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Urinary tract infections (UTIs) represent the most 
common urologic disease in the United States based 
on the Centers for Disease Control’s (CDC) statis-

tics of visits to of  ce-based physicians and hospital outpa-
tient clinics. Women account for a majority of cases. The 
2005/2006 Ambulatory Medical Care Utilization Estimates 
attributed an annual   gure of approximately 8.1 million 
of all diagnosed patients with UTIs as the main ailment.1a

Although no clear cost estimate is available currently, total 
expenditures in the year of 2000 alone was estimated to 
amount to US$3.5 billion. 2a

The human urinary tract is a normally sterile environ-
ment that presents invading bacteria with numerous chal-
lenges of a dynamic nature. These challenges include the 
mechanical stress of urine   ow, various physical barriers 
such as the mucosal epithelium, and the attack of invading 
immune cells that form part of the host’s immune response. 
The dynamic nature of these challenges means that invad-
ing pathogens must rapidly adapt to their changing niche 
in order to enable colonization. Infections of the urinary 
tract occur when pathogens, often originating from fecal 
  ora, enter the urethra. Although continuous cycles of urine 
production, storage, and voiding relentlessly expel  invading
organisms, pathogens are able to migrate to the bladder, 
where they may cause symptomatic cystitis or asymptomatic 
bacteriuria (ABU). 1 Pyelonephritis manifest when pathogens 
ascend further up to the kidney, colonizing the tubules of 
the nephrons. 

Asymptomatic bacteriuria is de  ned as the presence of 
bacteria in the urinary tract, which do not cause any obvious 
clinical symptoms in the patient. ABU has been described as 
similar to a commensal state 2 where patients may carry up 
to 10 5 CFU per milliliter of urine without symptoms. ABU 
strains are genetically similar to those that cause symptomatic 
infections, but they notably tend to lack adhesion organelles. 

Cystitis, or a lower UTI, occurs when the pathogens that 
have entered the urinary bladder attach themselves to cells 
of the bladder epithelial lining, where they start multiplying. 
A lower UTI often presents with clinical symptoms such as 
pain and urgency of urination. The urine of cystitis patients 

often appears cloudy due to the presence of bacteria, white 
blood cells (WBCs), and sloughed epithelial cells. 3 A urine 
examination and culture are essential for a diagnosis, and the 
infection is usually treated with antibiotics. 

Further migration of bacteria up the ureters leads to an 
infection of the kidneys. 4 A bacterial infection of the kidney 
is medically termed pyelonephritis, indicating that the infec-
tion has reached the renal pelvis—the so-called  pyelum—of
the kidney ( nephros). Upper UTI infections are more dif  -
cult to diagnose than cystitis. They show similar symptoms 
to a lower UTI but are often accompanied by a sudden in-
crease in temperature and unilateral or bilateral   ank pain. 5
Pyelonephritis is commonly de  ned as a tubulointerstitial 
disorder based on the pathologic picture observed in renal 
biopsies. This indicates that the tubules and interstitial tissue 
are most commonly involved. 6 In light of the greater level 
of in  ammation, as compared to cystitis, pyelonephritis is 
considered a serious infection. 7 Gross pathology includes 
abscess formation in the renal parenchyma and edema, often 
leading to irreversible scar formation. Renal scar formation 
with   brosis can contribute toward the development of renal 
insuf  ciency. 7

The normal kidney is considered relatively resistant to 
infection but abnormalities in the structure and function of 
the urinary tract can increase susceptibility. 8 Risk factors in 
children include voiding dysfunction and vesicoureteral re-
  ux, whereas in adults, genetic susceptibilities and behav-
ioral risk factors are most relevant. 9

An essential step in bacterial colonization and the initia-
tion of a UTI is the bacterial binding to the urinary epitheli-
um. However, the epithelia that line the urinary tract are far 
from uniform. The bladder is lined by a transitional strati  ed 
epithelium consisting of multiple layers, topped with facet 
or umbrella cells, and covered with apical plaques of hex-
agonal uroplakin. 10 The bladder epithelium, together with 
the transitional epithelium, covers the ureters and the renal 
pelvis and is also known as uroepithelium. The  Bowman
capsule (the epithelial structure that surrounds the glomer-
ular capillary tufts) is lined with thin squamous epithelial 
cells. The tubular systems of the nephron all consist of a 
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gut E. coli, genetic mutations and differences in expression 
of certain genes may actually differentiate virulence potential 
rather than genomic content itself. 17

The extra genes that confer virulence are commonly lo-
cated in speci  c regions of the chromosome, termed patho-
genicity-associated islands (PAIs). 19,20 This unique subset 
of genomic islands has been acquired by horizontal gene 
transfer. 21 PAIs were originally identi  ed by Hacker and 
colleagues22 when they analyzed segments of chromosomal 
regions that encode multiple, distinct virulence-associated 
phenotypes in UPEC strain 536. 23 Further characterization 
has demonstrated that PAIs are present in a wide range of 
bacterial pathogens, that PAI segments range from 10 to 
200 kb in size, and that they are rich in virulence and an-
tibiotic resistance gene insertion sequences or other mobile 
genetic elements. PAIs are easily identi  able by their unique 
G C content, 24 and their location near or within tRNA 
genes. One bacterium may possess multiple PAIs, 25,26 as 
exempli  ed by UPEC strain 536, which contains six well-
characterized PAIs. 27–29

The chromosomes of  E. coli appear highly diverse aside 
from a core genome that is highly homogeneous in G  C
content.24 A large proportion of this diversity arises from a 
variable pool of mobile genetic elements, conjugative plas-
mids, bacteriophages, transposons, insertion elements, 
as well as by the recombination of foreign DNA into host 
DNA.24 This has been highlighted in comparative studies of 
the nonpathogenic E. coli K-12 lab strain MG1655, 28 the en-
terohemorrhagic O157:H7 strain EDL933, 30 and the UPEC 
strain CFT073. 16 They were shown to differ signi  cantly in 
genome size, sharing only 39.2% of proteins in common. 16

The   exibility of bacterial genomes arising from mobile 
genetic elements may facilitate the timely emergence of new 
clones,31,32 which provides new virulence and antibiotic re-
sistance pro  les. 

However the genetics may look or may have evolved, 
it remains that pathogenic UPEC strains express proteins 
that are considered essential for virulence. These virulence 
factors characterize disease isolates. 33 Although the early 
de  nitions of virulence factors came from the basic epide-
miology practice of comparing properties of fecal strains 
from healthy controls with urinary isolates from patients, 34

Falkow35 introduced a new view in 1988, which he named 
the molecular Koch’s postulates for pathogenesis. These 
postulates include 36:

   The phenotype or property under investigation should 
be associated with the pathogenic members of a genus 
or pathogenic strains of a species. 

   Speci  c inactivation of the gene(s) associated with 
the suspected virulence trait should lead to a measur-
able loss in pathogenicity or virulence, or the gene(s) 
associated with the supposed virulence trait should be 
isolated by molecular methods. Speci  c inactivation or 
deletion of the gene(s) should lead to loss of function 
in the clone. 

single layer of epithelium, which expresses a unique struc-
ture and function depending on the tubule segment. 11,12,13,14

The proximal tubule consists of cuboidal/columnar epithe-
lia covered with microvilli ( 150 per square micrometer of 
cell surface), which function to increase the surface area for 
tubule reabsorption. 12 Distal tubule cells lack microvilli and 
constitute a tight epithelium, displaying low endocytic ca-
pacity and low permeability to water. 13,14 This suggests that 
bacteria do not only meet very different epithelial linings 
on their way up the urinary tract, but also that they do so 
while being exposed to a continuously altered composition 
of   ltrate/urine. 

Uropathogenic  Escherichia coli (UPEC) are implicated 
as the causative agent in up to 80% of community-acquired 
UTIs, making it the leading urinary pathogen. 7 However, 
other gram-negative bacterial species are also associated 
with UTIs, including Klebsiella, Enterobacter, Pseudomonas,
and Proteus mirabilis.7 The latter accounts for more than 
40% of UTIs in infant boys. Gram-positive bacteria impli-
cated in UTIs include Staphylococcus strains,  epidermidis,
and aureus, as well as  Enterococcus faecalis.7 Using culture-
based methods, a Canadian study of bacterial isolates in am-
bulatory patients with community-acquired UTIs revealed 
that 74.2% contained Escherichia coli, 6.2%  contained
Klebsiella pneumoniae, 5.3% contained Enterococcus, 2.8% 
contained Streptococcus agalactiae, 2% contained  Proteus 
 mirabilis, 1.4% contained Staphylococcus saprophyticus,
0.9% contained Viridans streptococci, 0.9% contained Klebsi-
ella oxytoca, and 0.8% contained Pseudomonas aeruginosa.15

Although the proportion of isolates vary depending on the 
region, the disease state, and the patient type, UPEC unani-
mously remains the major causative microbe for UTIs and, 
as such, has been used as the primary pathogen in a num-
ber of molecular studies of the UTI process. This chapter 
will accordingly focus on current knowledge gained from 
UPEC-induced UTIs. 

 VIRULENCE OF UROPATHOGENIC 
ESCHERICHIA COLI
Bacteria entering the urinary tract must rapidly adapt to 
their new environmental niche. To enable this adaptation, 
UPEC strains express speci  c genes that encode a class of 
proteins termed virulence factors. This name originates from 
the   nding that these factors assist in the initiation and pro-
gression of the infection. UPEC strains have a larger genome 
and therefore contain more genes than their nonvirulent 
ABU or commensal E. coli counterparts. For example, the 
clinical isolate CFT073 has 590,209 more base pairs in its 
genome than the K-12 MG1655 strain. 16 Based on recent 
genetic approaches, it was proposed that UPEC, ABU, and 
commensal strains may have evolved from the same virulent 
ancestral parent, with the ABU and commensal strains hav-
ing lost virulence factors. 17,18 Due to the relatively minor ge-
netic variations between the UPEC, ABU, and a commensal 
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development of a heterogeneous bacterial population. 44 A 
genetic switch, the so-called   m switch, controls the phase 
variation of type 1   mbriae expression. This invertible 
element contains the main promoter for the   mbrial struc-
tural subunits. 44 Negative cross-talk between type 1 and P 
  mbriae has been demonstrated, with PapB being shown 
to repress the FimB-promoted off-to-on inversion of the    m
switch.45 This means that UPEC express either Type 1 or 
P   mbriae but it is  unlikely that they express both simul-
taneously. A cross-talk between P   mbriae expression and 
motility has also been reported, showing that the expres-
sion of P   mbriae also regulates the synthesis of   agellum, 
a protein-based extrusion that mediates bacterial mobility. 
The PapX protein, encoded at the end of the  pheV associated 
pap gene cluster in UPEC strain CFT073, represses motility 
by binding to the   hD promoter, thereby repressing tran-
scription of FlhD 2C2, the master regulator of   agella. 46 These 
regulatory mechanisms highlight one mechanism by which 
bacteria can   ne-tune their expression to adapt to the chal-
lenging microenvironments they encounter upon infection. 

 Type 1 Fimbriae 
Type 1   mbriae are attachment organelles produced by the 
vast majority of E. coli strains, both commensal and patho-
genic. Initially visualized in 1950, 47 type 1   mbriae are man-
nose sensitive adhesion organelles, which means their ability 
to agglutinate erythrocytes is inhibited by mannose. 48,49 This 
feature, found in the mid 1950s, is still used today to de  ne 
type 1   mbrial expression. 

The type 1   mbriae are made up of 500 to 3,000 repeat-
ing subunits of the FimA protein, which is formed into a 
7-nm thick right-handed helical rod. At the outermost end 
of the rod is located a 3-nm thick distal tip that contains 
several copies of the adapter proteins FimG and FimF as well 
as the tip adhesin FimH. 50–52 Assembly of the rod-like type 
1   mbriae occurs via the chaperone-usher pathway, which 
represents a common assembly pathway for   mbriae in 
gram-negative bacteria. 52 The chaperone and usher proteins 
required for the formation of type 1   mbriae are all encoded 
in the   m operon. 51 FimC is the periplasmic chaperone, 
which delivers bound subunits to the outer membrane usher 
protein FimD. From here, the subunits are incorporated into 
the growing   mbriae. 51

The ability of the tip adhesion FimH to bind mannose-
containing glycoproteins means that type 1   mbriated bacte-
ria can adhere to a wide range of human target cells. 53,54 The 
crystal structure for FimH was recently resolved. 55,56 Where-
as intestinal E. coli express certain variants of the FimH 
adhesion,57,58 UPEC express a FimH that has an increased 
af  nity for terminal monomannose (M1) residues 59 and dis-
plays a 20-fold higher ability to bind uroepithelium. 57,58,60

The traditional view of type 1–mediated binding is that the 
mannose moiety is present on cells or structures associated 
with the mucosal lining, or alternatively, that mannose is 
bound to abiotic surfaces. Whereas the   rst situation refers 

   Reversion or allelic replacement of the mutated gene 
should lead to restoration of pathogenicity, or the 
replacement of the modi  ed gene(s) for its allelic 
counterpart in the strain of origin should lead to a loss 
of function and a loss of pathogenicity or virulence. 
Restoration of pathogenicity should accompany the 
reintroduction of the wild-type gene(s). 

Fifteen years later, Falkow 36 reviewed these postulates 
in light of the new advances in technology available to in-
fection biologists. Here he described how the postulates 
should be considered as a “working hypothesis for the study 
of the genetic and molecular basis of pathogenicity” and not 
a ridged determination of virulence factors. Some virulence 
factors may play different roles in different model systems 
and, as technology advances, the de  nitions of what a viru-
lence factor is may need to evolve. Some of these factors 
may also be considered as “  tness factors” (i.e., factors that 
enhance the growth and colonization of the bacteria but 
may not be absolutely essential for infection). Siderophores, 
which allow bacteria to sequester iron, have been annotated 
as   tness factors because their expression is advantageous 
but not essential to virulence. 37,38 Conversely, the acquisition 
of certain traits such as antibiotic resistance, which would 
appear advantageous for virulence, can have a negative effect 
on bacterial   tness. 39,40

 UROPATHOGENIC  ESCHERICHIA COLI
ADHESION 
The traditionally annotated UPEC virulence factors include 
adhesion factors, exotoxins, lipopolysaccharides, capsules, 
proteases, and iron acquisition systems. 41,42 Research on 
these factors has been carried out in vitro and forms the 
foundation for their current de  nition. Thus, the expression 
of certain adhesion factors is still de  ned by their in vitro 
agglutination abilities. 34,42 In UPEC, the best described viru-
lence factors are involved in bacterial adhesion to the uro-
epithelium, and these proteinaceous structures are referred 
to as   mbriae or pili. 20 These organelles allow UPEC to bind 
to the epithelium and help bacteria to withstand the stress 
of   ltrate and urine   ow. UPEC express numerous different 
  mbriae including P, type 1, F1C, S, and Afa/Dr adhesins. 42

The great redundancy in   mbriae expression is further illus-
trated by the fact that one bacterium contains the genes for 
many different   mbriae. 43 The current understanding of the 
roles of the various   mbriae in UTIs is described in detail in 
the following paragraphs. 

Bacteria have many tools aiding their rapid adaptation 
to changing microenvironments. They contain genes for 
numerous different   mbriae and it has been shown there 
is a redundancy between these   mbriae. 43 Phase variation 
means the bacteria can vary their   mbriae expression, there-
by altering their nature of adhesion depending on the mi-
croenvironment. This common feature not only allows for 
rapid adaptation but also, at the same time, allows for the 

675



676 SECTION IV  INFECTIONS OF THE URINARY TRACT AND THE KIDNEY

present in all virotypes of  E. coli,60 and a role for FimH in in-
terbacterial binding may explain a general function for these 
  mbriae in diverse perfused environmental niches. 

Type 1   mbriae have been found to ful  ll molecular 
Koch’s postulates. Microarray studies of an in vivo mouse 
model show high levels of type 1 expression. 68 A mutant un-
able to make FimH is severely de  cient in colonization of the 
urinary tract in a mouse UTI model, and complementation 
of the mutant has been shown to restore virulence. 69

 P Fimbriae 
P   mbriae were one of the   rst virulence factors associated 
with UPEC. In 1976, it was demonstrated that E. coli from 
patients with acute pyelonephritis adhered in greater num-
bers to uroepithelial cells in vitro than strains causing as-
ymptomatic bacteriuria. 70 Their adherence was not inhib-
ited by the prototypic type 1 inhibitor mannose, and further 
investigation led to the identi  cation of P   mbriae. They 
were designated P because of their ability to agglutinate red 
blood cells (RBCs) of the P blood group when analyzed in 
vitro. 34,71 P   mbriae are encoded by the  pap (pyelonephritis-
associated pilus) operon, which consists of 11 genes located 
on chromosomal pathogenicity islands. Unlike the    m op-
eron, the  pap operon is selectively distributed in  E. coli.24,72

The morphology of this   mbriae is extremely similar to type 
1   mbriae. 73 P   mbriae are hetero-polymers consisting of a 
helical rod of PapA subunits with a tip consisting of the mi-
nor pilins PapE and PapF. The tip adhesion PapG mediates 
attachment to Gal  1-4Gal  containing glycolipids, which 
are often found on the renal epithelium. 73,74 PapG is known 
to have at least three allele variants: class I, class II, and class 
III. Class II is primarily linked to human pyelonephritis and 
class III is linked to cystitis. 71,75,76 Some strains, such as the 
prototypical UPEC strain CFT073, carries two  pap gene clus-
ters, both of which encode for the PapGII allele. 16,71

Although P   mbriae have long been considered an impor-
tant virulence factor in UTIs, they do not ful  ll the  molecular
Koch’s postulates. P   mbriae are expressed by a majority, but 
not all, clinical isolates. 34,77 Approximately 80% of UPEC 
strains express P   mbriae, 78 and a strong relationship ex-
ists between the severity of infection and the prevalence of P 
  mbriae. Indeed, clinical isolates lacking PapG adhesin were 
observed to cause comparatively less kidney damage than the 
PapG positive counterpart. Interestingly, despite the known 
role of P   mbriae in the adhesion colonization capability of 
strains in both the kidneys and bladder, it was found to be 
independent of PapG mediated adhesion. 79–82

Expression of P   mbriae is controlled by phase varia-
tion, and varies depending on environmental conditions. 
The reversible epigenetic switch that controls the initiation 
of pap operon transcription allows bacteria to   ne-tune their 
P   mbriae expression to suit their changing environment in 
vivo.44,83,84

Recently, P   mbria were shown to facilitate the early 
stage of UPEC colonization of renal tubules. 62 Using high-
resolution live animal imaging, it was shown that strains 

to bacterial colonization on the mucosal lining, the latter is 
implicated in bacterial bio  lm formation in vitro. 61 Recently, 
a novel alternative was presented, demonstrating the impor-
tance of type 1   mbriae in mediating interbacterial contact 
and bio  lm formation in vivo, thus providing a means for 
bacteria to withstand the shear stress from the renal   ltrate 
(see the following text for further details). 62

In UPEC strains, the role of type 1   mbriae in cystitis 
has been extensively described. The uroplakins on the sur-
face of bladder epithelium contain monomannose moieties 
to which FimH binds. 42,55 Therefore, uroplakins serve as an-
choring sites allowing UPEC to gain a foothold in the blad-
der. 63 Although the kidney lacks mannose moieties, a new 
hypothesis was recently proposed in which the FimH tip 
adhesions of type 1   mbriae facilitate interbacterial binding 
and, in synergy with P   mbriae, thus enable tubule coloni-
zation.62 This broadens the role for type 1   mbriae to infec-
tious niches other than those with surface-bound mannose 
moieties.

The urinary tract represents a compartment continu-
ously exposed to some degree of mechanical   ow, primarily 
in the form of urine. Bacteria entering into this compartment 
will thus be exposed to shear stress generated by the   ow 
of urine over the epithelial surface. Over recent years, it has 
become increasingly appreciated that the stress may affect 
bacterial adhesion. The UPEC FimH protein has been shown 
to display enhanced binding to mannosylated surfaces in vi-
tro in the presence of shear stress. 64,65 This interaction is re-
ported to operate via a force-enhanced allosteric catch-bond 
mechanism, functioning via a   nger-traplike    sheet twist-
ing mechanism. 64

In the initial report of FimH shear-dependent binding, 
it was shown that at a shear of 0.02 dynes per cubic centi-
meter, the binding strength of FimH was weak, whereas as 
the shear increased to 0.8 dynes per centimeter, this bind-
ing became stronger. 65 The same laboratory also showed that 
UPEC positively select for a FimH variant that maintains an 
attachment following a drop in shear, as compared to fecal or 
vaginal E. coli isolates. 66 This variation in the signal peptide 
of FimH, which results in expression of less, though longer, 
  mbriae, may be very relevant under the   uctuating con-
ditions facing UPEC in vivo. The fact that certain bacterial 
adhesion events are enhanced by tensile force, as opposed to 
bacteria being washed away, is particularly relevant in an en-
vironment such as the urinary tract where bacteria must bind 
in the face of   uctuating   ltrate   ow. Thus far, FimH is the 
best described bacterial adhesin in terms of shear- enhanced
adhesion, whereas binding of PapG, the tip adhesion of 
P   mbriae, has been shown to be shear-independent, being 
able to mediate binding even under relatively low shear. 67

Although the shear-mediated adhesion may assist type 1 
adhesion to the bladder epithelium via mannose binding, it 
may also function during UPEC colonization of the renal tu-
bule, albeit via a different mechanism. Within the nephron, 
FimH may mediate interbacterial binding and help prevent 
bacterial washout by renal   ltrate. 62 Interestingly, FimH is 
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several host cell types, the occurrence of S   mbriae express-
ing E. coli strains in UTIs is infrequent. 97,98 The role of S 
  mbriae in UPEC pathogenesis may thus be minor. 

 BACTERIAL TOXINS AND VIRULENCE 
FACTORS 
  -Hemolysin 
The 107 kDa lipoprotein   -hemolysin (Hly) is considered 
an important UPEC virulence factor, yet no more than 50% 
of pyelonephritogenic E. coli organisms express this toxin. 
The Hly operon is commonly located adjacent to genes en-
coding P   mbriae, 99,100 which may account for the two- to 
threefold higher probability of UPEC having  hly genes over 
fecal strains. 101 Hly exerts concentration-dependent, bipha-
sic activities on target cells. The traditional view focuses on 
Hlys cytotoxic effect. Hly is lytic for numerous cell types, 
including erythrocytes, polymorphonuclear leukocytes, 
monocytes, mast cells, basophils, and lymphocytes. 102,103

More recently, the sublytic concentration of Hly was shown 
to elicit Ca 2  signaling in primary proximal tubule cells. 104

Via frequency-modulated activation of the transcription fac-
tor nuclear factor-kappa B (NF-  B), Hly activated proin  am-
matory signaling in epithelial cells. When analyzing a role 
for Hly in vivo, intravital imaging of the infection process 
within a nephron of a rat was applied. This showed that 
the same end result was achieved whether or not UPEC ex-
pressed Hly. However, the kinetics of the tissue response was 
severely in  uenced. 105

 Cytotoxic Necrotizing Factor 
CNF1 is a toxin contributing to UPECs invasion of the epi-
thelium.106,107 The toxin induces the formation of stress   -
bers via the deamination-dependent activation of small, 
actin-regulatory GTPase proteins of the Rho family. 108,109

The gene encoding CNF1 is positioned adjacent to hemo-
lysin,110,111 and coregulation of their expression is mediated 
by RfaH. 112,113 Although the role of CNF1 in vivo remains 
unclear, in vitro studies do suggest a role for the toxin in 
urinary tract disease. 114,115

 Secreted Autotransporter Toxin 
Among the array of toxins studied in UTI models, the 107-
kDa Sat protein is more frequently secreted from pyelone-
phritogenic E. coli strains than fecal isolates, suggesting a 
possible role of the toxin in pathogenesis. 116 Sat has serine 
protease activity and shows cytopathic effects (cytoplasmic 
vacuolization) on human bladder and kidney cell lines, and 
in the mouse kidney. 117 However, Sat is not required for kid-
ney colonization. 117 Originally isolated from the prototypic 
UPEC strain CFT073, Sat was found to share homology with 
various virulence-related proteins from a range of  E. coli pa-
thotypes.118 Among these, Sat possess a high similarity to Pet 
and EspC, two SPATE (serine protease autotransporters of 
Enterobacteriaceae) proteins. 118

expressing P   mbriae were able to bind and initiate colo-
nization in the face of sheer stress from renal   ltrate   ow. 
It was also demonstrated that the P   mbriae act in synergy 
with type 1   mbriae in a heterogeneous bacterial commu-
nity to facilitate renal tubule colonization. P   mbriae were 
shown to mediate bacterial binding to the epithelium, 
whereas the type 1   mbriae mediated interbacterial bind-
ing as the colony expanded into the tubule and away from 
the epithelium. 62 It is interesting to note that unlike type 1 
  mbriae, only  E. coli and not other gram-negative rods carry 
the genes for P   mbriae. 85

 Dr Adhesin 
Aside from type 1 and P   mbriae, several other adhesins 
are implicated in mediating urinary tract infections, though 
their roles are not as established. The Dr adhesins family em-
braces   mbrial and a  mbrial structures, which are found on 
the extracellular surface of E. coli, and have in common that 
they bind to Dr blood group antigens. 86 The Dr blood group 
antigen is a component of the decay-accelerating factor 
(DAF), a membrane protein that prevents host lysis by com-
plement.87,88 This binding leads to the internalization of Dr  
E. coli into nonfusogenic intracellular vacuoles where bacte-
ria are shielded from the host immune system. 89 Dr  adhesin
mediated binding of E. coli to the bladder epithelium has 
also been correlated with recurrent UTIs in young adults 
and with pyelonephritis in pregnant women. 90 Among the 
Dr adhesin family, only Dr   mbria possess the ability to bind 
both type IV collagen of basement membranes and DAF. 91

The latter is mediated via the subunit DraE. 92 When inves-
tigating the signi  cance of DraE-type IV collagen binding, it 
was shown that disruption of this capability resulted in the 
inability of E. coli to cause a persistent kidney infection. 93

 F1C Fimbriae and the S Fimbria Family 
Although the role of type F1C   mbriae for UTIs has not been 
fully determined, epidemiologic data suggest this   mbriae to 
be more prevalent in pyelonephritis and cystitis strains than 
among fecal strains of E. coli.94 Data suggest these   mbriae 
are expressed in vivo and provide bacteria the capacity to ad-
here to human distal tubular and collecting tubular epithe-
lium, as well as the vascular endothelium on kidney tissue
sections.95,96 The two minor glycosphingolipids, galactosyl-
ceramide and globotriaosylceramide, have been identi  ed 
as target tissue receptors for F1C   mbriae in rats, canines, 
and humans. Galactosylceramide is found throughout the 
urinary tract, with the exception of the urethra, whereas glo-
botriaosylceramide is unique to the kidney. 95 The binding of 
F1C-  mbriated bacteria to renal epithelial cells in vitro was 
shown to induce similar levels of interleukin (IL)-8 produc-
tion as compared to those levels produced by the adhesion 
of type 1- and P-  mbriated bacteria, thus supporting a role 
for F1C in pyelonephritis. 95

The S   mbriae bind terminal NeuAc  2, 3-galactose se-
quences present on glycoproteins. Although shown to bind 
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adapt their gene expression and alter their physiology to 
cope with the situation. The net effect of these opposing 
forces determines the duration of the infection and the end 
result: bacterial clearance, containment or commensalism, 
or the death of the host. Depending on the physiology and 
function of the organ, the nature of such challenges varies. 

 Urine 
Urine is a highly variable and dynamic environment that 
both prevents and promotes infection. High osmolality, high 
urea concentrations, and low oxygen tension exhibit bacte-
riostatic and bactericidal effects. 129–134 On the other hand, 
thin   lms of urine retained at the bladder mucosa act as a 
reservoir of bacteria, allowing repopulation following each 
voiding event. 131,133–136

 The Bladder 
The cascade of events that occur when urinary pathogens 
and, particularly, UPEC come into contact with the bladder 
epithelium has been well studied. Type 1   mbriae bind to 
mannose residues on the surface of uroepithelia via the FimH 
adhesion. Once adhered, UPEC can withstand the forces of 
bladder emptying. However, FimH is believed to act not 
only as an adhesion, but also as an invasin that promotes 
bacterial entry into mast cells, macrophages, and the blad-
der epithelium. 137,138 Lipid raft domains on the host cells 
have been reported to facilitate type 1   mbriated bacterial 
invasion with cholesterol, and caveolin-1 has been shown 
to cluster around the bacteria upon binding. 50,136,139 Local-
ized rearrangement of host actin cytoskeleton is required 
for FimH-mediated epithelial invasion and is mediated via 
phosphoinositide-3-kinase signaling. 140 However, the inter-
nalization of bacteria into the bladder epithelium does not 
appear to be the end of the story; far from it. There are two 
alternative reported pathways for bacteria once they enter 
the bladder epithelium. 141 Upon internalization, bacteria 
multiply within intracellular bacterial communities (IBCs) 
present in membrane-bound vacuoles. 141,142 Within the IBC, 
bacteria change from a bacillary shape to a smaller, more 
coccoid shape 139 that forms pods within the facet cells. At 
this stage some bacteria on the periphery of the pod regain 
a bacillary shape and become motile, thus leading to bacte-
rial spread. 143 There have been suggestions that the behavior 
of bacteria within these pods seems to be “bio  lmlike.” 139

Some bacteria within IBCs form long (  70  m)   laments, 
which move extracellularly and induce reinfection via rese-
ptation, thus leading to further rounds of IBC formation. 144

Upon infection of the bladder epithelium, one host re-
sponse includes an exfoliation of the infected cells. 143,145 Ex-
foliation results in a loss of surface epithelial cells from the 
underlying transitional layer. Although this functions well to 
clear many epithelial cells infected with IBCs, the bacteria 
have an alternative mechanism by which they can establish 
quiescent intracellular reservoirs (QIRs). 144 In QIRs, bacte-
ria remain within the membrane-bound compartments with 
no extensive multiplication. When these transitional cells 

 Siderophores 
Mammals possess ef  cient systems such as the proteins 
transferrin and lactoferrin to ef  ciently scavenge free iron 
within the host. During an infection, the deprivation of free 
iron is used as a host defense mechanism as upregulation of 
iron acquisition and storage mechanisms are up-regulated. 
Low iron availability limits bacterial viability. To counter-
act this, bacteria produce low-molecular-weight chelators 
called siderophores (Greek  sideros, iron; and  phoros, bear-
ing). Siderophores are secreted into the extracellular envi-
ronment where they bind ferric iron (Fe 3 ) and internalize 
it via receptor-mediated mechanisms. UPEC strains produce 
four distinct siderophore systems: enterobactin, salmoche-
lin, yersiniabactin, and aerobactin. Among these, entero-
bactin is conserved in all isolates. 119,120 UPEC also expresses 
siderophore- associated receptors such as  ireA121 and  iroN,122

and other iron acquisition systems. 16,20 Strains with impaired 
iron acquisition capability were shown to have decreased   t-
ness and virulence in mouse models. 123

The precise contribution of each iron uptake mecha-
nism to bacterial virulence is presently unclear. However, a 
study of coincident urinary and rectal strains from patients 
with recurrent UTIs suggested UPEC infections are facili-
tated by yersiniabactin and salmochelin. 119 Some UPEC 
strains express siderophore receptors but not siderophore. 
These strains are hypothesized to take advantage of neigh-
boring siderophore-expressing bacteria in a polymicrobial 
setting by competitively scavenging excreted iron-bound 
siderophores. 20,124,125

 Lipopolysaccharide 
The serotyping of  E. coli strains is based on three determi-
nants: the somatic antigen O, the capsular antigen K, and the 
  agella antigen H. 126 This system, developed by Kauffmann 
in 1940, has identi  ed more than 50,000 different  E. coli se-
rotypes of various combinations of the 173 O, 80 K, and 56 
H types, in addition to all nontypable strains. The associa-
tion of O-antigen serogroups with UTIs is complex. Although 
studies have observed the presence of certain serogroups 
(O1, O2, O4, O6–8, O18, O25, and O75) to be more fre-
quent in E. coli isolates in symptomatic UTIs, 127 the pattern of 
other potential virulence factors confound O-antigen-based 
epidemiology data. 128,129 Furthermore, the horizontal mobil-
ity of antigen determinant clusters obscures the phylogenetic 
relation of  E. coli strains. 130 Employing isogenic mutants of 
O antigen synthesis, a possible link between UTI pathogen-
esis and the ability of a strain to synthesize an O antigen was 
observed. 131 However, there is yet to be clear experimental 
evidence closely correlating a particular O antigen type with 
a pathogenic tendency. 

 ORGANS OF THE URINARY TRACT 
Host responses are initiated the very moment a bacterium 
starts interacting with the host tissue. In response to the ac-
companying microenvironmental changes, bacteria  rapidly
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shown to mediate interbacterial binding and bio  lm forma-
tion in the center of the tubule lumen, away from the epithe-
lium. Synergy between the two   mbriae aids in the ef  cient 
colonization of the renal tubule. This work highlighted the 
narrow nature of the spatial resolution of an infectious niche 
with the center and periphery of a single tubule lumen exert-
ing different pressures for adaptation. 154

As an infection progresses, major alterations of the in-
fected organ’s physiology occur. One of the   rst signi  cant 
  ndings relates to the rapidity of kidney responses to a local 
infection, with a majority of events occurring within the   rst 
22 hours (Fig. 21.1A–D). Early tissue changes included vas-
cular coagulation, epithelial breakdown, vascular leakage, im-
mune cell recruitment, and general tissue destruction. 153,154

Coagulation in local peritubular capillaries (Fig. 21.2), and 
the subsequent vascular shut down, occurred within 5 to 
6 hours of the infection, and accompanied a dramatic loss of 
local tissue oxygen. 155 Subsequent signs of ischemic injury 
were seen. This response was found to protect the host from 
urosepsis by keeping the infection site con  ned. Although 
extravasation of neutrophils inevitably causes tissue dam-
age, the ischemic response ef  ciently hindered bacteria from 
gaining access to the bloodstream, thus giving time for neu-
trophils to clear the infection (Fig. 21.1E,F). Furthermore, 
bacterial colonization was shown to affect renal   ltration, 
leading to obstruction. 3 Renal ischemia and obstruction are 
both well-studied physiologic injuries and both cause in  am-
mation and tissue destruction in their own right. 156,157 Both 
are multifactorial and can vary in severity. Severe ischemia or 
obstruction can lead to end-stage renal failure, as can pyelo-
nephritis. Thus, this study revealed that the pathophysiology 
of pyelonephritis is in fact a combination of infection and 
physiologic injuries such as ischemia and obstruction. 

 HOST RESPONSES TO INFECTION 
The mammalian urinary tract is protected by numerous de-
fense mechanisms, which together strive to maintain a sterile
environment. 3,158 The physical defense of the epithelial bar-
rier is complemented by mechanical defenses, including the 
sheer stress of urine   ow, and chemical defenses, such as 
the expression of proin  ammatory cytokines and antimi-
crobial peptides. 159,160 The colonization of the urinary tract 
can either lead to symptomatic disease, such as cystitis and 
pyelonephritis, or can develop into asymptomatic bacteri-
uria.18,160 How the infectious process is developed is de  ned 
by the intimate interplay between features speci  c for the 
pathogen (i.e., virulence factors) and those de  ned by the 
host. One major host defense is the immune response, which 
usually is divided into the innate and the adaptive immune 
responses. 160,161 Innate responses are those mechanisms that 
recognize and respond immediately to the bacterial threat. 
Innate responses are nonspeci  c, whereas the adaptive im-
mune response contains a memory that can build a speci  c 
immunity to a pathogen. The adaptive response can take 
days to weeks to develop to its full capacity. 162

develop into new facet cells, the QIRs remain intact and are 
proposed to be a possible source of recurrent UTIs. 

 The Kidney 
Acute pyelonephritis is considered the most serious form 
of UTI and can lead to renal scarring, kidney damage, kid-
ney failure, hypertension, and sepsis. 71 The study of infec-
tion in the kidney has slightly lagged behind the bladder 
when it comes to high-resolution molecular studies of host– 
pathogen interaction. Whereas Type 1   mbriae play a major 
role in bladder infection, a limited role is implied in the kid-
ney because renal epithelia lack uroplakin. Instead, P   m-
briae have been considered a key player in the development 
of pyelonephritis due to its overrepresentation in pyelone-
phritogenic isolates. 146 However, experimental data have 
not yet proven P   mbriae to be essential for disease. Only 
subtle roles for P   mbriae–mediated adherence have been 
described in uroepithelial cell culture models, 146,147 and its 
role in ascending infection models has yielded inconsistent 
and con  icting results. 81,82,148 Early studies showed that lab 
strains of E. coli overexpressing P   mbriae persisted longer 
in mouse kidneys than strains lacking the pap operon. 149

However, bacterial numbers in the tissue never reached 
the same level as that of clinical strains, and it was accord-
ingly suggested that P   mbriae are not the de  ning factor 
in virulence. Years later, when it was possible to genetically 
introduce a precise deletion of de  ned  pap genes in UPEC 
isolates, it was demonstrated that a lack of P   mbriae did not 
signi  cantly affect kidney colonization or pathophysiology 
1 week after infection. 82

Pyelonephritis does show a greater level of in  amma-
tion than cystitis, indicating the presence of a sensitive im-
mune response system that detects colonizing bacteria. 150

Toll-like receptor family (TLR) and, particularly, TLR4 play 
a signi  cant role in UTIs. An experimental ascending UTI 
model, using mice lacking TLR4 expression, failed to clear 
the invading pathogens and expressed less proin  ammatory 
mediators.151 The same group also reported that TLR4 ex-
pression on renal medullary collecting duct cells facilitated 
the translocation of bacteria across this epithelial barrier. 152

Recently, live animal imaging applied to renal UPEC 
infection allowed for a high-resolution study of a live infec-
tion in real time. 62,153 In this rat model, GFP  -expressing 
UPEC bacteria were slowly infused directly into the lumen 
of a super  cial renal tubule to allow for spatial and tempo-
ral control of the infection. Fluorescence-based multiphoton 
microscopy showed that very few bacteria initially adhered 
to the tubule epithelium in the face of the   owing glomeru-
lar   ltrate. These few bacteria rapidly adapted to the envi-
ronment and began colonizing the tubule. 153 In this dynamic 
study of infection, new roles for the P and type 1   mbriae in 
kidney infections were established, functions that had been 
undetectable in previously used infection models. 146,154 Bac-
terial P   mbriae expression demonstrated a   tness advan-
tage in withstanding tubular   ltrate   ow and in mediating 
early phase adhesion to the epithelium, whereas type 1 was 
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 The Immune Response 
Epithelia are equipped to rapidly recognize the presence 
of microbes. Toll-like receptors (TLRs) are closely related 
to the Drosophila toll protein, 161,162 which is known for its 
primary role in the innate immune system. Among a fam-
ily of 10 characterized human TLRs and 12 mouse TLRs, 
TLR4, TLR5, and TLR11 have been linked to the urinary 
tract. When TLR recognizes speci  c bacterial molecules, so-
called microbe-associated molecular patterns, activation of 
TLR signaling via coreceptor engagement leads to the onset 
of proin  ammatory responses. 162 Uroepithelial cells express-
ing TLR4 are actually as sensitive to LPS, the endotoxin of 
gram-negative pathogens, as macrophages. 163–167 Though 
the ligand for TLR11 remains unknown, this receptor is im-
portant in a mouse model of UTIs, 168 and so is TLR5, which 
recognizes bacterial   agellin. 169

The renal expression of TLR4 has been a matter of some 
debate, with reports showing that renal cells do 167 or do not 165

express TLR4. This discrepancy may be explained by experi-
mental design, which includes infected as well as noninfected 
conditions. In uninfected animals, TLR4 is predominantly lo-
cated at the apical surface of the distal tubule. 170 However, 
under septicemia, all kidney segments show TLR4 expression, 

 Shear Stress as a Natural Defense 
One of the   rst defense mechanisms in the urinary tract is the 
shear stress caused by the   ow of urine. In the bladder, this 
stress varies dramatically as the bladder   lls and then empties 
upon voiding. In the kidney, this stress may be considered 
less extreme but it too   uctuates as the body regulates kidney 
function. Bacterial attachment to the epithelial lining of the 
urinary tract is considered extremely important to withstand 
this stress and the relationship between shear stress. Bacterial 
attachment was discussed in earlier sections of this chapter. 

 Asymptomatic B acteriuria 
Asymptomatic bacteriuria (ABU), or infection with strains 
that do not cause clinical symptoms, has also been proposed 
as a mechanism to protect the urinary tract from more severe 
infections. Although ABU has been suggested to resemble 
commensalism due to the apparent lack of host immune re-
sponse, it differs from the complex commensal   ora of the 
intestine because it is normally a monoculture of only one 
bacterial strain. 162 The ABU strain  E. coli 83972, isolated 
from a patient with long-term ABU, has been used exten-
sively as a prophylaxis treatment to protect patients from 
symptomatic UTIs by outcompeting pathogens. 

FIGURE 21.1 Real-time imaging using multiphoton microscopy of a uropathogenic Escherichia coli (LT004) infection. Labeled dex-
tran outlines the injected tubule (blue) and blood   ow (red). Bacteria are visualized by their expression of GFP (green).A: One hour 
postinfection. B: Five hours postinfection. C: 22 hours postinfection. D: An adjacent, noninfected nephron of the same kidney 22 hours 
postinfection. Scale bar   30  m. E: An ex vivo analysis of image C by a confocal microscopy with the addition of nuclear stain Hoechst 
33342 (blue) and leukocyte marker  -CD18-Cy3 (red). Labeled dextran (yellow) outlines the injected tubule. Scale bar   50  m. F: A 
magni  cation of image E with an arrow indicating neutrophil phagocytosing bacteria. Note the lack of green present in images C and 
E, signifying bacterial clearance. Scale bar   10  m. (Reprinted from Månsson LE, et al. Real-time studies of the progression of bacterial 
infections and immediate tissue responses in live animals. Cell Microbiol 2007;9(2):413–424, with permission.) (See Color Plate.)
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pyelonephritis,175 thus highlighting the importance of this 
receptor for a proper immune response. Neutrophils are 
commonly regarded as the primary cell type involved in the 
eradication of bacteria. Recent studies based on real-time 
intravital imaging of pyelonephritis in rat kidneys revealed 
that PMNs started to appear at the infection site as early as 
3 to 4 hours postinfection, and by 8 hours, they constituted 
approximately 20% to 40% of nucleated cells present in the 
vasculature. 105 Not until hours later were neutrophils the 
predominant cell type at the infection foci. Although there 
is little doubt that PMNs are actively engaged in the clear-
ance of bacteria in pyelonephritis, it appears that other cell 
types of hitherto unknown origin may also be involved in 
the early in  ammatory process. PMNs are expected to kill 
bacteria via phagocytosis, and their ingestion of pathogens 
can occur with or without prior opsonization. The latter 
event is mediated by the main opsonins IgA and IgG, and by 
antimicrobial peptides. 

Neutrophil recruitment is associated with severe tis-
sue damage. The liberation of neutrophil granules con-
taining antimicrobial peptides, proteins, and proteolytic 
enzymes can lead to the dissolution of extracellular matrix, 
can harm cell structures or cell function, and can induce 
acute and potentially irreparable damage. 174 PMN isolates 
from experimental acute pyelonephritis were observed to 
kill syngeneic renal epithelial cells in a culture within 24 
to 48 hours. 176 In contrast, the suppression of acute sup-
puration in in vivo models reduced tubular epithelial cell 
damage and renal scarring despite the greater bacterial bur-
den.177,178 Furthermore, in IL-8 receptor knockout mice, 
impaired PMN translocation and unproductive accumula-
tion in the subepithelial space resulted in kidney scarring 
and abscesses. 179 A picture has started to emerge that  tissue
damage results from the coherent action of bacteria, the 
in  ammatory response, and physiologic injuries such as 
ischemia and obstruction. 62

The antibody response in UTIs occurs both locally and 
systemically. Elevated levels of IgA, IgG, and occasionally, 
IgM have been observed in both the urine and the blood of 
UTI patients. 180,181 Systemic antibody titers vary distinctly 
between kidney and bladder infections, 182,183 with cystitis 
patients often showing titers as low as control groups. 180,184

Similarly, bacteria coated with antibodies are less frequently 
observed in patients with cystitis rather than with pyelone-
phritis.182,183 Antibodies in urine play an important role in 
host protection. They may act as opsonins in opsonophago-
cytosis for PMNs recruited to the site, or they may target 
bacterial adhesins and, therefore, are likely to interfere with 
bacterial attachment to uroepithelial cells. 185 Another pos-
sibility is that antibodies trigger the agglutination of bacte-
ria, thereby promoting bacterial clearance by voiding. They 
may also act to neutralize the detrimental effects of viru-
lence factors. 186–188

In cystitis and pyelonephritis, cell-mediated immunity is 
activated a day or more following the acute phase, as  observed 
by an increased number of T cells in the infected  organ 

suggesting TLR4 is upregulated during in  ammation. The 
TLR4 expression pattern is thought to affect an individual’s 
susceptibility to UTIs. 171 Children prone to ABU have reduced 
TLR4 expression on neutrophils 171,172 and those carrying the 
TLR4 A(896)G allele are prone to develop recurrent UTIs. 173

In response to TLR4 signaling, cytokines are produced 
that orchestrate the immune response. Polymorphonuclear 
neutrophils (PMNs) and other in  ammatory cells extrava-
sate into the tissue as they follow this chemotactic gradi-
ent to the infection site. IL-8 is the main human chemokine 
(MIP-2 in mice) involved in the promotion of transepithelial 
PMN migration, which involves the IL-8 receptor CXCR1. 174

Studies have identi  ed disease-associated  polymorphisms
and  mutations in the CXCR1 gene of patients prone to 

FIGURE 21.2 Blood clotting in mucosal infections. The live 
multiphoton image shows black silhouettes (arrow), indicative 
of platelets, within the blood vessels (red) surrounding an LT004-
infected (green) proximal tubule (blue) 2.5 hours postinfection. 
Black masses adhering to the wall of the vessel (arrowhead)
suggest platelet aggregates. The intense red seen in the area 
represents stagnant   ow, indicating a lack of red blood cell 
movement. Scale bar   30  m. (Reprinted from Melican K, et 
al. Bacterial infection-mediated mucosal signalling induces lo-
cal renal ischaemia as a defence against sepsis. Cell Microbiol
2008;10(10):1987–1998, with permission.) (See Color Plate.)
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the skin, the gastrointestinal tract, the epididymis, and the 
lungs.157,202 In the urinary tract, the peptide is produced 
from uroepithelial and tubular renal cells with a subsequent 
release into the lumen. 203 Given the presence of high cathe-
licidin-related antimicrobial peptides in the early stages of 
an infection well before leukocyte in  ltration, a two-stage 
process was proposed in which the main source of the pep-
tide shifts from the epithelium to leukocytes as the infection 
progresses. 203,204 Interestingly, cathelicidins exhibit a greater 
effect on pathogenic bacteria that cause UTIs as compared 
to urogenital commensal bacteria. 205 UPEC strains associ-
ated with severe UTIs also tend to have higher resistance to 
the peptide. 206

Lactoferrin and lipocalin restrict the bacterial avail-
ability of essential iron. Lactoferrin is present in the lumi-
nal surface of distal collecting tubules where it exhibits its 
bactericidal activity indirectly by the chelation of iron, and 
directly by disrupting membrane integrity. 203 Lipocalin, on 
the other hand, limits iron availability by targeting bacteri-
ally expressed siderophores. 207,208

 Genetic Variability in Hosts 
Genetic pro  les have been observed that in  uence UTI sus-
ceptibility in patients. The genetic variation falls broadly into 
two groups: (1) factors involving bacterial colonization and 
(2) components of the host response. Variation in glycolipid 
receptor expression, which varies with the P blood group, has 
been shown to be associated with susceptibility to UTIs. Pa-
tients prone to UTIs tend to be of the blood group P1 and pos-
sess a high density of cell surface receptors for P   mbriae. 209

At present, there is insuf  cient statistical evidence to sub-
stantiate the inverse hypothesis (i.e., that individuals lacking 
receptors would be resistant to P-  mbriated  E. coli).210 How-
ever, treatment with N-butyl-deoxynojirimycin to mimic the 
previous receptor de  cient state showed a protective effect on 
mice against colonization and in  ammation. 211

Two host factors, TLR4 and CXCR1 (the CXC chemo-
kine receptor for IL-8), have been in focus when linking ge-
netic variation to UTI susceptibility. A de  ciency in mouse 
TLR4 signaling results in an asymptomatic carrier state that 
can persist for large proportions of the subject’s lifespan 
before the onset of mortality. 33,212 This sequence of events 
closely resembles untreated ABU patients. CXCR1 is the re-
ceptor for the cytokine IL-8, which induces migration and 
the activation of neutrophils. CXCR1 has been suggested to 
function in protecting the host against severe infection. 137,213

Subjects with a de  cient CXCR1 expression present with 
symptoms typical of acute pyelonephritis and renal scarring, 
as both the host’s innate defenses and neutrophil migration 
are disrupted. 143 Children with lower CXCR1 expression 
and protein levels arising from a single nucleotide polymor-
phism are prone to pyelonephritis. 140,213 Furthermore, mice 
unable to express this IL-8 receptor have a higher titer of 
bacteria, a more rapid progression to bacteriuria, and renal 
scarring during an infection. 

of the human. Earlier studies showing a close association 
between CD4 and plasma cells seemed to demonstrate the 
involvement of CD4 cells in host responses during  repeated 
infections.189,190 Experimental evidence now suggests that 
cell-mediated (T and B cells) immune responses appear to 
have a larger role in the kidney’s response to chronic and 
repeat infections, rather than against acute infections. This is 
in contrast to bladder infections where the cell-mediated im-
mune response is implicated in the acute phase. To illustrate 
this, T-cell depletion or de  ciency does not have a signi  cant 
effect on the outcome of kidneys under experimental bacte-
rial infection. 191,192    T lymphocytes are abundant in the 
mucosa, where they are known to modulate in  ammation 
in response to various insults. 193 The central importance of 
   T lymphocytes in the clearance of bacteria from the blad-
der was recently demonstrated because these cells acted as 
the major source of IL-17A, which is a key mediator for the 
innate immune response to UTIs. 194

 Antimicrobial Proteins and Peptides 
Host defenses against bacteria have been hypothesized to 
be dependent on epithelial-derived antimicrobial proteins 
that hinder survival of uropathogenic bacteria. The Tamm- 
Horsfall protein (THP) is the most abundant protein in hu-
man urine. THP is an evolutionarily conserved glycoprotein 
produced exclusively by epithelial cells of the ascending 
Henle loop. 195,196 Rich in mannose and sialic acid sequences, 
THP was shown to bind directly to type 1   mbriated  E. coli,
and was therefore initially postulated to alleviate bacterial 
burden by sequestering bacteria within the urine for void-
ing.197,198 This hypothesis was later discarded when the role 
of THP as a potent activator of innate and adaptive immune 
responses was revealed. 199,200 Examples include (1) the cell-
speci  c stimulation of granulocyte toward IL-8 produc-
tion,199,201 (2) the upregulation of costimulatory molecules 
and MHC expression on dendritic cells (DCs), (3) cytokine 
production, and (4) DC maturation via TLR-4 signaling. So 
potent is the effect of THP that overstimulation of the im-
mune system can lead to interstitial nephritis. 199,200

Other important antimicrobial peptides in UTIs are 
the  -defensins and  -defensins, which are secreted from 
the local renal epithelium and the in  ltrating neutrophils, 
respectively 200,201 Defensins possess a two-pronged effect, 
showing direct antimicrobial activity on invading bacteria 
and indirectly via the enhancement of the innate and ac-
quired immune response. In the latter, defensin-induced 
secondary signaling arising from target cells and tissues have 
been implicated in acute in  ammation regulation, immune 
cell recruitment, angiogenesis, and wound healing. 200 Ex-
amples include mast cell degranulation, the promotion of 
neutrophil chemotaxis, and naive T-cell and immature den-
dritic recruitment. 200

Cathelicidins, such as LL-37, are antimicrobial pep-
tides with direct bactericidal action. LL-37 is produced by 
neutrophils, myeloid bone marrow cells, epithelial cells of 
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may lead to kidney failure. Over the years, a number of 
proposed mechanisms for this injury have been suggested. 
A direct damaging effect of infecting bacteria is possible 
for those UPEC strains that express tissue-damaging tox-
ins.176,178,220,221 The strong in  ammatory response to py-
elonephritis has also implicated a role for collateral dam-
age. Suppression of the immune response in experimental 
models has shown reduced kidney scarring despite a high 
bacterial load. 222,223 It has also been shown that neutrophils 
isolated from acute pyelonephritis can kill syngeneic kidney 
cells in vitro, 154 and neutrophil-mediated oxidative injury of 
kidney cells has been con  rmed in vivo. 154

Though physiologic alterations that accompany 
ischemia–reperfusion injury previously have been impli-
cated in renal scarring, 224 recent data show renal infections 
do in fact cause ischemia. 154 Ischemia is a restriction in 
blood supply to a tissue or an organ that is closely associ-
ated with tissue oxygen delivery and tension (pO 2). Each 
kidney nephron has an intertwined peritubular vasculature. 
During the   rst hours (4 to 5 hours) of a UPEC infection in 
the proximal convoluted tubule, epithelia-endothelia sig-
naling initiates the clotting cascade in peritubular capillar-
ies (Fig. 21.2). This clotting leads to localized ischemia that 
manifests prior to the major in  ltration of immune cells. 
Tissue pO 2 drops signi  cantly, reaching 0 mm Hg within 3 
to 4 hours. 154 This infection-mediated ischemia was dem-
onstrated to act as an innate defense mechanism, prevent-
ing the systemic dissemination of the pathogen because 
anticoagulant therapy to prevent this response led to fatal 
sepsis within a few hours. 154 Although a massive engage-
ment of neutrophils cleared the bacteria (Fig. 21.1E,F), no 
indications of reperfusion or repair were seen within the 
  rst 24 hours. Renal scarring thus appeared to be the end 
result of infection. 

Another physiologic injury that is known to cause tis-
sue damage in its own right is kidney obstruction. Real-
time monitoring of renal   ltrate   ow in a live animal model 
of pyelonephritis showed how bacterial colonization of 
the renal tubules affects the   ow of   ltrate, with complete 
stoppage occurring within 8 hours. Kidney ischemia and 
obstruction are both well-studied physiologic injuries and 
both can cause in  ammation and tissue destruction in their 
own right. 154,155,216,225–232 Both are multifactorial and can 
vary in severity. Severe ischemia or obstruction can lead 
to end-stage kidney failure, as can pyelonephritis. Thus, 
the emerging view is that the pathophysiology of pyelone-
phritis is in fact a combination of infection and physiologic 
injuries.154

 Treatment 
A UTI is most commonly treated by antibiotics. Wagenlehner 
et al. 233 present a comprehensive statistic of clinically pre-
scribed antibiotics and their respective ef  cacies. The group 
describes UTIs as broadly divided into uncomplicated and 
complicated cases, against which treatment is tailored. 233,234

 Intracellular Bacterial Reservoirs for 
Persistent Colonization 
Recurrent infections are generally associated with repeated 
infections by the same bacterial strain. To persistently colo-
nize the host UPEC have been proposed to enter into cells, 
thus generating a refuge by protecting bacteria from host 
defense systems. However, the signi  cance of such intracel-
lular reservoirs (IR) in UPEC persistence is not ubiquitous 
across the urinary tract. 

Within the bladder, IRs appear to confer great advantage 
to UPEC survival. IRs are established when UPEC interacts 
with integral membrane proteins via FimH-mediated bind-
ing to uroplakin, which in turn triggers host cell signaling 
cascades that results in bacterial internalization. 131,190 The 
luminal surface of the mammalian bladder is lined by thick 
cell layers of pseudostrati  ed transitional epithelia. Several 
studies have observed an intracellular transition of bacteria 
12 hours postinfection, 139,141,154,214 after which IRs are es-
tablished as bacteria rapidly multiply. Once an IR has be-
come established in one cell, neighboring cells are invaded 
as UPEC progenies exit the host cell and invade other sur-
rounding cells. 215,216 Although an exfoliation of super  cial 
facet cells occurs, it does not appear to signi  cantly deter 
UPEC persistence. While substantial IRs are removed with 
sloughed cells, the inadvertent exposure of the underlying 
cell layer allows UPEC to establish new IRs. 

In the kidney the situation is different. Here, slough-
ing of the proximal tubule epithelium arising from ensued 
ischemia appears to negate the survival advantage of bac-
terial internalization. 217 During early periods of infection, 
ischemia-induced actin rearrangement and the associated 
relocalization of membrane-bound intergrins breaks the 
epithelial barrier function, 154,214 and detachment of epithe-
lial cells from the tubular basement membrane occurs. 218

Loss of the epithelial barrier, however, did not compromise 
the host. The naked tubular basement membrane hinders 
the immediate bacterial dissemination into the intersti-
tium.139,154 while giving time for host responses to occur, 
such as the cessation of blood   ow and PMN recruitment. 
Moreover, loss of the tubular integrity does not appear to 
solely bene  t the invading pathogen because paracellular 
movement of UPEC enhances the neutrophil’s accessibility 
to the tubular lumen. 

The formation of IRs within the bladder is a highly ef-
fective strategy for UPEC persistence in which IRs or bacteria 
have been observed months after the initial infection, albeit 
with antibiotic treatment. 215–217 Yet, because of distinct his-
tologic differences of the kidney from the bladder, IR estab-
lishment does not provide UPEC the same survival advan-
tage within the kidney. 102,107,154,219

 Acute Kidney Damage 
Infection and subsequent injury to the kidney causes exten-
sive damage, which may affect kidney function and which 
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systems. The simplicity of such systems zooms in on speci  c 
reactions, controlling for and   ltering out the myriad of rel-
evant but confounding interactions that occur simultaneously 
in the host during an infection. Applying this wealth of infor-
mation as a foundation and coupled with advanced imaging 
platforms for real-time studies in the live animal, researchers 
can now advance from “cellular microbiology” to “tissue mi-
crobiology,” in their attempt to generate an integrated view 
on host–pathogen interactions. Such coherent models will 
help to not only identify both the cross-talk between host and 
pathogen, but also the dynamic changes occurring in the im-
mediate environment in response to an infection. Murine in-
travital models of pyelonephritis have shown these changes 
include tissue oxygen tension and the cessation of blood 
  ow to the infected site. These are but a few of the many fac-
tors that need to be tracked during an infection. Across the 
globe, interdisciplinary research coupling all   elds of science 
is blooming and working to create new technologies. And as 
our understanding of host–pathogen interactions advances, so 
will clinical diagnostics, treatment, and patient care. 
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The following paragraph is adapted from Wagenlehner 
et al. 233

Uncomplicated UTI denotes UTI without relevant structural 
and functional abnormalities arising from the urinary tract 
(uropathies), without relevant kidney diseases (nephropa-
thies) and without relevant comorbidities. Conversely, com-
plicated UTI is a complex condition of the following condi-
tions: (1) Anatomical, structural or functional alterations of 
the urinary tract. (2) Impaired renal function by parenchymal 
and renal nephropathies. (3) Accompanying diseases or con-
ditions that impair the patients’ immune status. 

In the treatment of uncomplicated UTIs, the choice of pre-
scription is made based on   ve considerations 233: (1) the 
individual risk to antibiotic treatment; (2) the bactericidal 
spectrum of the antibiotic and the known susceptibility of 
the bacterium to the antibiotic; (3) the clinical data of the 
effectiveness of the antibiotic; (4) the effect of the antibiotic 
on commensal microbial   ora; and (5) side effects. 

Complex UTIs require a two-pronged treatment strat-
egy directed at the treatment of complicating factors and the 
invading pathogen. 234 In complex UTIs, pathogens can be a 
heterogeneous population of gram-positive and gram-nega-
tive strains with a wide range of antibiotic susceptibility and 
resistance. 233 Very often, the devised treatment must account 
for the possibility of the resistance development and cross-
resistance among antibiotics of the same family. 233

In general, the treatments of uncomplicated and compli-
cated UTIs share two fundamental aims, namely, to use  rapid
acting therapy with high ef  cacy for recurrent infections 
within a patient, and to prevent the generation of pathogens 
resistant to the treatment. 233 When treatment is delayed or 
ineffective, uncomplicated UTIs can progress to sepsis and 
severe sepsis, requiring speci  c sepsis therapy. At this point, 
treatment of urosepsis becomes a combination of (1) eradi-
cating the pathogen, (2) resolving the cause of the infection 
and the complications (e.g., obstruction), (3) providing life-
supportive care, and (4) providing  appropriate antimicrobial 
therapy. 233

Aside from clinical treatments, folk remedies are com-
monly used in the treatment of UTIs. Although there are a 
variety in existence, cranberry juice is by far one of the most 
common. Cranberry juice and tablets have been used exten-
sively as a remedy for infections of the urinary tract. Orig-
inally thought to be due to the bactericidal acidi  cation of 
the urine by hippuric acid, recent studies have dispelled this 
mechanism of action. Cranberries contain proanthocyanidins, 
which inhibit P   mbriae–mediated bacterial adherence, 235,236

and fructose, which inhibits type 1–mediated adherence. 237

Despite the apparent positive effect of cranberries, no de  ni-
tive   ndings have been determined in clinical trials. 

 CONCLUSION 
Data presented in this chapter reveal that our current knowl-
edge of UPEC and host–pathogen interactions in UTIs pri-
marily originate from molecularly well-de  ned in vitro 
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