in bone in patients with CKD. In this regard, para-
thyroidectomy reduces FGF23 in humans with ESRD and 
animal models of kidney failure. 48,49 Recent studies also 
demonstrate the ability of PTH to directly stimulate FGF23 
expression in osteoblast cultures and overexpression of a 
constitutively active PTH stimulates FGF23 expression 
in bone of transgenic mice. Regardless, the discovery and 
elucidation of FGF23 functions as phosphaturic 50,51 and 
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levels are  associated with the faster progression of CKD to 
need of RRT. 70–72 The strong adverse association between 
disordered markers of CKD-MBD and mortality and risk of 
ESRD progression necessitates the need of clinical control 
studies aiming to improve these outcomes in CKD patients. 

 BONE ABNORMALITIES 
Bone is central to the pathogenesis of CKD-MBD because it 
is: (1) a reservoir for calcium and phosphate; (2) a target for 
PTH, which activates PTH receptors located in osteoblasts to 
increase osteoblast-mediated bone resorption and to stimu-
late osteoclast mediated bone resorption through the release 
of Rank ligand; (3) a target for 1,25(OH)2D, which binds to 
VDR:RXR complexes to activate gene transcription in both 
osteoblasts and osteoclasts; and (4) the principal source of 
the phosphaturic and VDR hormone FGF23, which is made 
by osteoblasts and osteocytes. 

Renal osteodystrophy (ROD) is a general term to de-
scribe the variety of skeletal histologic abnormalities that 
result from the changes in hormones and calcium/phos-
phate homeostasis in CKD. 73 The classi  cation of ROD is 
based on quantitative bone histomorphometric analysis of 
bone biopsy that measures bone turnover (i.e., bone for-
mation rates and resorption), mineralization of extracellu-
lar matrix, and trabecular bone volume and cortical poros-
ity) (Tables 77.2 and 77.3). Based on the degree of bone 
remodeling and mineralization abnormalities, bone biopsy 
diagnoses typically include osteitis   brosa cystica (char-
acterized by excessive PTH-mediated increases in bone 
formation and resorption accompanied by peritrabecular 
  brosis, woven osteoid, and increased cortical porosity), 
osteomalacia (characterized by excess unmineralized oste-
oid and prolonged mineralization lag time), and adynamic 
bone (characterized by severely diminished bone forma-
tion and resorption). Milder forms of these abnormalities 
can occur and combinations of abnormal bone turnover 
and mineralization can occur (referred to as mixed uremic 
osteodystrophy). Additionally, cortical osteopenia due to 
excess PTH and osteoporosis due to loss of trabecular bone 
volume can be found in CKD and lead to increased fracture 
risks. Other systemic abnormalities leading to skeletal ab-
normalities such as  2–microglobulin amyloidosis and aci-
dosis induced demineralization can also occur in patients 
with CKD. 

The majority of epidemiologic data on ROD were ob-
tained from cross-sectional analysis of bone biopsies in 
predialysis patients or patients on RRT; therefore, accu-
rate data on patients with earlier stages of CKD are uncer-
tain. The reported prevalence of ROD in CKD stage 4 and 
5 ranges from 62% to 100% 5; however, given the im-
portance of bone remodeling as a target for PTH and 
1,25(OH)2D in the maintenance of calcium metabolism, 
virtually all patients in the late stages of CKD would be 
expected to have high turnover ROD, either osteitis   -
brosa (OF) or mixed uremic osteodystrophy (MUO). 74

There is increase in half-life of circulating PTH and especially 
C-terminal fragments observed in serum of patients with 
uremia, possibly due to reduced clearance as the kidney is 
one of the principal sites for the degradation of PTH and 
its fragments. Patients with advanced CKD also exhibit ab-
normal ratio in serum between circulating 1–84 PTH and 
its fragments as compared with healthy controls. 58 Conven-
tional two-site immunoassays for intact (1–84) PTH can reg-
ister long N-truncated C terminal PTH fragments that lack 
full N terminal region (1–34) necessary for PTH1R activa-
tion. These long N-truncated C terminal fragments accu-
mulate disproportionally to 1–84 PTH in kidney failure and 
may constitute up to 50% or more to total PTH immuno-
reactivity, as compared to 15% to 20% in normal subjects. 
Some of these fragments have been identi  ed as 7–84 PTH 
and studies in animal models demonstrated that 7–84 PTH 
can antagonize effects of 1–84 PTH on increased bone turn-
over and serum Ca levels. 59 It has been documented that 
patients with CKD have impaired serum Ca response to PTH 
and higher PTH levels are required to maintain eucalcemia. 
Several possible explanations of bone PTH resistance in-
clude presence of inhibitors, such as 7–84 PTH and elevated 
osteoprotegerin, as well as downregulation of  PTH1R mRNA
in animal models and patients with CKD. 60,61

As noted previously, CaSR is the major regulator 
of PTH secretion and production as well as parathyroid 
gland hyperplasia. VDR plays an important modulating 
role on PTH gene transcription. Hyperphosphatemia may 
stimulate PTH secretion independently from low Ca or 
1,25(OH)2D62, 63 through poorly de  ned posttranslational 
mechanisms.21,64,65

 Clinical Signi  cance of Abnormal 
Biochemistries in Chronic Kidney Disease 
The growing body of evidence links disordered values of all 
CKD-MBD laboratory markers and all-cause and cardiovas-
cular mortality in patients with CKD. In the international 
study of ESRD patients, lowest mortality was observed for 
Ca at 8.6 to 10.0 mg per dL, corrected to albumin Ca of 
7.6 to 9.5 mg per dL, phosphorus at 3.6 to 5.0 mg/dL, and 
PTH between 101 and 300 pg per mL, with the highest 
mortality for Ca or corrected to albumin Ca levels greater 
than 10.0 mg per dL, Pi levels greater than 7.0 mg per dL, 
and PTH levels greater than 600 pg per mL. 66 However, re-
cent meta-analysis challenged the association between lev-
els of Ca and PTH and all-cause or cardiovascular mortality, 
whereas still strongly supporting the association between 
rising levels of Pi and these outcomes. 67 There is also an evi-
dence of possible nonlinear U-shape or J-shape association 
between levels of Ca, Pi, PTH, and mortality with both very 
low and high levels predicting poor outcomes. 68,69 FGF23 
has also been strongly linked in several large observational 
studies to all-cause mortality in CKD patients both with ear-
lier stages not requiring renal replacement therapy (RRT) 
as well as hemodialysis. 25,26,70 Additionally, higher FGF23 
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it dif  cult to determine the type and  magnitude of bone 
abnormalities in an individual  patient with CKD. 

 When GFR declines below 60 mL/min/m2,75 excess  
PTH and decrements in 1,25(OH) 2 D are the major  factors 
leading to abnormalities of high bone remodeling and 
 abnormal mineralization in CKD that characterize OF and 
MUO.  The pathogenesis of PTH and 1,25(OH)2D altera-
tions in CKD were discussed earlier in this chapter.

 Low turnover bone disease is at the opposite end of 
the bone remodeling spectrum and is characterized by a 
diminished bone formation rate, a paucity of bone cells, an 
absence of   brosis, and an abnormal bone mineralization. 
Adynamic bone disease (ABD) and osteomalacia are vari-
ants of low turnover bone disease in CKD. A reduction in 
the osteoid accumulation and number of bone remodeling 
sites are predominant features of ABD, which represent a 
primary defect in osteoblast-mediated bone formation or 
osteoclast-mediated bone resorption, whereas increased 
relative osteoid de  nes the presence of osteomalacia, which 
is a primary defect in the mineralization of extracellular 
matrix. 

 The cause of low turnover bone disease in CKD is  poorly 
understood and it is likely to be a multifactorial condition. 
First reports of low turnover bone disease were osteomalacic 
lesions associated with aluminum toxicity; however, it was 
quickly recognized that low turnover bone disease can  occur 
without aluminum accumulation in the bone. Presently, 
the emphasis on pathogenesis of ABD in CKD is placed on 
oversuppression of circulating PTH levels and concomitant 
skeletal resistance to PTH actions due to downregulation of 
PTH1R. Exposure to high Ca through the use of Ca-containing 
phosphate binders and dialysate with high Ca is a risk factor 
for ABD. Metabolic acidosis and uremia-induced oxidative 
stress are additional  CKD-related risk factors that can induce 
low turnover bone disease via suppression of active vitamin 
D and collagen synthesis and reduction of osteoblast life 
span, respectively. 76  An advanced age, presence of diabetes, 

Although data are incomplete, the epidemiology of ROD 
appears to have changed in the last three decades, with 
a decline of OF and a higher prevalence of low bone re-
modeling states of uncertain clinical signi  cance and etiol-
ogy. Types of ROD also vary depending whether or not the 
patient already started RRT and on modality of RRT, with 
low turnover bone remodeling being the most common 
lesion in predialysis patients (27%–48%) and patients on 
 peritoneal dialysis (48%–62%), whereas OF (32%–37%) 
and low turnover bone remodeling (32%–36%) occur with 
similar frequency in hemodialysis patients. Mixed disease 
represents about 10% to 13% of cases of ROD, and low 
turnover osteomalacia is present in 3% to 8% of patients. 
We lack diagnostic tools to accurately assess bone remod-
eling and mineralization, other than bone biopsy, making 

TA B L E

13.2 Classi  cation of Bone Disease in 
Chronic Kidney Disease Patients

TA B L ETA B L E

77.2

Renal Osteodystrophy

High-turnover bone disease (represented by increased 
bone formation rate, increased osteoblastic/ 
osteoclastic activity and number, reduced osteoid 
volume, and high peritrabecular   brosis surface area)
  Osteitis   brosa (associated with severe 

 hyperparathyroidism)
  Mild disease (associated with mild to moderate 

hyperparathyroidism)

Low-turnover bone disease (low bone formation rate is 
characterized as being equal to or below the lower 
value observed in normal individuals)
  Osteomalacia (de  ned as markedly increased 

osteoid volume and thickness with decreased 
  brosis and defective bone mineralization)

  Adynamic bone disease (characterized by  paucity 
of bone cells with severely reduced osteoid seams 
and absence of   brosis)

Mixed uremic osteodystrophy (includes   ndings of 
increased osteoid volume and   brosis surfaces and 
may present with different degrees of bone forma-
tion rate that vary from high to normal and low)

Osteopenia and Osteoporosis

Other Causes of Bone Pathology in CKD

  Acidosis
   2–microglobulin amyloidosis

CKD, chronic kidney disease.
Adopted from Sprague SM. The role of the bone biopsy in the diagnosis of 
renal osteodystrophy. Semin Dial. 2000;13(3):152–155.

TMV Classi  cation System for 
Renal Osteodystrophy

TA B L ETA B L E

77.3

Turnover  Mineralization  Volume

Low  Normal  Low

Normal  Abnormal  Normal

High  High

TMV, bone turnover, mineralization, and volume.
Adopted from Moe S, Drueke T, Cunningham J, et al. De  nition, 
 evaluation, and classi  cation of renal osteodystrophy: a position statement 
from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 
2006;69(11):1945–1953.
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iPTH levels (   50–100 pg per mL) in ESRD patients are 
 associated with biopsy proven ABD, higher iPTH  levels 
(   300 pg per mL) can be also be seen in patients with 
 biopsy-proven ABD, 81  especially in African  Americans. 82,83

There are several proposed explanations of this variability 
of iPTH levels and ABD. First, iPTH assays and their abil-
ity to discriminate between whole PTH and its fragments 
differ across the studies. Some PTH fragments, such as 
7–84PTH, can be actually inhibitory on bone formation 
and these fragments tend to accumulate in ESRD; there-
fore, higher PTH may not be equivalent of presence of 
high biointact PTH. Additionally, treatment modalities 

hypogonadism, and a treatment with corticosteroids are also 
important clinical conditions associated with low  turnover 
bone disease. 77  There is growing evidence linking ABD to the 
malnutrition-in  ammation complex syndrome. Higher rates 
of ABD are reported in peritoneal dialysis  patients with low 
albumin levels. 78   Additionally, several proin  ammatory cyto-
kines such as interleukin-1    and interleukin-6 were shown 
to inhibit PTH secretion in vitro. 79,80  Therefore, the develop-
ment of ABD is in  uenced by patient characteristics, as well 
as treatment options for CKD-MBD (Fig. 77.4).   

 PTH is the most widely used surrogate marker of bone 
turnover (Table 77.4). Although relatively low to normal 

CKD-re lated Factors

Low-Turnover Bone  State

Concomitant c linical conditions

- Diabe tes
- Metabolic syndrome
- Advanced age
- Malnutrition
- Corticos te roid use
- Hypogonadism

Treatment re lated:
 - High ca lcium load
 - High doses  of active
    vitamin D
 - Ca lcimimetics  use
 - Para thyroidectomy
 - Peritonea l dia lys is

Non-treatment re lated:
 - Uremia
 - Oxida tive  s tress
 - Metabolic acidos is

FIGURE 77.4 Low-turnover bone state risk factors.

Factors Regulating Parathyroid Hormone Secretion

TA B L E

Factor  Mechanism

Decreased PTH secretion
 Calcium  Direct activation of CaSR leading to posttranslational decrease in PTH secretion
 Calcitriol  Direct inhibition of preproPTH gene transcription via VDR

Indirect inhibition via increase in CaSR in parathyroid gland
 FGF23  Direct inhibition of PTH mRNA expression

Increased PTH secretion
 High phosphorus  Posttranslational increase in PTH via stabilization of PTH mRNA
 Low calcium  Indirectly via increase in unbound to calcium calreticulin that inhibits calcitriol action 

on PTH secretion
Direct decrease in activation of CaSR

 FGF23  Indirect increase in PTH secretion through decrease in calcitriol synthesis

PTH, parathyroid hormone; CaSR, calcium-sensing receptor; VDR, vitamin D receptor.

TA B L E

77.4
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may in  uence bone formation rate independently from 
PTH levels. Lastly, PTH is not a bone-derived marker and 
therefore may never be a fully accurate indicator of bone 
turnover. At present, it is unknown what levels of PTH are 
associated with ABD in patients with less severe CKD not 
yet on renal replacement therapy.  Bone-speci  c alkaline 
phosphatase (BSAP) may be an additional useful marker 
of ABD. Low levels of BSAP predict ABD and BSAP cor-
relates with bone turnover in ESRD patients treated with 
hemodialysis.82

 Fracture Risks in Chronic Kidney Disease 
Patients with ESRD have fourfold increased risk of fractures; 
and the highest risk (10- to 100-fold increase) of fractures is 
observed in ESRD patients below age 65 as compared with 
age-matched individuals from the general population. 84

The risk of fractures is also augmented in early CKD. 85,86

Vertebral and hip fractures are shown to independently in-
crease all-cause mortality in CKD patients. 87,88 The fracture 
risk in patients with low turnover bone disease  remains 
controversial as no biopsy-proven studies are available in-
vestigating the association between adynamic bone disease 
and fractures in CKD patients. Because ABD is linked to 
PTH oversuppression, several studies demonstrated the as-
sociation between relatively low to normal PTH levels and 
the risk of vertebral and hip fractures. 89,90 However, in a 
case-control study, dialysis patients who underwent para-
thyroidectomy were found to have 32% lower risk for hip 
fractures, and 31% lower risk for any fractures as compared 
with matched controls. 91

 Bone Disease and Vascular Calci  cations 
Vascular calci  cations, and especially arterial calci  cations, 
are very common in patients with CKD and correlate with 
cardiovascular complications. 92 The prevalence of vascular 
calci  cations is the highest among patients with ESRD 93,94;
however, patients with CKD stages 2 to 4 are also found 
to have increased vascular calci  cations on imaging stud-
ies as compared with the general population. 95 There are 
two types of arterial calci  cations with different clinical 
consequences: one affects intimal layer of arteries and is 
associated with atherosclerotic plaque, and the second type 
involves medial wall or arteries (Mönckeberg sclerosis). 
The atherosclerotic plaques are usually patchy in distribu-
tion and lead to chronic and acute end-organ ischemia from 
vessel lumen obstruction from the plaque itself or acute 
thrombosis  following plaque rupture, respectively. On the 
other hand, medial arterial calci  cations are more diffuse 
and increase vessel stiffness and reduce vascular compli-
ance. As the result of the latter, blood pressure rises with 
the development of left ventricular hypertrophy that com-
promises myocardial perfusion during diastole and is asso-
ciated with high mortality rates in patients with ESRD. 96,97

The mechanism of vascular calci  cation is not completely 
understood and is likely multifactorial,  involving factors 

promoting transformation of vascular smooth muscle cell 
into “bone-like” cells, elevation of calcium and phosphorus 
due to altered bone and mineral metabolism, low levels 
of circulating and locally produced inhibitors, impaired 
renal excretion, and current therapies such as the use of 
calcium-containing phosphate binders and active vitamin 
D.98 There is well documented association between in-
creased vascular 99,100 and soft tissue calci  cations 101 and 
the biopsy-proven ABD in ESRD patients. ABD is charac-
terized by a reduced bone ability to incorporate extracel-
lular calcium and, therefore, diminished ability to buffer 
calcium load leading to more frequent hypercalcemia. 102,103

Cardiovascular mortality is shown to be increased in dialy-
sis patients with higher burden of vascular calci  cations 
and some observational studies also revealed increased 
mortality in patients with relatively low to normal PTH 
supporting ABD as a strong risk factor for cardiovascular 
death.104 Interestingly, parathyroidectomy in ESRD pa-
tients was shown to improve long term survival by 15% 
in observational study; although postoperative PTH levels 
were not provided. 105

 PARATHYROID GLAND 
ABNORMALITIES 
Parathyroid cells are generally quiescent and rarely divide 
under normal physiologic conditions. In addition to in-
creased PTH secretion, stimulation of parathyroid gland 
(PTG) during the course of CKD leads initially to diffuse 
polyclonal proliferation (hyperplasia) followed by mono-
clonal nodular hyperplasia, which can be diffuse or have 
a predominant nodule. 106 Factors associated with PTG 
hyperplasia are listed in Table 77.5. Low Ca is involved 
in activation of parathyroid gland growth. In animal mod-
els, a diet low in Ca was shown to increase parathyroid 
cell proliferation 10-fold, 107 and in rats with kidney fail-
ure, the administration of a calcimimetic compound that 
binds to CaSR attenuated the parathyroid cell prolifera-
tion.108 In addition to low serum Ca, high serum Pi is the 
major factor leading to parathyroid cell proliferation 107

and low Pi diet reduces parathyroid cell proliferation and 
PTH mRNA levels. In severe hyperparathyroidism, there is 
also a reduction in the number of CaSR, effectively shift-
ing the calcium-PTH set point toward greater PTH secre-
tion for any given  serum Ca concentration and a loss of 
inhibitory Ca role on PTG growth. 109,110 Decrease in CaSR 
and VDR expression is observed during parathyroid prolif-
eration and is especially pronounced in nodular hyperpla-
sia.44,58,111,112 Density of VDR was reported to be negatively 
correlated with both the weight and  proliferative activity 
of the glands. 113 Administration of calcitriol and calcimi-
metics was shown to result in decrease of parathyroid cell 
proliferation and was associated with elevation of CaSR 
and VDR. 114,115 Moreover, low serum Ca may interfere with 
1,25(OH)2D action by inducing resistance to vitamin D 
via reduction of VDR 116 and upregulation of calreticulin. 
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are nonspeci  c (Table 77.6) and related to osteitis   brosa 
or electrolyte changes such as hypercalcemia and/or hyper-
phosphatemia. The severity of symptoms also varies from 
moderate bone or joint pains and bone deformities and 
fractures to life threatening calciphylaxis and cardiovascu-
lar disease as a result of calcium deposition in vasculature 
and other organs. Fracture risk, vascular calci  cations, and 
mortality associated with CKD-MBD were discussed earlier 
in this chapter. 

 DIAGNOSIS OF CKD-MBD 
 Diagnostic tests for CKD-MBD are divided into biochemical, 
imaging, and bone biopsy and will be brie  y discussed in 
the following sections. 

 Serum Markers of CKD-MBD 
 Parathyroid Hormone 
 The biochemical diagnosis of SHPT relies on   nding of 
ele vated serum iPTH. The most commonly used assays 
for PTH determination represent second generation two-
site immunometric assays that recognize full length intact 
1–84 PTH; however, this assay also cross reacts with large 
PTH fragments, such as 7–84 PTH which antagonizes PTH 
action on elevation of serum Ca levels and osteoblasts. 59

 Calreticulin is a calcium-binding intracellular protein, and 
when is  unbound can inhibit 1,25(OH) 2 D action on PTH 
gene transcription. 117  Enhanced expression of two recep-
tors for potent growth promoters such as transforming 
growth factor alpha (TGF   ) and epidermal growth factor 
(EGF) was also described to contribute to PTG hyperplasia 
in patients with CKD. 118,119  In nodular hyperplasia, activa-
tion of EGFR by TGF    was shown to be associated with 
80% reduction of VDR mRNA levels leading to 1,25(OH) 2 D 
resistance. 118  It is uncertain, at present, if impaired apopto-
sis contributes to PTG hyperplasia.   

 The reversibility of PTG hyperplasia is a subject of 
 debate. 120,121  Size of PTG as determined by ultrasound has 
been shown to be a sensitive indicator of therapeutic respon-
siveness to pharmacologic treatment of SHPT. Histologic 
 studies demonstrated that PTG heavier than 0.5 to 1.0 g 
were composed in the majority of cases of nodular hyper-
plasia 122  and were refractory to therapy with calcitriol or its 
analogs. 123,124  

 CLINICAL MANIFESTATIONS OF 
CKD-MBD 
 Patients with SHPT frequently remain asymptomatic even 
with advanced disease and presence of biochemical and 
imagining abnormalities. In general, signs and symptoms 

Factors Regulating Parathyroid Gland Proliferation

TA B L E

Factor  Mechanism

Inhibitors of polyclonal PTG proliferation
 1,25(OH)2D  Decreased c-myc expression that modulates cell cycle 

 progression via VDR
Activation of p21 gene expression that inhibits cell cycle
Downregulation of EGFR signaling
Indirect effect via upregulation of CaSR

 Calcium  Direct effect via activation of CaSR

Stimulator of polyclonal PTG proliferation
 High phosphorus  Inhibits p21 gene expression and promotes cell cycle

Stimulators of monoclonal transformation
 Decreased CaSR gene 

 expression
Decreased activation of CaSR

 Decreased VDR gene 
 expression

Decreased activation of VDR

 Increased expression 
of EGFR

Decreased VDR gene expression

1,25(OH)2D, active vitamin D; VDR, vitamin D receptor; EGFR, epidermal growth factor receptor; CaSR, calcium-
sensing receptor, PTG, parathyroid gland.

77.5
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because its levels do not differentiate between different his-
tologic variants of renal osteodystrophy nor predict any 
 other clinical outcomes. 

 Markers of Bone Formation and Resorption 
 Bone formation markers such as total alkaline phosphatase 
(TALP) and bone-speci  c alkaline phosphatase (BSALP) are 
useful markers of bone turnover in CKD. Importantly, me-
tabolism of TALP and BSALP is not impaired by the pres-
ence of reduced GFR and higher levels of BSALP correlate 
with high rates of bone turnover and PTH. 131,132  Usefulness 
of BSALP in the predicting of high and low turnover bone 
disease is further increased if BSALP is combined with si-
multaneous measurements of iPTH. 133,134  Osteocalcin (OC) 
and tartrate-resistant acid phosphatase (TRACP) are two 
markers of bone resorption that also have been shown in 
small studies to correlate with histomorphometric param-
eters of bone turnover. 132  OC accumulates with CKD and its 
low levels are sensitive in  predicting low turnover bone dis-
ease, 135  whereas TRACP  levels are not affected by CKD and 
high levels predict osteoclastic activity and high turnover 
bone disease. 136  Nevertheless, the role of OC and TRACP is 
still under investigation. 

 FGF23 
 Elevated FGF23 predicts all-cause mortality and faster 
 evelopment of ESRD as discussed previously. Therefore, 
FGF23 level may be a useful prognostic marker; how-
ever, its determination is available only in experimental 
research. 

 Imagining Studies 
 X-rays 
 Although routine radiography is not used in diagnosis of ROD, 
plane X-rays can help in differential workup by revealing sev-
eral skeletal abnormalities of CKD-MBD. 137,138  Subperiosteal 
bone resorption is a feature of advanced SPHPT and in adults 
most commonly affects the phalangeal tufts, the radial aspect 
of the proximal and middle phalanges of the   ngers, the meta-
tarsals, the rib margins, the lamina dura, and the medial mar-
gins of the proximal humerus,  femur, and tibia. Subchondral 
resorption can occur at several sites, including the sternocla-
vicular and acromioclavicular joints, the symphysis pubis, 
the sacro iliac joints, and the diskovertebral joints. Addition-
ally, an erosive type arthropathy is reported with secondary 
 hyperparathyroidism. Brown tumors are a manifestation of 
advanced SHPT and are seen rarely with modern therapy of 
CKD-MBD. Brown tumors radiographically can look similar 
to lytic lesions and can occur essentially in any bone. Plain 
X-ray also detects extra-osseous calci  cations developing 
with SHPT such as vascular calci  cations, calci  ed pulmo-
nary nodules, chondrocalcinosis, and calci  cations of various 
 organs (breast, heart, liver, and kidney). 

1–84 PTH usually represents only 50% to 60% of whole 
PTH  determined by these assays. There has been developed 
a new third generation assay that measures only the full 
length 1–84 PTH (biointact PTH) and not amino-terminally 
truncated fragments. 125  Additionally, the measurement of a 
ratio of 1–84 PTH to large C-terminal fragments has been 
proposed 126  for evaluation of high turnover bone disease; 
however, the usefulness of these new methods remains to 
be elucidated. 

 Calcium and Phosphate 
 Ca and Pi usually remain normal until GFR reaches below 
30 to 40 mL/min/m 2  and then Ca tends to fall while Pi  rises. 6
Nonetheless, hypercalcemia can also be observed in setting 
of large doses of vitamin D administration, especially while 
using calcium-containing phosphate binders, or with the 
development of severe hyperparathyroid bone disease. Pi is 
almost uniformly high in untreated patients with ESRD; 
however, normal and even low Pi may be present with con-
comitant malnutrition. 

 Vitamin D Metabolites 
 25-hydroxyvitamin D de  ciency is common in CKD pa-
tients. 6,127  25-Hydroxyvitamin D is shown to correlate with 
PTH levels and the rate of bone turnover 128  and is consid-
ered as the best index of vitamin D status in CKD patients 
because of its long half-life (about 3 weeks) and ability to ac-
cess both endogenous and exogenous sources of vitamin D. 
Additionally, levels of 25-hydroxyvitamin D positively cor-
relate with serum 1,25(OH) 2 D in CKD patients but not in 
healthy individuals, 129,130  suggesting that 1,25(OH) 2 D pro-
duction is more dependent on substrate availability in CKD. 
1,25(OH) 2 D is not routinely measured in patients with CKD 

Signs and Symptoms of Secondary 
Hyperparathyroidism

TA B L ETA B L E

77.6

Skeletal  Extraskeletal

Osteoporosis  Vascular calci  cation leading 
to cardiovascular disease

Bone fractures  Calciphylaxis (calci  c uremic 
arteriopathy)

Bone and joint pain  Pruritus

Bone deformities  Anemia

Growth retardation 
in children

Red eye syndrome
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attractive when there is evidence for increased fractional ex-
cretion of phosphate, but at present the use of phosphate 
binders in CKD patients with normal serum phosphate 
levels is not approved and their effects have not been stud-
ied in clinical trials. Once secondary hyperparathyroidism 
has developed, as evidenced by elevated serum PTH levels, 
treatment with calcium supplementation and use of active 
vitamin D sterols can be considered. Calcimimetics are not 
approved for use in early stages of CKD stages 3 to 5 and 
their use in this setting suppresses PTH but increases serum 
phosphate levels. In contrast, active vitamin D analogues 
suppress PTH in CKD stages 3 and 4 without increasing 
serum phosphate levels, possibly due to their effect to also 
stimulate FGF23. The asymptomatic nature of CKD-MBD 
contributes to the challenge of treating this disorder. In CKD 
stage 5D, combinations of treatments are needed to reduce 
serum phosphate levels while suppressing PTH concentra-
tions that include the use of calcium and noncalcium phos-
phate binders (for phosphate control) and the use of active 
vitamin D analogues and calcimimetics (alone or in combi-
nation) to suppress circulating PTH levels and to prevent the 
progression of parathyroid gland diseases, while optimizing 
bone health. Different treatment strategies include: (1) use of 
increasing doses of active vitamin D analogues and increas-
ing does of phosphate binders versus (2) use of increasing 
doses of cinacalcet,   xed physiologic replacement doses of 
active vitamin D analogues, and phosphate binders to sup-
press PTH and treat hyperphosphatemia. 

 Treatment Target Guidelines 
There are several clinical practice guidelines such as  Kidney
Disease Outcomes Quality Initiative (KDOQI), 141 Kidney Dis-
ease: Improving Global Outcomes (KDIGO), 1 and  Japanese
Society of Dialysis Therapy (JSDT) 142 that developed recom-
mendations for the target levels of serum Ca, Pi, and PTH 
at different stages of CKD (Table 77.8). All these guidelines 
regarded CKD-MBD as systemic disorder and uniformly 
agreed on the paramount importance of maintaining Ca and 
Pi homeostasis as close to normal as possible irrespective of 
degree of renal impairment in order to avoid the develop-
ment of vascular calci  cations. However, KDOQI, KDIGO, 
and JSTA have different target ranges for PTH. KDOQI PTH 
targets  between 150 and 300 pg per mL is based on the 
estimated levels of PTH to maintain normal bone remodeling, 
with the higher than normal range re  ecting the resistance 
to PTH actions and assessment of circulating inactive PTH 
fragments in dialysis patients. 143 The  emphasis of changes 
in PTH and higher (i.e.,  600 pg per mL) threshold PTH 
concentrations in the KDIGO recommendations re  ects the 
variability in existing PTH assays in measuring bioactive PTH 
and the recognitions that high PTH values are associated with 
increased mortality. In contrast, for the patients with ESRD 
JSTA  advocates PTH concentrations closer to the normal 
range for the general population, which emphasizes the pre-
vention of progressive parathyroid gland hyperplasia. 144

 Computer Tomography 
Computed tomography (CT) is not routinely used for 
diagnosis of ROD, as CT scan is not sensitive in detecting 
changes related to SHPT. However, several CT techniques 
have been successfully applied for the diagnosis of vascular 
calci  cations. 139

 Bone Biopsy 
Bone biopsy with quantitative histomorphometric analysis is a 
gold standard in diagnosis of renal osteodystrophy. Yet, bone 
biopsy is not routinely performed because of its invasive nature 
and the ability of iPTH to predict type of bone disease in CKD 
patients due to reasonably reliable correlation between levels of 
iPTH and bone histology. Nevertheless, bone biopsy remains 
an important tool in differentiation of low and normal bone 
turnover disease, or when aluminum-related bone disease is 
suspected. General indications for bone biopsy are listed in 
Table 77.7. We will conclude this chapter by discussing gen-
eral therapeutic approaches for the treatment of CKD-MBD. 

 TREATMENT OF CKD-MBD 
 General Strategy Overview 
Treatment strategies differ for the various stages of CKD. 
The abnormalities in mineral metabolism begin from stages 
2 to 4 of CKD; therefore, the prevention and treatment of 
CKD-MBD should be started early in the course of kidney 
disease before elevations in serum phosphate or reductions 
in serum calcium. At present serum PTH and FGF23 lev-
els are not routinely measured in patients with mild degrees 
of renal dysfunction. Serum 25(OH)D levels are commonly 
measured in the general population and efforts to normalize 
25(OH)D levels in CKD seem to be a reasonable therapeutic 
goal as low levels of 25(OH)D are known to cause secondary 
HPT even in patients with normal kidney function. 140 Treat-
ment with phosphate binders in early CKD is theoretically 

TA B L E

Discrepancy between biochemical parameters leading to 
no conclusion

Fracture or unexplained bone pain

Severe progressing vascular calci  cations

Unexplained hypercalcemia

Suspicion of aluminum intoxication

If considering treating a patient for fractures

Indications for Bone Biopsy in Patients 
with Chronic Kidney Disease

77.7
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Target Levels for Calcium, Phosphorus, and Parathyroid Hormone

TA B L EB

77.8

KDOQI  KDIGO  JSDT

Calcium
CKD stage 3–5  Normal range  Normal range  N/A
CKD stage 5D  Normal range  Normal range: 8.4–10 mg/dL  Preferably 8.4–9.5 mg/dL

Phosphorus
CKD stage 3–4  2.7–4.6 mg/dL  Normal range  N/A
CKD stage 5  3.5–5.5 mg/dL  Normal range  N/A
CKD stage 5D  3.5–5.5 mg/dL  Toward normal range  3.5–6 mg/dL

Intact PTH
CKD stage 3  35–70 pg/mL  Optimal level is unknown  N/A
CKD stage 4  70–110 pg/mL  Optimal level is unknown  N/A
CKD stage 5  200–300 pg/mL  Optimal level is unknown  N/A
CKD stage 5D  200–300 pg/mL  2–9 times above upper limit 

of normal
60–180 pg/mL

KDOQI, Kidney Disease Outcomes Quality Initiative; KDIGO, Kidney Disease: Improving Global Outcomes; JSDT, Japanese Society of Dialysis Therapy; 
PTH, parathyroid hormone; CKD stage 3: glomerular   ltration rate (GFR) 30–59 mL/min/m2; CKD stage 4, GFR 15–29 mLmin/m2; CKD stage 5, 
GFR  15 mL/min/m2 but not on dialysis; CKD stage 5D, GFR  15 mL/min/m2 on dialysis.

 Speci  c Treatments 
 Maintenance of Neutral Phosphorus Balance 
 The maintenance of normal Pi level is the goal. The  rationale 
to maintain normal Pi level in CKD comes from human obser-
vational studies linking Pi levels above the normal range with 
the increased mortality, presence of soft tissue and vascular 
calci  cations, and from the experimental data strongly sup-
porting the role of Pi in the development of SHPT, calcitriol 
de  ciency, and extraskeletal calci  cations. Recommended 
level of Pi depends on stage of CKD with the goal to maintain 
normal serum Pi in mild to moderate CKD (stages 3 to 4) or 
2.7 to 4.6 mg per dL, and toward normal levels for ESRD, 
3.5 to 5.5 mg per dL. 141  Adequate Pi level can be achieved 
by the restriction of amount of Pi absorbed in gastrointestinal 
(GI) tract by limiting dietary Pi intake and the use of Pi bind-
ers. Dietary Pi absorption is dependent on active vitamin D; 
therefore limiting dose of vitamin D analogs administered for 
the control of elevated PTH may also reduce the amount of 
absorbed Pi in the intestine. In  patients with ESRD, hemo-
dialysis and peritoneal dialysis also contribute to normal Pi 
balance by elimination of Pi from the body. 

 Diet. Pi retention due to reduced nephron mass from CKD 
plays a critical role in the development of CKD-MBD. There-
fore, it is logical to implement primary prevention of CKD-
MBD by introducing moderate Pi restriction by means of mild 
protein restriction from earliest stages of CKD, even before any 

abnormalities in Pi level or PTH are detected. 141  KDOQI 141

speci  cally recognized the limitations of the above conclusion 
as it is based on: (1) studies that primarily restricted protein 
intake and therefore, only indirectly restricted Pi intake; (2) it 
is possible to restrict protein intake without restricting Pi in-
take; (3) most of the reports provided analysis for “prescribed 
diet” rather than “consumed diet”; and (4) in many studies, 
the patients had concomitant therapy with vitamin D and/or 
phosphate binders making interpretation of the results dif  -
cult. In order to accomplish the Pi restriction, it is critical to 
gain the knowledge on the best but yet minimally invasive 
and less costly way to educate patients on low Pi diet. It is 
 essentially unknown what intervention is needed for patients 
to  reduce their Pi intake. Additionally, it is unknown if low Pi 
diet could actually achieve its goal of reducing CKD-MBD. The 
data about bene  cial effects of low Pi diet on improving pa-
rameters of CKD-MBD are scarce and controversial at present, 
with some studies showing no bene  t in PTH or FGF23, 145

whereas others showing improvement in PTH levels. 146,147  
 Dietary Pi consumption parallels intake of protein and 

it is not uncommon to observe normal and even low levels 
of Pi in uremic patients who have inadequate protein intake. 
It is important to avoid malnutrition while minimizing Pi in-
take and this potentially could be achieved by choosing pro-
tein from plant sources. Pi in meats is stored in organic form 
which is easily hydrolyzed and absorbed in gastrointestinal 
tract. Three fourths of Pi in plant proteins is in inorganic 
form and humans lack the enzyme phytase that is necessary 
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can lower LDL cholesterol; therefore, having potential ad-
vantageous effect on cardiovascular disease. However, there 
is a controversy as to whether sevelamer use is associated 
with reduced risk of vascular calci  cations, and there is no 
data to support its superior role in reducing cardiovascular 
mortality on CKD patients. Additionally, it is expensive and 
requires signi  cantly higher pill count to achieve adequate 
Pi control as compared with Ca-based binders. Lanthanum 
is a newest and highly potent Pi binder. It is expensive and 
its long-term safety is still unknown. 

 Removal of Phosphate with Hemodialysis and Perito-
neal Dialysis. Once a patient with CKD reaches ESRD, RRT 
in a form of hemodialysis (HD) or peritoneal dialysis (PD) 
becomes an additional means of Pi elimination. HD is more 
ef  cient in removing Pi with a single 4-hour HD session 
 eliminating about 800 mg of Pi. About 300 mg of Pi is re-
moved during daily PD but weekly removal of Pi is compara-
ble in both modalities, as PD is a daily treatment, as opposed 
to thrice weekly conventional HD. It is important to recog-
nize that neither conventional HD nor PD can substitute for 
normal kidneys for the elimination of all absorbed dietary Pi. 
Even with moderate Pi restriction to 800 mg per day, assum-
ing that 40% to 80% of dietary Pi absorbed, up to 5,600 mg 
of Pi is gained per week in patients with ESRD, whereas only 
about 2,400 mg of Pi can be removed with RRT, leading to 
a positive Pi balance. Therefore, patients with ESRD must 
continue to follow dietary Pi restriction and use Pi binders 
on daily basis. The limitation of Pi removal with hemodialy-
sis is due to majority of body Pi being distributed intracel-
lularly. When dialysis is started, the plasma concentration 

for its hydrolysis and subsequent absorption. Therefore, bio-
availability of Pi from plant sources is signi  cantly less than 
from animal origin. 

 Phosphate Binders. With the progression of CKD, dietary 
Pi restriction alone is not suf  cient to maintain normal Pi 
levels. Therefore, speci  c treatment is usually needed in the 
form of oral Pi binders aimed to prevent systemic Pi absorp-
tion from the gut. Nevertheless, the use of Pi binders should 
always be combined with dietary Pi restriction in order to 
reduce pill burden from Pi binders and their potential side 
effects. Many compounds have been found to be effective Pi 
binders such as aluminum, magnesium, iron, calcium, and 
lanthanum salts, and nonabsorbable polymers. Their  ef  cacy 
and side effects vary widely and are summarized in Table 
77.9. Calcium-containing phosphorus binders and sevelam-
er have become most commonly used contemporary Pi 
binders. Ca-containing binders are cheap, effective, and well 
tolerated by patients. Their popularity has been decreasing 
in recent years due to accumulating evidence that Ca bind-
ers may contribute to progression of vascular calci  cations 
and low turnover bone disease in patients with CKD, and 
therefore, higher CV mortality as compared with sevelam-
er-containing binders, although no data from randomized 
controlled trials exists to support this theory. Most common 
side effects of Ca-containing Pi-binders is hypercalcemia and 
KDOQI recommends limiting daily Ca intake to 2,000 mg 
of elemental Ca including Ca from Ca-based agents. 141  Non-
absorbabale polymer sevelamer, which acts as an anion-ex-
change resin, has many potential advantages over Ca-based 
binders as its use is not associated with Ca load and also 

Classi  cation of Phosphate Binders: Advantages and Disadvantages

TA B L EB

77.9

Drug  Advantages  Disadvantages

Calcium-containing  Effective, inexpensive  May cause hypercalcemia and/or 
 promote vascular calci  cations

Sevelamer  Effective, may reduce GI side effects (nausea, 
vomiting, vascular calci  cations, diar-
rhea, bloating, abdominal pain) due to less 
 hypercalcemia

Expensive, higher pill burden as 
 compared with Ca-based binders

Lanthanum  Effective, less hypercalcemia  Expensive, long-term safety unknown, 
various GI side effects

Magnesium-containing  Effective, inexpensive  GI side effects (diarrhea), rare 
 respiratory depression

Aluminium-containinga Effective, inexpensive  Encephalopathy, anemia, osteomalacia

aAluminum-based binder use should be limited to 4 weeks.1

GI, gastrointestinal; Ca, calcium.
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to  effectively reduce serum Pi levels in hemodialysis pa-
tients, 154,155  as well as peritoneal dialysis patients. 156  Niacin 
was also found to successfully lower Pi while additionally 
elevating high density lipoprotein cholesterol in a prospec-
tive observational study. 157  

 Maintenance of Normal Calcium Level 
 Maintenance of Ca in normal range is the goal in CKD, and 
both hypocalcemia stimulating PTH release and hypercal-
cemia that can lead to vascular and soft tissue calci  cations 
should be avoided. Ca intake in patients with CKD requires 
individualization to account for the use of Ca-based Pi bind-
ers, presence of vascular calci  cations, and low turnover 
bone disease. It is recommended that most CKD patient 
consume no more than 2 g of elemental Ca per day to avoid 
hypercalcemia. However, patients after parathyroidectomy 
may be an exclusion from this rule and require substantial 
amounts of Ca to maintain eucalcemia. Because Ca absorp-
tion in GI tract is vitamin D dependent, CKD patients should 
be screened for vitamin D de  ciency and treated to maintain 
25-hydroxyvitamin D levels above 30 ng per mL. 141  

 Administration of Vitamin D 
 There are three forms of vitamin D (Fig. 77.5): (1) provitamin 
D (or simply vitamin D) includes ergocalciferol of plant source 
(vitamin D 2 ) and cholecalciferol (vitamin D 3 ) which could be 
of animal source or produced from skin  7-dehydrocholesterol 
under exposure to  ultraviolet B solar radiation; (2) 
 25-hydroxyvitamin D (25(OH)D), precursor of active form 
of vitamin D that is produced in the liver after  vitamins D 2  

of Pi falls rapidly during   rst 60 to 90  minutes. 148  After this 
initial phase, the removal of Pi is limited by Pi transfer from 
intracellular to intravascular space which is rate-limited step 
in Pi clearance. Different approaches tested, such as use of 
low and high   ux dialyzer membranes, 149,150  delayed cor-
rection of metabolic acidosis, 151  or lengthening the hemo-
dialysis session were not found to increase Pi removal with 
hemodialysis. However, increasing frequency of HD sessions 
to six or seven times per week as with short daily HD or noc-
turnal HD can lead to improved Pi control with lesser dose 
of Pi binders and even discontinuation of Pi binders. 152,153  

 Other Approaches for Reduction of Dietary Phosphate 
Absorption 
 Reduction of Dose of Active Vitamin D and Its Analogs. 
 Because the administration of active vitamin D analogs in-
creases GI Ca and Pi absorption, their use is associated with 
both hypercalcemia and hyperphosphatemia. Therefore, the 
prescription of lower doses of active vitamin D analogs and 
alternative strategies to suppress PTH may lead to lower Pi 
absorption by the GI tract, and lower serum Pi. 

 Niacin. Niacin is converted into niacinamide during its me-
tabolism and reduces intestinal transport of Pi via inhibi-
tion of Na-Pi cotransporter 2b which is responsible for up 
to 50% of absorbed Pi. Both niacin and niacinamide are 
available pharmacologically. As oppose to niacin, niacina-
mide does not cause vasodilatation or   ushing because it 
does not activate G-protein coupled receptors for niacin. 
However, niacinamide has no lipid-lowering properties of 
niacin.  Niacinamide has been shown in small clinical  trials 
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FIGURE 77.5 Sources, pathways of conversion, and classi  cation of vitamin D.
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calcium receptor to extracellular calcium, and hence, 
“mimic” effects of increased extracellular calcium. 112,169

Cinacalcet is the only drug of this class that is available in 
clinical practice for the treatment of SHPT in patients with 
stage 5 CKD on dialysis since its U.S. Food and Drug Ad-
ministration (FDA) approval in 2004; cinacalcet effectively 
lowers PTH in ESRD patients (treated with both hemodialy-
sis and peritoneal dialysis). 170,171 In the OPTIMA study, the 
addition of cinacalcet was shown to increase the proportion 
of patients achieving serum PTH, Ca, and Pi within KDOQI 
target levels as  compared to conventional therapy (active vi-
tamin D therapy and phosphorus binders) alone. 172 More-
over, cinacalcet is useful for PTH control in patients with el-
evated calcium and Pi 173: in hemodialysis patients with PTH 
controlled by high dose of vitamin D therapy but elevated 
serum Ca and Pi, addition of cinacalcet to a usual treat-
ment (active vitamin D and phosphorus binders) allowed 
patients to maintain PTH within KDOQI targets while low-
ering serum Ca and Pi as compared with the usual treatment 
alone. The ability of cinacalcet to lower serum Pi in dialysis 
patients is likely related to PTH reduction and, therefore, 
reduced Pi translocation from the bone while having no ef-
fect on intestinal Pi reabsorption that defer cinacalcet from 
active vitamin D therapy. In contrast to CKD5D, cinacalcet 
is not recommended in the treatment of SHPT in patients 
with earlier CKD stages (3–4) 1 because its use was associated 
with documented hypocalcemia and paradoxical increase in 
serum Pi levels and need for Pi-binders. 174 However, the lat-
ter phenomenon in that study was likely related to the more 
frequent vitamin D use in the  cinacalcet group. 

The data on the effects of calcimimetics on bone histo-
morphology in patients with CKD are limited. As expected 
from its ability to suppress PTH, cinacalcet use is associ-
ated with higher incidence of development of low turnover 
bone disease as compared with the placebo. 175 On the other 
hand, there is a theoretical advantage of using cinacalcet 
for the prevention of ABD development while treating sec-
ondary hyperparathyroidism in patients at high risk for 
ABD, such as elderly diabetic patients: cinacalcet is able to 
maintain pulsatile PTH secretion pattern which is anabolic 
for the bone. In animal CKD models, cinacalcet restored 
low bone formation 176 and in phase 3 clinical trials use of 
cinacalcet in combination with active vitamin D analogues 
reduced fracture risk. 177 Unlike active vitamin D analogues, 
cinacalcet treatment does not lead to further elevations of 
circulating FGF23. 178 Current trials are under way that in-
vestigate the effects of cinacalcet on mortality in patients 
with ESRD. 

 Parathyroidectomy 
The surgical correction remains the   nal therapy of the 
most severe forms of SHPT which cannot be controlled by 
medical management. Failure of medical treatment could 
result from ineffectiveness of medical therapy  (combination 
of low Pi diet, Pi binders, active vitamin D, and cinacalcet) 

and D 3 undergo hydroxylation by 25  -hydroxylase; and (3) 
active vitamin D or  1,25-dihydroxyvitamin D or calcitriol 
(1,25(OH)2D) is produced in the kidneys after additional hy-
droxylation of 25(OH)D by 1alpha- hydroxylase. The thera-
peutically available forms of vitamin D include naturally oc-
curring ergocalciferol, cholecalciferol, calcidiol, calcitriol, and 
synthetic forms such as vitamin D 2 analogs  (doxercalciferol, 
paricalcitol), and vitamin D 3 analogs (alfacalcidol, falecalcitri-
ol, maxacalcitol). Vitamin D analogs do not require 1alpha-
hydroxylation for their activity. 

Vitamin D de  ciency in CKD patients is common 
and the administration of 25(OH)D to achieve its serum 
levels above 30 mg per mL (75 nmol/L) has been shown 
to positively impact elevated levels of PTH in patients with 
CKD stages 3 to 4. 158,159 Nutritional vitamin D therapy is 
less effective in reducing PTH 160 and restoring bone histol-
ogy to normal 161 in hemodialysis patients. Nevertheless, in 
addition to the role of active vitamin D in bone health and 
regulation of mineral homeostasis, the local extrarenal tis-
sue conversion of 25(OH)D into 1,25(OH) 2D is important 
for the regulation of immune responses, oxidative stress, 
cell differentiation, and blood pressure regulation. 162,163 A 
study of hemodialysis patients demonstrated that cholecal-
ciferol administration was associated with the reduction in 
production of in  ammatory cytokines by circulating mono-
cytes.164 The recommended by KDOQI ergocalciferol dose is 
50,000 units and its frequency ranges from once a week to 
once a month for a total course of 6 months depending on 
the severity of vitamin D de  ciency. 141

If despite adequate 25(OH)D level PTH remains ele-
vated, then active vitamin therapy in the form of calcitriol 
or vitamin D analogs can be successfully used for the treat-
ment of elevated PTH in CKD. 1,141 Calcitriol and vitamin D 
analogs effectively lower PTH levels in stages 2 to 5 of CKD 
including patients on RRT, and all can cause hypercalce-
mia and hyperphosphatemia in a dose-dependent manner. 1
There are no comparative trials on the superiority among 
different active vitamin D regimens in reducing PTH of CKD 
patients not yet on RRT; and only two studies that compared 
calcitriol to maxacalcitol 165 and calcitriol to paricalcitol 166 in 
hemodialysis patients. These trials revealed similar ef  cacy 
of these agents in reducing PTH and comparable adverse 
pro  les, including the incidence of developing elevated Ca 
and Pi levels and oversuppression of PTH. Therefore, Ca, Pi, 
and PTH levels need to be closely monitored during vita-
min D therapy. In addition to PTH-lowering effect, calcitriol 
and vitamin D analogs have been shown to improve bone 
histology, 167 and offered survival bene  t for CKD patients in 
observational studies; however, this hypothesis needs to be 
con  rmed in randomized trials. 168

 Use of Calcimimetics to Suppress Parathyroid 
Hormone
It is a unique group of drugs that allosterically regulate CaSR 
and inhibit PTH secretion by sensitizing the  parathyroid 
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after kidney transplantation—although no speci  c level of 
PTH at which parathyroidectomy would be warranted is 
established. 

 Special Consideration for the Treatment of 
Adynamic Bone Disease 
 Despite growing prevalence of ABD, its treatment is poorly 
investigated. The general approach for the treatment of ABD 
consists of restoration of PTH activity via limiting Ca load 
by reduction of calcium-containing phosphate-binders and 
lowering dialysate Ca, and decreasing or discontinuing  active 
vitamin D or cinacalcet therapies. The use of synthetic PTH 
(1–34) teriparatide as an anabolic agent to restore bone for-
mation in ABD has not been studied in patients with CKD. 

 Limiting Calcium Load 
 Ca is the most potent suppressor of PTH release. Several 
small studies demonstrated that patients treated with Ca- 
containing phosphate binders exhibited higher rates of de-
velopment of ABD and were less likely to have an improve-
ment in bone formation during follow-up as compared to 
non-calcium-containing binders. 179,180  Therefore, sevelamer 
and lanthanum may be preferable Pi binders for the pa-
tients at risk or with already developed ABD. Exposure of 
ESRD patients to high-calcium dialysate during RRT (both 
PD and HD) can also contribute to PTH oversuppression. In 
 agreement with this observation, it has been demonstrated 
that lowering Ca concentration in dialysate for PD or HD 
improves bone histomorphology and markers of bone turn-
over. 181–183  Patients treated with PD exhibit higher rates of 
ABD as compared with HD treated patients. One possible 
explanation is that PD patients have continuous exposure 
to high-calcium dialysate versus thrice weekly exposure in 
HD patients. 

 Limiting Active Vitamin D Treatment 
 The use of active vitamin D leads to effective lowering of 
PTH and improving bone histology in OF via a reduction 
in bone formation, which, if excessive, can cause ABD. 
The oversuppression of bone turnover with calcitriol can 
occur even in presence of relatively normal to high PTH 
levels suggestive of its possible direct bone suppressive ef-
fect. 184,185  However, a recent report that compared effects 
of calcitriol and doxercalciferol (active vitamin D analog) 
on changes in bone histomorphology in pediatric ESRD 
patients treated with peritoneal dialysis did not   nd any 
increase in the development of ABD with the careful moni-
toring of Ca  levels. 186  Additionally, there is accumulating 
evidence from animal models that active vitamin D exerts 
anabolic effects on the bone by modulating osteoblast and 
osteoclast activity. 187,188  It is possible that low doses of ac-
tive vitamin D are bene  cial for hyperparathyroid bone dis-
ease, whereas in higher doses, vitamin D is more likely to 
oversuppress bone formation; however, this point of view 
requires further  exploration. 

leading to the complications of SHPT, or patient intoler-
ance of  medical treatment due to its side effects. There is 
a paucity of data available on effects of parathyroidectomy 
on cardiovascular, bone histology, biochemical, or other 
outcomes as discussed previously in clinical manifesta-
tion section. General indications for parathyroidectomy 
are listed in Table 77.10. Most commonly, two types of 
parathyroidectomy are performed: subtotal parathyroid-
ectomy or total parathyroidectomy with autotransplanta-
tion. The presence of severe form of SHPT is ascertained 
by clinical, biochemical, and radiologic evidence. Clinical 
symptoms such as pruritus and periarticular pain are non-
speci  c and cannot be used in isolation as indication for 
parathyroidectomy. Similarly, hypercalcemia even in pres-
ence of soft tissue calci  cations is not suf  cient to warrant 
parathyroidectomy, because low turnover bone disease can 
also be associated with hypercalcemia and elevated Pi. In 
general, patients requiring parathyroidectomy have PTH 
levels exceeding 800 pg per mL and with elevation of al-
kaline phosphatase. Parathyroidectomy is recommended 
for kidney transplant recipients with persistent PTH el-
evation associated with hypercalcemia and worsening of 
kidney function. Additionally, parathyroidectomy can be 
considered in kidney transplant candidates even without 
severe symptoms if they have continuously high levels of 
PTH and parathyroid hyperplasia that is unlikely to regress 

TA B L E

13.2 Indications for Parathyroidectomy

ESRD patients and severe HPT (generally PTH  
800 pg/mL and elevated AP) and additional:
Persistent hypercalcemia
Persistent hyperphosphatemia
Persistently elevated PTH despite adequate 

treatment
Progressive extraskeletal calci  cations, including 

calciphylaxis
Persistent pruritus

Kidney transplant candidates with
Persistently elevated PTH and parathyroid 

hyperplasiaa

Kidney transplant recipients with
Persistently elevated PTH with hypercalcemia
Persistently elevated PTH with unexplained 

worsening of allograft function

aSpeci  c level of PTH is not established.
ESRD, end-stage renal disease; HPT, hyperparathyroidism; 
PTH, parathyroid hormone; AP, alkaline phosphatase.
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