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Na , the primary extracellular cation, is of critical im-
portance to the maintenance of extracellular   uid 
volume. The kidneys play the dominant role in reg-

ulating Na   excretion. Each day, the glomeruli   lter roughly 
25,000 mEq of Na  . From this quantity, almost 10 times the 
total exchangeable Na   in the body, the kidneys typically ab-
sorb over 99%. A remarkable feature of the Na   absorptive 
process is the precision with which it is regulated. An indi-
vidual consuming a typical diet containing 6 g of Na   will 
excrete 260 mEq of Na   per day. The same individual placed 
on a 2-g Na  -restricted diet will promptly reduce Na   excre-
tion to 87 mEq per day. Although the fraction of   ltered Na  
absorbed by the kidney changes from 99.0% on a standard 
diet to 99.6% on a Na  -restricted diet, this small change 
represents the addition or removal of over 1 L per day to 
extracellular   uid volume. Thus, the kidneys absorb large 
amounts of   ltered Na   with remarkably precise control. 

The exquisitely sensitive regulation of Na   absorption 
by the kidneys relies on sequential actions of the various 
nephron segments, each with highly specialized transport 
capabilities. Figure 5.1 provides an overview of Na   trans-
port along the nephron. In general, the absolute rates of Na  
reabsorption are greatest in the proximal tubule and fall as 
the tubular   uid proceeds from proximal to distal segments. 
Conversely, the ability to transport Na   against steep tubu-
lar   uid to blood gradients and its physiologic control in-
crease along the nephron. For example, the proximal tubule 
reabsorbs the bulk (60% to 70%) of the   ltered Na   load, 
but as will be detailed later, does so against at most small 
electrochemical gradients. Moreover, the ability to alter Na  
transport in the proximal tubule, in relative terms, is rather 
limited, usually varying by less than 25%. The collecting 
duct, in contrast, reabsorbs only a minor fraction ( 2% to 
4%) of the   ltered Na   load. However, the collecting duct 
can transport Na   against a large electrochemical gradient 
to produce urine, which is almost Na   free (  10 mEq/L). In 
addition, the rate of Na   transport in the collecting duct can 
vary over a wide range (tenfold) in response to physiologic 
stimuli. The different nephron segments thus permit both 

high rates of Na   transport (proximal segments) and highly 
regulated Na   transport (distal segments). 

Substantial progress has been made recently in identify-
ing the proteins that mediate Na   transport in each nephron 
segment and in de  ning their interactions and regulation 
within each segment. Many Na   transport proteins have been 
linked to speci  c genetic disorders (Table 5.1). Given the pri-
macy of renal Na   transport to the control of extracellular   uid 
volume, it is not surprising that the majority of these genetic 
disorders are characterized by either hypotension or hyperten-
sion. An updated and curated database of these genetic disor-
ders is maintained at the Online Mendelian Inheritance in Man 
website (www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM). 

This chapter considers the transepithelial transport of 
Na  by the various nephron segments. The discussion of 
each nephron segment begins with a description of the gen-
eral features of Na   transport in that segment along with 
pertinent structure–function relations. The mechanism of 
Na  transport is then considered on a cellular or subcellular 
level, with emphasis on recent electrophysiologic, biochemi-
cal, and molecular   ndings. Finally, each section includes a 
consideration of the factors that regulate Na   transport in 
the individual segments. 

 PRINCIPLES OF MEMBRANE 
TRANSPORT 
This section describes physical principles that underlie the 
movement of ions across individual membranes and epithelia. 
However, it is not intended to be an extended treatment of 
the thermodynamic aspects of membrane transport processes. 

 Diffusion Processes 
Solute transport across membranes may occur by diffu-
sion or convection, or by a mediated process. Diffusion is 
the random Brownian motion of a molecule with respect 
to adjacent molecules and occurs as the consequence of 
thermal energy. 1 Because the diffusional movement of an 
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160 SECTION I  STRUCTURAL AND FUNCTIONAL CORRELATIONS IN THE KIDNEY

FIGURE 5.1 The contribution of various nephron segments 
to Na  transport. PCT, proximal convoluted tubule; DCT,  distal 
convoluted tubule; CCD, cortical collecting duct; TAL, thick 
 ascending limb; IMCD, inner medullary collecting duct.

individual molecule is random, a concentration gradient is 
required for any net transfer of molecules to occur across 
a membrane. Thus, the concentration gradient represents 
the driving force for net transport. 

For charged solutes, the driving force for transport is the 
sum of the chemical and electrical potential gradients. The 
Nernst equation describes the equilibrium condition for a 
membrane permeable only to a single ionic species: 

Vm  V2  V1   (RT/ZF) ln (C2/C1) (1)

where  R is the gas constant,  T is the absolute temperature, 
Z is the valence of the solute,  F is the Faraday constant, and 
C and  V are concentration and electrical potential terms, 
respectively. At equilibrium, then, the voltage (V m) across an 
ideally selective membrane is de  ned by the concentrations 
of the permeant ion on both sides of the membrane, C2 and 
C1, respectively. For systems containing more than one per-
meant ion, the equilibrium voltage can be described by the 
Goldman–Hodgkin–Katz (GHK) equation 2,3:

Vm   RT/F ln [(PNaC2Na  PKC2K  PClC1Cl)/
(PNaC1Na  PK C1K  PCl C2Cl)] (2)

where  Px is the permeability of the respective solutes, in this 
case, Na  , K  , and Cl  . Thus, in a system containing mul-
tiple charged solutes, the transmembrane voltage is a func-
tion of the relative concentrations and permeabilities of each 
solute on the two sides of the membrane. 

 Convective Processes 
Convection is the vectorial movement of an ensemble of 
molecules and is driven by an externally imposed force 
(e.g., hydrostatic pressure). Examples of convective  transport
include glomerular   ltration and solvent drag, a process in 
which solute movement is coupled to water movement. 

Bulk water   ow may be driven by hydrostatic pressure 
and/or osmotic pressure. The familiar Starling equation: 

Jv   K(  P    ) (3)

describes net volume   ow ( Jv) in response to hydrostatic 
( P) and osmotic (   ) pressure differences. The equiv-
alence of osmotic and hydrostatic pressure is explicit 
in the Starling equation. The degree to which a solute 
exerts an osmotic pressure depends on the degree to 
which it permeates membranes. The ratio of the observed 
osmotic pressure to that predicted if a solute were 
excluded absolutely from a membrane is termed the re-
  ection coef  cient,  :

    obs/  theoretical (4)

For impermeant solutes,    1; for highly permeable  solutes,
  approaches 0. 

For solutes with   1, transmembrane solute   ux 
will be accelerated in the direction of volume   ow. This 
acceleration is known as solvent drag.4 Thus, the net pas-
sive   ux of a permeable solute across a membrane may be 
driven by both diffusion and entrainment with solvent   ow 
(i.e., solvent drag). 

 Facilitated Diffusion 
Biologic membranes are composed primarily of lipid bi-
layers. Because the permeability of many hydrophilic sol-
utes through lipid membranes is low, membranes contain 
proteins that facilitate the transport of certain solutes. 
Transport proteins, often termed  carriers or  transporters,
have a high degree of speci  city for the transported solute. 
Flux through the limited number of transporters saturates 
as the solute concentration is increased. An example of 
carrier-mediated facilitated diffusion is the entry of glucose 
into renal tubular cells mediated by the hexose transporter, 
GLUT-1. 5 The movement of ions through ion channels rep-
resents another form of facilitated diffusion. In this case, 
integral membrane proteins containing several membrane-
spanning domains form pores in cell membranes through 
which ions permeate. Ion channels generally have a high 
degree of speci  city for the ions being transported and very 
high transport rates. Facilitated diffusion mechanisms, like 
enzymes, serve only to accelerate the rate of transport, 
but do not affect the equilibrium distribution of solutes. 
In other words, facilitated diffusion, like simple diffusion 
and convection, is a passive process that tends to dissipate 
transmembrane gradients. 
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  ltrate. 14 Second, the absorption of sodium in the proximal 
tubule provides, by way of coupled processes, the driving 
force for the absorption of other solutes, such as bicarbon-
ate, glucose, phosphate, and amino acids. 

Under most circumstances,   uid at any given point 
along the proximal tubule has virtually the same Na   con-
centration and osmolality as plasma. 13 The isosmotic na-
ture of proximal tubule   uid absorption derives from the 
high water permeability of this segment, 15 which effectively 
clamps the osmolality of the tubular   uid at that of plasma. 
Although Na   transport in the proximal tubule occurs in 
the absence of large electrical or chemical gradients, the 
bulk of Na   absorption in the proximal tubule involves ac-
tive transport. For example, Na   can be reabsorbed against 
both concentration13,16 and electrical 17 gradients. In ad-
dition,   uid absorption and sodium transport cease when 
Na ,K –ATPase activity is inhibited or when cell metabo-
lism is slowed. 18,19

A signi  cant amount of proximal Na   transport also 
occurs passively. 20 For example, in the late convoluted and 
straight tubules (S2 and S3 segments), Na   diffuses  passively
out of the tubule driven by the lumen-positive electrical 
potential difference in those segments. This potential differ-
ence derives from a Cl   concentration gradient across the 
tubule wall. Even in this case, however, it is the active trans-
port of Na   in upstream portions of the proximal nephron 
that ultimately accounts for these gradients and potentials. 

 Nephron Heterogeneity 
Analyses of proximal tubular Na   transport are complicated 
by two factors: a nonhomogeneous nephron population and 
axial changes in   uid composition. There is considerable het-
erogeneity of both morphologic and functional characteris-
tics along the proximal tubule. The S1 segment cells have 
extensive basal interdigitations, numerous mitochondria, and 
a well-developed luminal brush border. 21 S3 segment cells, in 
contrast, are   atter and have fewer mitochondria, lower brush 
borders, and much less extensive basolateral membranes 
than S1 cells. 21 The Na  ,K –ATPase activity of the S3 seg-
ment is only 25% of that for the S1 segments. 22 As might be 
expected on the basis of these observations, the net rates of 
the Na   and   uid transport in the S3 straight segment are, in 
general, lower than in the S1 convoluted tubule. 23

Juxtamedullary proximal convoluted tubules have high-
er rates of volume and bicarbonate absorption than their 
super  cial counterparts, 23,24 although this disparity has not 
been noted between juxtamedullary and super  cial straight 
segments.25

Glomerular ultra  ltrate in the early proximal tubule 
undergoes axial composition changes. Figure 5.2 illus-
trates that the chloride concentration rises as a conse-
quence of the preferential absorption of NaHCO 3  over 
NaCl in this segment. 26 Glucose, amino acids, and other 
organic compounds are also absorbed avidly in associa-
tion with Na   so that their luminal concentrations in this 

 Active Transport Processes 
Active transport is a special case of facilitated transport in 
which chemical bond energy is supplied to the transport 
process so that the   nal distribution of the solute is remote 
from equilibrium. The coupling of solute transport to the en-
ergy source can take two forms. In primary active transport, 
solute transport is coupled directly to an energy-yielding 
reaction. 

The most widely recognized example of primary active 
transport is the transport of Na   and K   by the Na  ,K -
ATPase. This enzyme, often referred to as the sodium pump, 
couples the extrusion of cellular Na   to cellular K   uptake. 6
In renal tubules, this enzyme is localized to the basolateral 
membrane. In general, segments with high rates of active 
Na  transport have high Na  ,K –ATPase activity. 7 The hy-
drolysis of each ATP molecule ordinarily pumps three so-
dium ions out of the cell coupled to two potassium ions 
moving inward. 8 Therefore, the pump is electrogenic. The 
Na ,K –ATPase is responsible for maintaining the cell Na  
activity at a low level, which provides the energy for the 
Na -coupled transport of many other solutes. Thus, the 
inhibition of Na  ,K –ATPase (e.g., by peritubular ouabain 
addition) causes a signi  cant rise in the cell Na   activity. 9
The af  nity constant ( Km) of the pump for intracellular so-
dium, about 15 to 30 mM, 10 is similar to the intracellular 
sodium activity measured in proximal tubule cells. 9 There-
fore, the pump is unsaturated with respect to sodium, and 
pump activity is very sensitive to changes in the intracellular 
sodium concentration activity. 

In secondary active transport, solute movement against 
its electrochemical gradient is energized by the movement 
of another solute down its own gradient. 11 Na  , because of 
its steep inward electrochemical gradient maintained by the 
sodium pump, often participates in the transport of other 
solutes, either in the same (cotransport or symport) or op-
posite (exchange or antiport) direction. Thus, by coupling 
solute transport with sodium movement into cells, cellular 
metabolic energy generated by the Na  ,K –ATPase is stored 
in the form of a Na   concentration gradient, analogous to a 
battery, and then dissipated in the transport of a variety of 
different solutes. Some examples of symport processes in-
clude Na  -glucose and Na  -amino acid cotransport; Na  -
proton and Na  -calcium exchange are two examples of an-
tiport processes. 

 PROXIMAL TUBULE 
 General Features 
The proximal tubule is the major site for Na   absorption 
within the kidney and serves two major purposes. First, 
the proximal tubule protects the extracellular   uid volume 
by reclaiming the bulk, approximately 60% to 80%, of the 
glomerular   ltrate. 12,13 The proximal tubule with its well-
developed brush border membrane is optimally designed 
to perform the reabsorption of such a large fraction of the 
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164 SECTION I   STRUCTURAL AND FUNCTIONAL CORRELATIONS IN THE KIDNEY

 Electrical Resistance 
 The electrical resistance of the mammalian proximal tubule 
is remarkably low, making this tubule a classic example of 
a leaky epithelium, with resistances of 5 to 10 -cm 2 . 36,37

In the proximal tubule, the total cellular resistance (i.e., the 
sum of the apical and basolateral resistance) is 20- to 70-fold 
greater than the transepithelial resistance. This indicates that 
the paracellular resistance is low and that the predominant 
route for passive ion   ows in the proximal tubule involves 
the paracellular pathway. 

 Ionic Selectivity 
 The initial convolution of the super  cial proximal tubule is Na 

selective; thereafter, the super  cial convoluted and straight 
tubules are Cl –  selective. 29,38  In contrast,  juxtamedullary 
 proximal tubules are Na    selective throughout their course. 38

Because the Cl –  concentration rises as   uid   ows along the 
convoluted tubule (Fig. 5.2), oppositely directed gradients for 
Cl –  and HCO 3  –  in late convoluted and straight segments give 
rise to a lumen-positive transepithelial potential difference. 26

The latter indicates a higher permeability for Cl –  than HCO 3  – , 
both in super  cial and juxtamedullary proximal tubules. 23,39  

 MECHANISMS OF SODIUM 
REABSORPTION 
 Apical Membrane Sodium Entry 
 In the proximal tubule, Na    entry into the cell may be 
coupled to the movement of other solutes, such as glu-
cose, chloride, or protons; or Na    may enter independently. 
In either case, the driving force for Na    entry is the steep 
electrochemical gradient favoring Na    in  ux. 

 The intracellular Na    activity ranges from 15 to 35 mM. 10,40

The entry of Na    into cells appears to be rate limiting for trans-
epithelial Na    transport. Amphotericin B, a polyene antifungal, 
increases the permeability of the luminal membrane to Na    and 
causes a large rise in net sodium absorption. 41  

 Na   /H    Exchange 
 Directly coupled Na   /H    exchange in the proximal tubular 
brush border is responsible for most proton secretion and 
for a large fraction of Na    reabsorption in the proximal tu-
bule. 42  The mechanism whereby Na   /H    exchange effects 
Na    reabsorption is presented in Figure 5.3. Brie  y, entry of 
Na    is coupled to extrusion of a proton into the lumen. The 
proton titrates a   ltered HCO 3     molecule to form carbonic 
acid. Carbonic acid subsequently is dehydrated to CO 2  in 
a reaction catalyzed by carbonic anhydrase IV in the brush 
border membrane. 43  Within the cell, the reverse process oc-
curs: carbonic acid formed by the hydration of CO 2  dissoci-
ates into H    and HCO 3    . The H    is extruded into the  lumen 
by Na   /H    exchange or by the vacuolar H   –ATPase to 
 repeat another cycle while the HCO 3     is transported into the 
blood via a 1Na   :3HCO 3   cotransport process (vide i nfra). 

segment  approach zero. 26,27  The  omission of glucose and 
amino acids from luminal   uids reduces both the potential 
difference and the volume  absorptive rate. 24,28  In the S3 
segment, on the other hand, the omission of glucose and 
alanine has no effect either on the potential difference or 
on the   uid absorptive rate, 25,29  although the deletion of all 
organic solutes does reduce volume absorption by 50%. 30

The rates of transport of glucose, amino acids, phosphate, 
and Na    in the early proximal convoluted tubule exceed 
those in the proximal straight tubule. 31–33  These rates cor-
relate well with the relative basolateral membrane areas of 
the respective  segments. 34  

 Electrophysiology of the Proximal Tubule 
 Transepithelial Potential Difference 
 The electrogenic nature of the transport of Na    coupled to 
glucose and amino acids creates a lumen-negative transepi-
thelial electrical potential difference in the early proximal 
convoluted tubule. The deletion of glucose and alanine from 
the luminal   uid reduces the potential difference from about 

 5.0 mV, lumen-negative, nearly to zero. 24,28  This transepi-
thelial potential difference becomes lumen-positive (   2 to 
4 mV) when the tubular   uid to plasma chloride concen-
tration ratio is approximately 1.3. 35  This lumen-positive 
voltage is probably a diffusion potential arising from the Cl -
 concentration gradient. 

FIGURE 5.2 The pro  le of transepithelial voltage and  solute 
concentrations along the mammalian proximal tubule. 
TF/P,  tubular   uid/plasma concentration ratio; PD, potential 
difference. (From: Rector FC Jr. Sodium, bicarbonate, and 
chloride  absorption by the proximal tubule. Am J Physiol. 
1983;244:F461, with permission.)
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over, the transporter in the early cortical proximal tubule has 
a 1:1 Na    to glucose stoichiometry, 61  whereas the transporter 
in the straight medullary segment has a 2:1 stoichiometry. 62

By coupling the energy from two Na    ions moving down 
their electrochemical gradient to the transport of each glu-
cose molecule, the medullary transporter is able to establish 
a much greater cellular to extracellular glucose concentra-
tion ratio than a 1:1 Na   :glucose transporter. 27  The 2 Na   :1 
glucose transporter is, therefore, well suited to the straight 
segment, where tubular   uid glucose concentrations have 
already been reduced by glucose absorption in the more 
proximal segments. 

 A Na   -glucose cotransporter (SGLT-1), which belongs to 
the SLC5 gene family, 63  mediates high af  nity Na   - glucose 
cotransport with a sodium-to-glucose coupling ratio of 2:1, 
whereas SGLT-2 64  shares 59% homology to SGLT-1 and 
mediates low-af  nity Na   -glucose cotransport with a sodi-
um-to-glucose coupling ratio of 1:1. 65  In situ hybridization 
 revealed high levels of a SGLT-2 message in the S1 segment 
of the proximal tubule. 66  Recently, better antibodies have 
con  rmed that, in rat kidney, SGLT-1 immunolocalizes to the 
brush border membrane of all three segments of the proximal 
tubule. 5  By immunohistochemistry, SGLT-2 was detected at 
the brush border of the early proximal tubule in mice, which 
was absent in SGLT-2 knockout animals. 67  Thus, it appears 
that SGLT-2 may represent the low-af  nity, high-capacity 
sodium–glucose cotransporter in the early proximal tubule, 
whereas SGLT-1 may represent the high-af  nity, low-capacity 
transporter of the proximal straight tubule. 65  

 Mutations in SGLT-2 form the basis for renal glycosuria 
(Table 5.1), an inherited condition characterized by a low-
ered threshold for tubular reabsorption of glucose. 68  In con-
trast, the dominant clinical manifestations of inactivating 
mutations of SGLT-1 69  relate to the failure to absorb sugars 
in the intestinal tract (glucose–galactose malabsorption). 
These   ndings suggest that SGLT-2 plays a much more sig-
ni  cant role, quantitatively, than SGLT-1 in proximal  tubule 
glucose reabsorption. SGLT-2 inhibitors are currently under 
investigation as potential therapeutic agents for the treat-
ment of diabetes. 70  

 Sodium–Amino Acid Cotransport 
 The proximal tubule reabsorbs amino acids from the tubular 
  uid via an active transport step at the luminal membrane. 31

Samarzija and Frömter, 71  using double-perfusion micro-
puncture techniques, observed a depolarization of the lumi-
nal membrane during amino acid transport, and they were 
able to identify   ve classes of amino acid transporters in the 
luminal membrane. Over the last decade, many of the trans-
port proteins that mediate the different amino acid transport 
systems have been identi  ed in kidney and intestine. This 
topic has been recently reviewed. 72  

 Both Na   -dependent and Na   -independent amino acid 
uptake pathways have been characterized in the  kidney. 72

Neutral amino acid transport appears to involve at least 

 The mammalian Na   /H    exchanger (NHE) is electro-
neutral with a stoichiometry of one proton for one sodium. 44

The exchanger is reversibly inhibited by high concentrations 
of amiloride. 45  Intracellular protons, via an internal activator 
site, 46  increase Na   /H   exchange in response to intracellular 
acidosis. 47  

 The apical and basolateral membranes of kidney cells 
contain different forms of NHEs with different af  nities for 
amiloride. 48  The apical Na   /H   exchanger is involved in uri-
nary acidi  cation and has a low amiloride af  nity, whereas 
the basolateral exchanger has a high af  nity for amiloride. 
The sensitivity of NHE1 to amiloride 49  and its basolateral 
localization 50  suggest that it represents the “housekeeping” 
NHE. In contrast, NHE3 is in the brush border membrane 
of proximal tubule cells. 51  NHE3 knockout mice have sig-
ni  cantly reduced rates of Na    and HCO 3  –  transport in 
proximal tubules. 52  In addition, pharmacologic inhibitors of 
NHE3 reduce proximal tubule Na    reabsorption by about 
one third. 53  However, a signi  cant rate of amiloride- sensitive 
HCO 3     transport still persists in the proximal tubules of 
NHE3 knockout mice, 54  indicating that the NHE3 is respon-
sible for much, but not all, proximal tubular Na  -coupled 
luminal acidi  cation (vide infra). NHE8 is also expressed in 
the apical membranes of cortical tubules and may contribute 
to these processes. 55  

 Sodium–Glucose Cotransport 
 Electrophysiologic studies in kidney proximal tubules show 
that apical membranes depolarize with addition of glucose 
to luminal   uids. 56  The depolarization occurs because the 
Na   -glucose transporter is electrogenic. The Na   -glucose 
transporter is speci  c for the D-stereoisomers of glucose, 
galactose, and    -methyl-D-glucoside. 57  The Na   -glucose 
cotransporter has little af  nity for cations other than Na   . 58

Phlorizin inhibits Na   -glucose cotransport by competing 
with glucose for its binding site. 59  

 The rate of glucose transport by the early proximal 
tubule is greater than in late proximal segments. 60  In the 
 proximal straight tubule, the  K  m  for D-glucose is 5 to 20 
times lower than in the proximal convoluted tubule. More-

FIGURE 5.3 The scheme of NaHCO3 transport mediated by 
Na /H  exchange. See text for explanation.
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in Figure 5.4 uses formate/Cl    exchange as the anionic com-
ponent of electroneutral NaCl transport. 

 As indicated previously, there is abundant evidence 
for a Na  /H    exchanger in proximal tubule brush border 
membranes. With respect to NaCl transport, the inhibition 
of Na   /H   exchange by high concentrations of amiloride 86

or more speci  c inhibitors of NHE3 53  results in a dramatic 
fall in transcellular NaCl transport. Likewise, knockout 
of NHE3 also reduces NaCl and   uid reabsorption in the 
proximal tubule. 52  Several Cl   /base exchangers have been 
implicated in NaCl transport. Recent interest has focused on 
the role of Cl   /formate (HCO 2    ) and Cl   /oxalate (C 2 O 42 –  ) 
exchange in NaCl transport. 

 A Cl   /formate exchanger is present in brush bor-
der membrane vesicles. 87  A role for Cl   /formate exchange 
in neutral NaCl transport is suggested by the   nding that 
the addition of formate to the luminal perfusate increases 
the rate of NaCl reabsorption in rabbit proximal tubules. 88

As depicted in Figure 5.4, formate is presumed to leave the 
cell in exchange for Cl   . The secreted formate then com-
bines with a proton, which was transported by the Na   /H  
exchanger to form formic acid. The formic acid then reen-
ters the cell by nonionic diffusion and dissociates to supply 
substrate for the continuation of both exchange processes. 
CFEX (SLC26A6), a homolog of pendrin, is a protein ca-
pable of mediating Cl  /formate exchange and is present in 
apical membranes of the proximal tubule. 89  

 Cl   /oxalate (C 2 O 4  2 –  ) exchange has also been demonstrated 
in brush border membrane vesicles. 90  It has been suggested that 
Cl   /oxalate exchange may mediate neutral NaCl transport in a 
manner analogous to that described for Cl   /formate  exchange. 
It has also been suggested that NaCl absorption proceeds via 
the operation of three parallel transporters: the Na   -sulfate 
cotransport, the sulfate/oxalate exchange, and the Cl   /oxalate 
 exchange. 91  Indeed, the CFEX protein, in addition to Cl   /for-
mate exchange, is also able to mediate Cl  /oxalate, oxalate/for-
mate, oxalate/oxalate, and oxalate/sulfate exchange. 92  

three  separate transport systems, 73  one that transports all 
neutral amino acids, one speci  c for imino acids, and one 
for the    -amino acids. Glycine may also have a speci  c 
transporter. 74  In the kidney, neutral amino acid transport is 
driven by a Na    gradient, as supported by experiments in 
slices, perfused tubules, and brush border membranes. The 
neutral amino acid transporter B 0 AT1 (SLC6A19) cotrans-
ports one Na    per amino acid. 75  The  K  m  of the substrate 
decreases with an increasing cosubstrate concentration and 
vice versa. The initial step for transport involves the bind-
ing of the amino acid to B 0 AT1, and this binding af  nity 
increases under hyperpolarizing conditions. 76  

 The acidic and basic amino acid groups each have their 
own transport systems. 77,78  At least one amino acid trans-
porter, a Na   -independent transporter for neutral and diba-
sic amino acids, has been cloned from the kidney. 79,80  

 NaCl Transport 
 Two basic mechanisms account for NaCl reabsorption in the 
proximal tubule. In simple electrogenic Na    entry, sodium 
is transported actively through the cell, thereby creating a 
lumen-negative potential difference. Cl    reabsorption then 
proceeds through the paracellular pathway driven by the 
lumen-negative potential difference. In electrically neutral 
NaCl transport, both Na    and Cl    move through the cell at 
equal rates, such that no transepithelial potential and, hence, 
no driving force for paracellular Cl    movement is generated. 

 Neutral NaCl Transport 
 Several lines of evidence indicate that a sizable fraction of 
proximal NaCl transport is transcellular and electroneu-
tral. 81  First, by virtue of the coupling of Cl    entry to apical 
Na    entry, the intracellular Cl   activity of proximal tubule 
cells is greater than predicted from an equilibrium distribu-
tion. 82  Second, Cl    absorption persists even when the driv-
ing force for passive, paracellular movement is abolished. 83

Conversely, Cl    reabsorption is inhibited by cyanide in the 
absence of any change in the passive driving forces for Cl  
movement. 83  Finally, the luminal application of SITS, 84  an 
anion-exchange inhibitor, or removal of chloride from the 
tubule perfusate, 85  reduces net Na    reabsorption. 

 In principle, electroneutral NaCl transport across the 
apical membrane of proximal tubule cells could occur as di-
rectly coupled NaCl cotransport or as parallel Na   /H    and 
Cl   /base exchangers. There is no good evidence for the for-
mer process in the mammalian proximal tubule. 81  However, 
considerable evidence supports the view that electroneutral 
NaCl transport in the proximal tubule involves parallel ex-
changers. The coupling of Na    absorption to Cl    absorption 
in this case occurs because of the relation between cell pH 
and concentration of base within the cell. With reference to 
Figure 5.4, the extrusion of H    in exchange for Na    results 
in the liberation of the base for participation in Cl   /base 
 exchange. The uphill entry of Cl   , then, is indirectly cou-
pled to the downhill entry of Na   , because both are coupled 
to the transport of an acid–base pair. The model illustrated 

FIGURE 5.4 The scheme of neutral NaCl transport mediated 
by the parallel action of Na  H  exchange and formate/Cl  
 exchange. Formate (HCO2

 ) combines with H  in the tubular 
 lumen to form formic acid (H2CO2), which reenters the cell by non-
ionic diffusion. A similar scheme applies for oxalate–Cl  exchange.
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for Na    extrusion. A number of Na   -HCO 3   cotransport-
ers have been cloned, along with different splice variants. 98

One of these, NBC1 (encoded by SLC4A4 and subsequently 
renamed NBCe1-A) is localized to the basolateral membrane 
of the S1 and S2 segments of the proximal tubule. 99  As il-
lustrated in Figure 5.3, the net result of these steps is the 
reabsorption of Na    and HCO 3    , accounting for the bulk 
of HCO 3     reabsorption and about 20% of Na    reabsorption 
in the proximal tubule. It is believed that this cotransport 
process accounts for the basolateral transport of most of the 
bicarbonate reclaimed from the luminal   uid. 97  Mutations 
in NBCe1-A cause proximal (type II) renal tubular acidosis 
and other defects in the eye, teeth, and mental development 
(Table 5.1). The regulation and role of NBC in acid–base 
transport in the proximal tubule is an area of active research 
that has been reviewed recently. 100  

 The pathways for Cl   exit across the basolateral membrane 
are less well de  ned. Several pathways for Cl    exit across the 
basolateral membrane have been proposed: conductive Cl  
channels, KCl cotransport, and Na   (HCO 3    ) 2 /Cl    exchange 
(Fig. 5.5). Studies of rat proximal convoluted tubules 101  and 
rabbit convoluted and straight proximal tubule segments 102,103

using intracellular microelectrodes have indicated that the 
proximal tubule cell has a very low Cl   conductance. Thus, in 
normal proximal convoluted tubule and proximal straight tu-
bule segments, conductive Cl   ef  ux across basolateral mem-
branes appears to play a minor role in NaCl absorption. Under 
hypotonic conditions, however, cell swelling dramatically in-
creases the basolateral membrane Cl    conductance. 104  

 Because the chemical gradient for K    to leave cells ex-
ceeds that for Cl    entry, KCl cotransport can mediate ba-
solateral Cl    exit from proximal tubule cells. Ion-selective 
 microelectrode studies have demonstrated KCl cotransport in 
basolateral membranes of rabbit proximal tubule cells. 103,105  

 Stilbene-sensitive, Na   -dependent Cl   /HCO 3     exchange 
has been demonstrated in rat 106  and rabbit 107,108  proximal tu-
bules. In this case, the entry of 1 Na    and 2 HCO 3     across the 
basolateral membrane is coupled to the ef  ux of Cl   . The Na  

 Other Na   -dependent transport processes have been 
 described in the apical membrane of the proximal tubule. 
However, they do not contribute signi  cantly to Na    reabsorp-
tion because of the low concentrations of substrate present. 

 Simple Electrogenic Na   Entry 
 The classic Ussing model for salt reabsorption involves pas-
sive entry of Na   across apical membranes and extrusion 
across the basolateral membrane by Na   ,K   –ATPase. A 
problem in assessing the contributions of electrogenic pro-
cesses to Na   transport in the proximal tubule is the presence 
of other mechanisms of Na    entry. However, when the con-
tributions of Na   /H    exchange and Na    cotransport to net 
Na    absorption are minimized by deleting glucose, amino 
acids, and bicarbonate from the perfusate, a fraction of   uid 
absorption in isolated perfused straight segments persists 
and the transepithelial potential is    1.0 mV. 30  These results 
indicate that in the proximal straight tubule simple electro-
genic Na    transport constitutes a mechanism for Na    ab-
sorption. A conductive Na    pathway has been demonstrated 
in brush border membrane vesicles. 93  Unlike the Na    chan-
nel found in the distal nephron segments, the Na    channel 
in the proximal tubule is not blocked by amiloride. 93  

 In the proximal convoluted tubule, however, the deletion 
of glucose, bicarbonate, and amino acids completely abolishes 
  uid absorption. 23  Consequently, simple electrogenic proxi-
mal Na    transport may be limited to straight segments. 

 Passive NaCl Absorption 
 The rise in tubular   uid Cl   concentration, and the attendant 
lumen-positive voltage (Fig. 5.2), provides a mechanism for 
passive NaCl absorption in late regions of the proximal neph-
ron. In the Cl-selective super  cial pars recta, approximately 
one-third of net NaCl absorption can be accounted for by this 
mechanism. 20 

 Basolateral Membrane 
 The proximal tubule, particularly the S1 segment, possesses 
high Na   ,K  –ATPase activity in the basolateral membrane. 
The Na   ,K   –ATPase pumps Na   , which entered cells apical-
ly, across basolateral membranes. In other words, the pump 
keeps the cell Na    activity low and maintains the electro-
chemical gradient for Na   entry across the apical membrane. 
Consequently, the inhibition of Na   ,K   –ATPase activity with 
ouabain decreases transepithelial Na    reabsorption and in-
creases the intracellular Na    activity in the proximal tubule. 94

 Na    also exits across the basolateral membrane in con-
cert with HCO 3    . Studies in intact tubules and in  membrane 
vesicles have demonstrated an electrogenic, stilbene- sensitive 
Na   -HCO 3     cotransporter in the  basolateral membrane 
of rat and rabbit proximal tubules. 95,96  The cotransporter 
transfers two net negative charges across the basolateral 
membrane. The stoichiometry of this process is 1 Na   : 
1 HCO 3    : 1 CO 32     (or SO 3  2    ). 97  Thus, this transport moiety 
for Na    extrusion, [Na   (HCO 3    ) 3 ] 2     is electronegative, with 
the lumen-negative cell interior providing a major driving 

FIGURE 5.5 The transport pathways for Na  and Cl  absorption 
across the basolateral membrane of proximal tubular cells. Cl  
can leave the cell via KCl cotransport, Na –2HCO3

 /Cl  
exchange, and Cl  channels (minor). Na  exits via the 
Na ,K –ATPase and Na –3(HCO3

 ) cotransport.
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isolated, perfused rabbit nephrons. The key observations are 
(1) the volume absorptive rate is clearly dependent on the 
perfusion rate, (2) the   ow dependence persists in the ab-
sence of active transport when anion gradients are present, 
and (3) the   ow dependence is abolished in the absence of 
active transport and anion gradients. 

An explanation for these results lies in a consideration 
of axial versus radial changes in   uid composition along 
the tubule. 117 The rate of passive Na   absorption in the late 
proximal tubule is dependent on the magnitude of the chlo-
ride gradient between the lumen and the bath. At low axial 
perfusion rates, the radial Cl   gradient tends to dissipate as 
a function of distance along the tubule, but this dissipation 
is minimized at higher axial perfusion rates. Hence, the in-
tegrated driving force for passive NaCl absorption increases 
with the rate of tubule perfusion. In addition, the availability 
of solutes, such as glucose, amino acids, and bicarbonate, is 
also partly responsible for the   ow dependence of proximal 
  uid absorption. 118

The   ow dependence of reabsorption in the proximal 
tubule has also been tested in the mouse proximal tubule. 
In this experimental model, which included the use of the 
NHE3 knockout mouse, the data supported the hypothesis 
that the “brush border” microvilli act as mechanosensors 
that transmit   uid dynamic torque to the actin cytoskeleton 
and thus modulate Na   absorption. 119

 Catecholamines 
Renal denervation reduces proximal tubule Na   and   uid 
absorption.120 Both   - and  -adrenergic receptors exist in 
the proximal tubule. 121,122 The rate of salt and water reab-
sorption in the proximal tubule is stimulated by   - and  -
adrenergic agonists. 123  -Adrenergic agonists increase api-
cal Na   entry via the stimulation of Na  /H  exchange 122

and also increase basolateral Na   ef  ux via Na  ,K –ATPase 
activity in rat proximal tubules by a pathway that involves 
the activation of calcineurin. 124 The effects of   -adrenergic 
agonists on Na  ,K –ATPase activity are less clear, with one 
study showing that they increase Na  ,K –ATPase activity 
via protein kinase C (PKC). 125 However, others have found 
that  -adrenergic agonists inhibit Na  ,K –ATPase activity 
via PKA. 126

Dopamine, which is produced by proximal  tubular
cells,127 inhibits Na   reabsorption. Dopamine inhibits 
Na ,K –ATPase activity via its receptors DA-1 and DA-2. 128

 Parathyroid Hormone 
Parathyroid hormone (PTH) causes a 30% to 50% reduction 
in proximal tubular Na   and phosphate absorption. 129 PTH 
stimulates adenylyl cyclase, cAMP production, and PKA, 
which in turn inhibits Na  /H  exchange in several proxi-
mal tubule systems. 130 Weinman et al. 131 demonstrated that 
phosphorylation by PKA inhibits Na  /H  exchange activ-
ity via a PDZ domain-dependent interaction with the NHE 
regulatory factor (NHERF). In the absence of NHERF, cAMP 

and HCO 3  that enter the cell are thought to be recycled 
through the [Na  (HCO 

3)3]2  cotransporter (see previous). 
Indeed, Na  (HCO 

3)2/Cl  exchange may account for much 
more Cl   movement than KCl transport. 108 Na  -independent 
Cl /HCO3

  exchange is also present in the basement mem-
brane of proximal tubules. 106–108 However, under physiologic 
conditions, this process mediates net Cl   in  ux and does not 
contribute to net NaCl absorption. 

 CONTROL OF PROXIMAL TUBULAR 
SODIUM REABSORPTION 
 Glomerulotubular Balance (GTB) 
The proximal tubule responds to an increase in glomerular   l-
tration with an increase in the absolute rate of   uid absorption 
(APR) to minimize variations in the fractional proximal   uid 
absorption. This phenomenon is termed glomerulotubular 
balance (GTB). The ef  ciency of GTB—that is, the extent to 
which APR/GFR remains constant—is subject to physiologic 
and pathologic control. The prime factor modulating GTB in 
vivo is the effective circulating volume. Thus, at a constant or 
near constant GFR, volume expansion and volume contrac-
tion decrease and increase, respectively, the absolute rate of 
proximal Na   absorption. In other words, volume expansion 
and volume contraction reset GTB upward and downward, 
respectively. 109,110 This section considers some of the factors 
that modulate proximal Na  absorption.

Peritubular capillary oncotic pressure is one of the fac-
tors regulating the rate of salt and water absorption from the 
proximal tubule. 111 The oncotic pressure of the peritubular 
proteins favors the movement of   uid across the basement 
membrane, whereas capillary hydrostatic pressure retards 
this movement. Thus, at a given renal blood   ow, an in-
crease in the glomerular   ltration rate and, hence, the   ltra-
tion fraction, will cause an increase in the oncotic pressure in 
the postglomerular peritubular capillaries. At constant single 
nephron glomerular   ltration rates (SNGFR), the perfusion 
of efferent capillaries with hypo-oncotic   uids decreases the 
absolute rate of proximal   uid absorption, whereas perfu-
sion of the capillaries with hyperoncotic   uids increases 
proximal absorption. 112 The effects of the peritubular pro-
tein concentration can also be demonstrated in isolated per-
fused tubules. 113

It is not precisely clear how the peritubular protein 
concentration modulates proximal   uid absorption. The ef-
fect is not simply because of the oncotic pressure exerted 
by the proteins, because changes in absorption do not oc-
cur when active transport is inhibited or from comparable 
changes in the transtubular hydrostatic pressure. 114 The pre-
vailing views are that the peritubular protein may directly 
affect transcellular Na   transport 115 or the back leak of Na  
through the paracellular pathway. 113,116

Luminal factors also contribute to glomerulotubular bal-
ance. The   ow dependence of proximal absorption has been 
investigated in the convoluted 15 and straight segments 30 of 
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 Nitric Oxide 
Various forms of nitric oxide synthase (NOS) are expressed 
in the proximal tubule. 150 Low basal production of nitric ox-
ide (NO) by the proximal tubule is boosted dramatically by 
lipopolysaccharide (LPS) and cytokines. Even under basal 
conditions, the proximal tubule may be affected by NO pro-
duced by adjacent cells, such as endothelium or other neph-
ron segments. The overall effect of NO on proximal tubule 
Na  transport is controversial and may be biphasic, with 
acute inhibition and chronic stimulation of Na   reabsorp-
tion as assessed by pharmacologic agents and genetic knock-
outs of NOS, respectively. 151 In vitro, NO decreased Na  /H 

exchange and Na  ,K –ATPase activity in cultured proximal 
tubule cells. 152

 MECHANISM OF ISOTONIC FLUID 
ABSORPTION 
Proximal tubule water absorption is coupled tightly to sol-
ute absorption, because the measured osmolality of the tu-
bular   uid is generally identical to plasma. Three general 
mechanisms of solute–solvent coupling have been suggested 
to account for this isotonic absorption: lateral interspace hy-
pertonicity, effective osmotic gradients because of different 
re  ection coef  cients for solutes in the tubular and peritu-
bular   uids, and luminal   uid hypotonicity. 

The standing gradient theory argues that active trans-
port of salt into the lateral intercellular space raises the os-
molality of the space, thus providing an osmotic gradient 
for   uid transport from the lumen to the interspace. 153 The 
tight junctions in this model are presumed to be imperme-
able to water, so that the osmotic   ow of water from the cell 
into the hypertonic interspace raises the hydrostatic pressure 
in this compartment and forces   uid across the basement 
membrane.

An alternative explanation 117 proposes that an effective 
osmotic driving force for   uid absorption can exist between 
solutions of identical osmolalities if the re  ection coef  cients 
of the membrane for the solutes in the solutions differ. Spe-
ci  cally, the elevated tubular   uid-to-plasma Cl   concentra-
tion found in the late proximal convolution and in the pars 
recta provides an effective osmotic driving force for   uid ab-
sorption because  HCO3

  exceeds   Cl . That is, the bicar-
bonate in the peritubular   uid is a more “effective” osmotic 
agent than is the chloride in the tubular   uid, and, thus, 
net water   ows out of the tubule. Although this mechanism 
may be applicable to the proximal straight tubule, the re  ec-
tion coef  cients for NaCl and NaHCO 3 measured across the 
rabbit proximal convoluted tubule are virtually identical, 154

so oppositely directed Cl   and HCO 3  gradients may make 
only a negligible contribution to   uid absorption in convo-
luted segments. 

Finally, because of the high osmotic water permeability 
of the proximal tubule, only small degrees of absolute lumi-
nal hypotonicity are needed to provide a suf  cient driving 

does not inhibit the exchange activity of NHE3. 132 The cur-
rent model for this inhibition is that NHE3 associates with 
PKA indirectly via NHERF and the cytoskeletal protein  ezrin.
PKA, when active, phosphorylates NHE3 at serines 552 and 
605, which mediates the inhibition of the exchanger. 133

NHE3 is directly phosphorylated by other protein kinases, 
including calmodulin-dependent protein kinase II, which 
inhibits Na  /H  exchange activity and PKC, which stimu-
lates the exchanger. 134

 Angiotensin II 
The systemic administration of low doses of angiotensin II 
(Ang II) inhibits the excretion of Na  ,135 whereas inhibitors 
of Ang II increase Na   excretion. 136 Systemic Ang II causes 
changes in renal blood   ow, aldosterone secretion,   ltration 
fraction, and catecholamine release from renal sympathetic 
nerve endings. 137 Low concentrations of Ang II (  10 9 M) 
cause an increase in proximal tubule   uid and bicarbonate 
reabsorption, effects that are mediated by the AT1 subtype 
of Ang II receptors present in both the brush border and 
basolateral membranes of the proximal tubule. 138 Higher 
concentrations (  10 8 M) depress   uid and bicarbonate ab-
sorption, presumably via counterbalancing effects mediated 
by the lower af  nity AT2 receptor. 138 Studies have demon-
strated that the stimulatory effect of Ang II on   uid and bi-
carbonate reabsorption occurs via enhanced apical Na  /H 

exchange via NHE3 and basolateral Na  -(HCO3
 )3 cotrans-

port via NBC-1 in the proximal tubule. 139 The physiologic 
effects of Ang II may involve the coupling of these receptors 
to both phospholipase A 2 and inhibitory G proteins. 140,141

 Thyroid Hormone 
On a clinical level, hypothyroidism is associated with a de-
creased cardiac output, renal blood   ow, and glomerular 
  ltration rate (GFR). Clearance studies in hypothyroid rats 
have documented decreases in GFR, renal Na   reabsorp-
tion, and renal Na  ,K –ATPase activity. 142 These changes 
are reversible after thyroid hormone replacement. 143 The 
thyroid hormone may exert direct effects to stimulate proxi-
mal tubular salt and   uid reabsorption via increased baso-
lateral K   permeability 144 and/or direct stimulation of Na  /
H exchange through an increase in NHE3 transcription. 145

 Corticosteroids 
Although mineralocorticoids do not have an effect on proxi-
mal tubular sodium reabsorption, 146 there is evidence for 
glucocorticoid receptors in the proximal tubule. 147 Dexa-
methasone inhibits apical membrane Na  -phosphate co-
transport in cultured proximal tubular cells via PKC 
activation.148 Dexamethasone also enhances the activity 
of apical NHE3 and the mRNA expression and functional 
activity of basolateral NBC-1. 149 The resulting increase in 
proximal tubule HCO 3  reabsorption could contribute to 
the maintenance of the metabolic alkalosis that is associated 
with increased glucocorticoid production in vivo. 
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interspecies heterogeneity. 165 Although the Na   and Cl   per-
meabilities appear to vary widely among rabbits, hamsters, 
and rats, one consistent   nding was that the DTL is relatively 
less permeable to NaCl than the ATL. Coupled with the DTL’s 
high permeability to water, the relative lack of solute perme-
ability ensures that the osmotic pressure of   uid entering 
the renal papilla is greater than that of the   uid leaving it. 166

Thus, the formation of dilute urine by the loop of Henle 
begins in the ATL. 

The decrease in osmolality in the ATL is due primarily 
to a fall in the NaCl content of the luminal   uid. The elec-
troneutral transport of NaCl appears to occur through two 
key mechanisms. The transepithelial movement of sodium
from the ATL lumen occurs via the paracellular pathway, 167

whereas Cl   diffusion occurs through a transcellular route. 
Yoshitomi et al. 168 detected conductive pathways for Cl  
in both the apical and basolateral membranes of ATL cells. 
The transcellular movement of Cl   in the ATL is regulated, 
because the basolateral Cl   conductance is inhibited at low 
pH168 and by low intracellular Ca 2  concentrations. 169 Uchi-
da et al. 170 cloned a Cl   channel in 1993 from the rat renal 
medulla, ClC-K1 (termed ClC-Ka in humans), which rep-
resents the major mediator of transcellular Cl   movement 
in the thin ascending limb. This channel, which belongs 
to the ClC family of Cl   channels, is expressed exclusively 
within the kidney and has been localized by immunohisto-
chemistry to both the apical and basolateral membranes of 
the thin ascending limb of Henle. 171 Its activity is depen-
dent on the coexpression of barttin, an accessory protein 
that forms a complex with ClC-K1, increases its abundance 
at plasma membranes, and modi  es channel gating. 172–175

The expression of ClC-K1 is increased by  dehydration.170

Genetic knockout of the ClC-K1 gene in mice produced a 
urinary-concentrating defect, con  rming the role of passive 
NaCl transport in the thin ascending limb in the urinary 
concentrating mechanism. 176

 NaCl ABSORPTION IN THE THICK 
ASCENDING LIMB 
 General Features 
The studies of Rocha and Kokko 177 and Burg and Green 178

were the   rst to investigate salt absorption in the thick as-
cending limb, and their work de  ned several key features 
of this unique epithelium. First, salt absorption in the med-
ullary and cortical TAL generates a lumen-positive transepi-
thelial voltage, which is sensitive to furosemide.  Second, the 
transport of Cl   occurs against both electrical and chemical 
gradients and involves an active transport process that is 
dependent on intact basolateral Na  ,K –ATPase activity. 179

A   nal important feature of the TAL is that this segment 
consists of a tight epithelium, which despite its high ionic 
conductance, possesses a very low permeability to water. 
The apical membrane of the TAL constitutes the major bar-
rier to transcellular and paracellular water   ow. 180 The high 

force to account for the observed rates of   uid reabsorp-
tion.20 Experimental evidence supports the view that abso-
lute luminal hypotonicity is a signi  cant driving force for 
  uid reabsorption in the proximal tubule. Thus, when prox-
imal tubules are perfused and bathed by symmetric NaCl 
solutions, the luminal   uid becomes slightly hypotonic. 155

The development of luminal hypotonicity can be ampli  ed 
by maneuvers that decrease the water permeability of the 
proximal tubule. The aquaporin 1 (AQP1) water channel 
is abundantly expressed in the proximal tubule. In AQP1 
knockout mice, the osmolality of tubular   uid at the end 
of the proximal tubule is signi  cantly lower than in normal 
mice.156 As the luminal   uid becomes more hypotonic, the 
resorbate becomes more hypertonic, and the degree of re-
sorbate hypertonicity correlates with the rate of volume re-
absorption by the tubules. 157

 THE LOOP OF HENLE 
The dissociation of salt and water absorption by the loop of 
Henle is ultimately responsible for the capacity of the kidney, 
either to concentrate or to dilute the urine. The active ab-
sorption of NaCl in the water-impermeable thick ascending 
limb of Henle (TALH) serves both to dilute the urine and to 
supply the energy for the “single effect” of countercurrent 
multiplication. A functionally similar segment, known as the 
diluting segment, is found in amphibians and teleosts. 158

The mammalian loop of Henle contains the descend-
ing thin limb (DTL), the ascending thin limb (ATL), and 
the thick ascending limb (TAL). The loop of Henle absorbs 
about 25% to 40% of the   ltered Na   load. 159 Furthermore, 
the   uid leaving the loop is dilute, indicating that more NaCl 
is absorbed in the loop than water. 

 SALT TRANSPORT BY THE THIN 
DESCENDING AND THIN ASCENDING 
SEGMENTS 
As the tubular   uid enters the descending thin limb and 
  ows toward the tip of the renal papilla, it becomes more 
concentrated.160 Passive models for urinary concentration 
indicate that this increase in osmotic pressure is attributable 
to water extraction rather than solute entry. 161 Current ob-
servations indicate that the aquaporin water channel AQP1 
mediates water movement across the luminal surface of the 
DTL.162 According to some reports, however, AQP1 expres-
sion is signi  cantly lower in short loop nephrons than long 
loop nephrons, 163 suggesting that (1) not all DTLs in the 
kidney extract water to the same degree, and/or (2) water 
movement in short loop DTLs is facilitated by alternative 
water channels or via the paracellular route. In contrast to 
the DTL, in vitro microperfusion studies demonstrate that 
the ATL is relatively impermeable to water. 164

The study of NaCl transport by the DTL and ATL has 
been complicated by the fact that the transport character-
istics of these two nephron segments exhibit signi  cant 
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provides a pathway for net K    secretion by the TAL. In 
mouse TAL, for example, the rate of K    secretion amounts to 
about 10% of the rate of net Cl    absorption. 182  K    secretion 
in this segment is an active process, ultimately driven by the 
Na   ,K   –ATPase, proceeding in the face of a lumen-positive 
transepithelial potential. Third, under open circuit condi-
tions, the transcellular and paracellular pathways form a cur-
rent loop in which the currents traversing the two pathways 
are of equal size, but which traverse in the opposite direction. 
The potassium current from cell to lumen polarizes the lu-
men and causes an equivalent current to   ow from the lumen 
to the bath through the paracellular pathway. 186  Because the 
paracellular pathway is cation selective (P Na /P Cl      2 to 6), the 
majority of the current through the paracellular pathway is 
carried by Na    moving from the lumen to the interstitium. 
This paracellular absorption of Na    increases the ef  ciency 
of Na    transport by the TAL. 187  With reference to Figure 5.6, 
for each Na    transported through the cell and requiring the 
use of ATP, one Na    is transported through the paracellular 
pathway without any additional energy expenditure. Finally, 
the apical K    current satis  es the continuity requirement im-
posed by a high degree of conductive Cl    ef  ux across baso-
lateral membranes. 182  

 A small component of Na   transport by the TAL is 
 accounted for by NaHCO 3  absorption. 188  In the rat TAL, the 
rate of NaHCO 3  absorption is roughly 5% to 10% of that 
for NaCl absorption. NaHCO 3  absorption appears to be me-
diated by an apical membrane amiloride-sensitive Na   /H  
exchanger and a basolateral membrane electrogenic Na   -
3(HCO 3  ) cotransporter. 188  

 The following sections will describe the individual com-
ponents of the mechanism for TAL salt transport (Fig. 5.6) 
in greater detail. 

 Apical Na   -K   -2Cl    Cotransport 
 Studies of Cl    transport across apical membranes of intact TAL 
segments 189  and in isolated membrane vesicle preparations 190

established that the predominant mode for Cl   entry into the 
TAL cell is via a Na   -K   -2Cl    cotransporter. A characteristic 
feature of this transporter is its sensitivity to inhibition by 
furosemide, bumetanide, and other 5- sulfamoylbenzoic acid 
derivatives. 191  The measurement of isotope   ux into TAL 
cells or membrane vesicles prepared from the inner stripe of 
the outer medulla yielded a stoichiometry of 1 Na   :1 K   :2 
Cl    cotransport. 190  K   -independent NaCl cotransport has 
also been described under certain conditions. 192  

 The proteins that mediate the Na   -K   -2Cl    cotransport 
have been cloned. An absorptive form of the Na  -K   -2Cl  
cotransporter, referred to as NKCC2 or BSC1, was initially 
cloned by Gamba et al. 193  based on sequence homology to the 
thiazide-sensitive Na -Cl– cotransporter (see the following). 
A second Na   -K   -2Cl    cotransporter, NKCC1, was cloned 
by Payne et al. 194  NKCC2 (BSC1) is the primary mediator of 
apical salt entry in the thick ascending limb. In situ hybrid-
ization and single-nephron reverse transcriptase  polymerase 

ionic conductance and low water permeability effectively 
further dilutes   uid entering the TAL from the ascending 
thin limb. 

 Figure 5.6 integrates the results of several electrophysi-
ologic and biochemical studies to provide a model of salt 
reabsorption in the thick ascending limb. According to this 
model, net Cl   absorption by the TAL is a secondary ac-
tive transport process. Luminal Cl    entry into the cell is 
mediated by an electroneutral Na   -K   -2Cl    cotransport 
 process driven predominantly by the favorable electrochem-
ical  gradient for Na    entry. 181  Because the Na    gradient is 
maintained by the continuous operation of the basolateral 
membrane Na   ,K   –ATPase pump, the apical entry of Cl  
via the cotransporter ultimately depends on the operation of 
the basolateral Na   ,K   –ATPase. 

 In contrast to the electroneutral entry of Cl    across the 
apical membrane, the majority of Cl    ef  ux across the basolat-
eral membrane proceeds through conductive pathways. 182,183

A favorable electrochemical gradient for Cl    ef  ux through 
dissipative pathways has been demonstrated by Greger et al. 184

in the rabbit cTAL. Intracellular Cl   is maintained at concen-
trations above electrochemical equilibrium by the continued 
entry of Cl    via the apical Na   -K   -2Cl   cotransporter. 185  

 According to the model in Figure 5.6, K    that enters 
TAL cells via the Na   -K   -2Cl    cotransporter recycles, to a 
large extent, across the apical membrane via a K   -conductive 
pathway. This apical K    recycling serves several purposes. 
First, it ensures a continued supply of luminal K    to sus-
tain Na   -K   -2Cl    cotransport. Without recycling, the lumi-
nal K    concentration would fall rapidly as a consequence of 
K    entry via Na   -K   -2Cl    cotransport and would limit net 
NaCl absorption. Second, the apical membrane K     current 

FIGURE 5.6 A model depicting the major elements of the 
mechanism of NaCl absorption by the thick ascending limb. 
Dashed lines indicate passive ion movements down electro-
chemical gradients. ROMK, renal outer medullary K  channel; 
ClC-Kb, chloride channel Kb.
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domain. Each of the A, B, and F isoforms can have either 
a long C-terminus, or a truncated C-terminus; although to 
date, the short isoforms have only been described in the mu-
rine TAL. 204 In addition, several “tandem” transcripts have 
been described in the human kidney; these contain combina-
tions of exons 4A, 4B, and 4F spliced alongside one another 
into the NKCC2 pre-mRNA. 205 Transcripts containing exons 
4A/4F, 4B/4A, and 4B/4A/4F have been reported. Because 
these tandem transcripts contain redundant sequences en-
coding for the second transmembrane domain, they probably 
cause the misfolding of NKCC2, resulting in the formation 
of nonfunctional isoforms. Because these isoforms may still 
form oligomers with NKCC2, they likely exert a dominant-
negative effect on NKCC2 function and inhibit its activity. 206

The A, B, and F isoforms show differential expression 
within the thick ascending limb. In the rat nephron, the A 
isoform was found in both the cortical and medullary TAL, 
the B isoform is restricted to the cortical TAL, whereas the F 
isoform is present in the medullary, but not the cortical, the 
TAL, and to a lesser extent, in the outer medullary collecting 
duct. Although some interspecies discrepancies have been 
noted, similar   ndings have generally been observed in the 
embryonic mouse and human kidney. 205,207,208

When the 4A, 4B, and 4F exons are spliced into tran-
scripts containing a long C-terminus, all three products are 
capable of mediating Na  -K -2Cl  cotransport. However, 
the A, B, and F isoforms have different transport properties 
that may have physiologic relevance. Isoforms A and B have 
higher af  nities for Na  , K  , and Cl   than the F isoform. 
The A isoform possesses the highest transport capacity of all 
three isoforms. Based on the known distribution of the A, B, 
and F isoforms in the TAL, it is currently thought that the A 
isoform accounts for the high transport capacity of the med-
ullary TAL, whereas the presence of the more active A and 
B isoforms in the cortical TAL allows for the continued reab-
sorption of salt to take place, even though the tubular   uid 
in this segment is more dilute than plasma. Supporting this 
is experimental evidence demonstrating that the NKCC2 A 
and B isoforms can both be strongly activated by Na  , K  ,
and Cl   at concentrations that are much more dilute than 
the composition of tubular   uid in the cortical TAL. 208

 Apical K    Conductance 
An important feature of the luminal membrane of the TAL is 
a barium-inhibitable potassium conductance. 185 This apical 
membrane K   conductance allows K   to be recycled from 
the cell back into the luminal   uid to support further NaCl 
absorption via the NaCl cotransporter. Using measured 
values of intracellular K   activity (rabbit cTAL), 209 apical 
membrane conductance, and intracellular voltage, it can be 
shown that the measured apical membrane conductance is 
suf  cient to provide for the recycling of all of the potassium 
uptake via the Na  -K -2Cl  cotransporter. 

Three types of K   conductances have been characterized 
in the apical membrane of the thick ascending limb: a high-
conductance (150 pS) calcium-activated K  channel, which 

chain reaction (RT-PCR) studies demonstrated the expres-
sion of NKCC2 in the MTAL and CTAL, 195 and immuno-
histochemical studies indicate that NKCC2 is localized to 
the apical membrane of these nephron segments. 196 The im-
portance of NKCC2 in mediating salt reabsorption in the 
TAL is illustrated by the fact that loss-of-function mutations 
of NKCC2 cause Bartter syndrome (Table 5.1), 197 a Men-
delian salt-wasting disorder characterized by hypokalemia, 
metabolic alkalosis, hyperaldosteronism, and normal-to-low 
blood pressure, results from a defect in salt absorption by 
the thick ascending limb. 

The NKCC2 cDNA encodes a glycoprotein contain-
ing  1100 amino acids and having a predicted molecular 
weight of 115 to 120 kDa. 193 The full-length protein contains 
12 transmembrane domains containing a sizable extracellu-
lar loop with N-glycosylation sites positioned between trans-
membrane segments 7 and 8, and large intracellular  amino
and carboxy termini   ank the transmembrane regions. 
NKCC2 belongs to the SLC12A family of cation chloride 
cotransporters, which is part of the amino acid polyamine 
organocation cotransporter (APC) superfamily. 198 Based on 
the homology to other crystallized APC family members, the 
cotransporter structure probably consists of two clustered 
groups of   ve transmembrane helices that are positioned in 
a symmetric, inverted orientation. 199 The details regarding 
how this fold facilitates the three-ion cotransport remain ob-
scure but surely will provide an initial framework for more 
detailed structure-function studies in the coming years. 

The two cytoplasmic domains of NKCC2 mediate spe-
ci  c regulatory functions. The amino terminus is believed 
to be unstructured and contains several cytosol-exposed 
serines and threonines, which are phosphoacceptor sites. 
These residues are phosphorylated by at least three pro-
tein kinases that stimulate NKCC2 activity and/or plasma 
membrane expression (discussed in detail below). 200 The 
carboxy terminus is large and comprises  40% of the total 
NKCC2 sequence. It may also contain phosphorylation sites, 
although to date this has not been explored in detail. It is 
clear, however, that the NKCC2 C-terminus serves as a hub 
for interactions with proteins that regulate its  traf  cking, 
including the glycolytic enzyme aldolase 201 and secretory 
membrane carrier protein 2 (SCAMP2). 202 It also serves as 
the interface for the formation of NKCC2 homodimers, 203

which was con  rmed recently when the crystal structure of 
the C-terminus of the related prokaryotic cation chloride 
cotransporter MaCCC was solved. 199

At least six isoforms of NKCC2 have been identi  ed. 200

These isoforms are the result of alternative splicing of two 
regions of the NKCC2 gene: the   rst region is a 96 base pair 
region that encodes part of the second transmembrane do-
main, whereas the second region encompasses the extreme 
C-terminus. Three variants of the 96 base pair region are en-
coded by different versions of exon 4 of the NKCC2 gene. 
These exons are differentially spliced into NKCC2 pre-mRNAs 
to generate three distinct isoforms (A, B, and F), which alter 
the amino acid composition of the second transmembrane
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Similar to ClC-K1/ClC-Ka channels in the ATL, ClC-
K2/ClC-Kb channels require barttin accessory subunits to 
be fully functional. Barttin was originally identi  ed by po-
sitional cloning of the BSND gene, which is responsible for 
type IV Bartter syndrome (Table 5.1), a severe form of he-
reditary salt wasting that is accompanied by sensorineural 
deafness.224 Barttin is located in the basolateral membranes 
of the thin and thick ascending limb, distal nephron, and 
also in the stria vascularis of the inner ear, where it is be-
lieved to play a role in K   secretion into the endolymph. The 
regulation of ClC-K channels by barttin appears to be mul-
tifaceted, because the accessory subunit in  uences channel 
protein stability, subcellular localization, and gating. 172,173,175

The mutations of barttin identi  ed in Bartter syndrome pa-
tients generally impair the ability of barttin to produce a Cl  
conductance when expressed with ClC-Kb. 172,173

Although less completely studied, there do appear to 
be additional transport pathways that mediate basolater-
al Cl     ux in the TAL. For example, a barium-sensitive 
transcellular K  -Cl  cotransport mechanism has been 
proposed (Fig. 5.6). 225 The expression of two KCl cotrans-
porters that belong to the same family of SLC12 electro-
neutral cotransporters as NKCC2, KCC1, 226 and KCC4 227

have been observed. Thus, both of these cotransporters 
may participate in the extrusion of K   and Cl   from cells 
in the cortical and medullary TAL. Studies in knockout 
animals, however, indicate that KCC4 is not the primary 
mediator of basolateral Cl     ux in the TAL, because these 
mice do not develop a salt-wasting phenotype. Rather, the 
KCC4 knockout mouse develops metabolic acidosis and 
sensorineural deafness, suggesting that KCC4 plays im-
portant physiologic functions in the acid-secreting inter-
calated cells of the collecting duct and in the cells of the 
inner ear. 228

 Synchronous Na   /H   :Cl   /HCO 3   Exchange 
Friedman and Andreoli 229 found that net Cl   absorption 
and the transepithelial voltage were doubled when CO 2 and 
HCO3

  were added to the external solutions bathing corti-
cal TAL segments. Because the (CO 2   HCO 3 )-stimulated
rate of NaCl absorption did not result in net CO 2 transport 
and could be abolished by the lipophilic carbonic anhydrase 
inhibitor ethoxyzolamide or by the luminal addition of the 
anion-exchange inhibitor SITS or DIDS, it was proposed that 
the apical membrane of the mouse cortical TAL contains par-
allel, near synchronous Na  /H :Cl /HCO3

  exchangers in 
addition to a Na  -K -2Cl  cotransporter. The addition of 
CO2 and HCO 3  to the bathing solutions had no effect on 
net NaCl transport in either the rabbit cTAL or the mouse 
mTAL. Both the rat and mouse medullary TAL do contain 
Na /H  exchangers in their apical membranes. However, in 
these segments, Na  /H  exchange plays a role in net HCO 3 

transport and cell pH regulation rather than transcellular 
NaCl absorption. 230 The NHE3 isoform of the Na  /H  ex-
changer is the major isoform expressed in the apical mem-
brane of the thick ascending limb. 231,232

does not contribute to net K   transport, 210 an intermediate-
conductance (70 pS) K   channel, 211 and a low-conductance 
(30 to 35 pS) K   channel. 211,212 The latter two conductances 
account for the majority of the apical K   secretion in the 
TAL. 213 Both the intermediate- and the low-conductance 
channels are inhibited by intracellular ATP and are increased 
by high dietary potassium. 214

A major breakthrough in elucidating the molecular 
mechanism of K   secretion in the TAL was made when 
Ho et al. 215 cloned the ATP-dependent K   channel ROMK 
from rat kidney. This channel is the prototype for a large 
family of inward-rectifying K channels (Kir channels), and 
hence, is also called Kir 1.1. Based on its biophysical prop-
erties and regulation, investigators had long suspected that 
ROMK was the sole mediator of the 30-pS K   conductance 
in the TAL. This hypothesis was con  rmed when studies of 
the thick ascending limb in the ROMK knockout mouse re-
vealed the absence of a 30-pS channel. 216 Subsequent stud-
ies of the ROMK knockout mouse demonstrated that these 
mice also lack a 70pS conductance. 214 Thus, it is likely that 
ROMK also comprises at least a portion of the intermediate 
K  secretory conductance in this nephron segment. It has 
been proposed that the intermediate-conductance channel 
may be a heteromeric protein containing ROMK and other, 
as yet, unidenti  ed subunits. 

The notion that ROMK is the predominant channel 
responsible for apical K   recycling in the thick ascending 
limb is also supported by the   nding of mutations in the 
ROMK gene in families with type II Bartter syndrome. 217,218

These mutations have generally been con  rmed to result 
in defective K  -channel function. 219 As noted, Bartter syn-
drome results from a defect in thick ascending limb salt 
transport. Thus, the presence of ROMK mutations as a 
cause of Bartter syndrome indicates the important role of 
ROMK in net salt absorption by the thick ascending limb 
(Table 5.1). 

 Basolateral Membrane Cl    Transport 
Cl  exit across the basolateral membrane of TAL cells is 
largely conductive, proceeding down its electrochemical 
gradient through Cl  -selective channels in the basolateral 
membrane.220 The primary mediator of basolateral chloride 
transport in the TAL in humans is thought to be the chloride 
channel ClC-Kb, the sequence of which is closely related to 
the aforementioned human ClC-Ka channel expressed in 
the ATL (see previously). The name for the  corresponding 
rodent ortholog of ClC-Kb is ClC-K2. In contrast to the rel-
atively narrow expression of ClC-K1, ClC-K2 is expressed 
broadly throughout the basolateral membranes of multiple 
segments in the rodent nephron, including the TAL, the 
distal convoluted tubule, the connecting tubule, and the 
collecting duct. 171,221,222 Inherited mutations of the ClC-Kb 
cause type III Bartter syndrome, which can manifest as a 
mixed Bartter/Gitelman phenotype, possibly owing to the 
expression of ClC-K2/ClC-Kb in the distal convoluted tu-
bule (DCT) and TAL. 223
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protein expression yields a mild salt-wasting phenotype that 
approaches Gitelman syndrome, likely owing to the elimina-
tion of its activity in the DCT (see the following). However, the 
absence of a Bartter-like phenotype in these animals does not 
refute the importance of SPAK and OSR1 in the TAL. Rather, 
the Gitelman-like salt-wasting phenotype in these animals 
appears to be due to two factors. First, knockout of the SPAK 
gene not only ablates full-length kinase-active SPAK, but 
also eliminates the expression of a truncated  kidney-speci  c 
kinase-defective SPAK isoform (KS-SPAK) that suppresses 
baseline SPAK and OSR1 activity in the TAL. 237 Second, in 
the SPAK knockout mouse, TAL-expressed OSR1 appears to 
compensate for the absence of SPAK activity. Both of these 
effects ultimately result in  increased rather than decreased 
NKCC2 abundance and phosphorylation, which probably 
compensates for the lack of DCT salt reabsorption and gives 
rise to a relatively mild salt-wasting phenotype. The domi-
nance of OSR1 over SPAK in the TAL was recently veri  ed 
in studies of the OSR1 knockout mouse, which, in contrast 
to the SPAK knockout animal, exhibits a Bartter-like pheno-
type.241 On the other hand, knock-in mice bearing a muta-
tion that ablates a key catalytic activation site in SPAK do 
exhibit decreased NKCC2 phosphorylation; presumably, 
this inactivating mutation exerts a dominant-negative effect 
on NKCC2 phosphorylation by preventing the binding of 
stimulatory kinases such as OSR1 to the NKCC2 N-terminal 
docking site. 242 Although it is clear that SPAK and OSR1 are 
important kinases that are linked to tubular salt reabsorp-
tion in the TAL, it is unclear how they directly connect to 
the well-established upstream cAMP-dependent signaling 
cascades, which are mediated by vasopressin. Nevertheless, 
given the fact that vasopressin activates SPAK and OSR1 
and stimulates NKCC2 phosphorylation at key SPAK/OSR1 
phosphorylation sites, it would appear that these kinases 
are important downstream intermediaries of the vasopressin 
signaling pathway. 

In addition to its effects on apical Na  -K -2Cl  co-
transport, vasopressin increases the transcellular electrical 
conductance of the mouse medullary TAL, and this conduc-
tance increase is a major element in the mechanism for the 
hormone-dependent increase in the rate of net salt absorp-
tion.243,244 The available evidence suggests that both the api-
cal and basolateral membrane conductances are increased 
by vasopressin. In apical membranes, AVP increases conduc-
tance by increasing the functional number of K   channels 182;
this increase occurs even when net salt absorption is abol-
ished by furosemide. Ecelbarger at al. 245 showed that this 
increase in apical K   conductance was at least in part due 
to a dramatic upregulation in ROMK abundance and api-
cal localization. Thus, the machinery for apical recycling of 
K  is increased in the TAL, which would aid in  augmenting
NKCC2-mediated NaCl reabsorption. 

The predominant portion of the ADH-induced in-
crease in cellular conductance is accounted for by an in-
crease in the basolateral membrane Cl   conductance. 182

Two  mechanisms have been suggested for the hormone-

 REGULATION OF SALT ABSORPTION 
IN THE TAL 
 Vasopressin 
The peptide hormone arginine vasopressin (AVP, also known 
as antidiuretic hormone, ADH) remains the most extensively 
characterized stimulatory hormone for NaCl reabsorption in 
the TAL. The reabsorption of NaCl in the TAL is crucial for 
ef  cient urinary concentration, because it is this process that 
plays a key role in maintaining a hypertonic medullary in-
terstitial solute gradient for water reabsorption in more distal 
portions of the nephron. 233 Thus, from a teleologic perspec-
tive, vasopressin ought to be an important regulator of this 
process. The cognate receptor for vasopressin, the V2 recep-
tor (V2R), is expressed in both the cortical and medullary 
TAL, where it participates in signaling cascades that stimu-
late NKCC2 activity. 234

Binding of AVP to V2R results in increased intracellu-
lar levels of cAMP in the TAL. The increase in cAMP levels 
ultimately drives the translocation of NKCC2 from intracel-
lular subapical vesicles to the luminal plasma membrane. 
In addition, cAMP serves as a signal that increases the phos-
phorylation of residues in the NKCC2 amino terminus that 
stimulate cotransporter activity in vitro. 235,236 Although this 
process may be mediated upstream by the cAMP-dependent 
protein kinase A (PKA), it is unclear whether PKA directly 
phosphorylates the N-terminal residues that stimulate its ac-
tivity. Rather, it appears that two other kinases in particular 
are important downstream mediators of this process. These 
kinases, the Ste20 SPS1-related proline alanine-rich kinase 
(SPAK) and oxidative stress responsive kinase 1 (OSR1), 
are structurally homologous, activated by vasopressin, bind 
to a de  ned docking site harbored within the NKCC2 N- 
terminus, and directly phosphorylate these previously iden-
ti  ed stimulatory residues (Fig. 5.7). 237–239

The importance of SPAK and OSR1 in NKCC2 function 
has recently been established in transgenic and knockout 
models.237,240,241 A complete knockout of SPAK mRNA and 

FIGURE 5.7 The current model for SPS1-related proline alanine-
rich kinase /oxidative stress responsive kinase 1 (SPAK/OSR1) 
and kidney-speci  c (KS)-SPAK regulation of NKCC2 via phos-
phorylation in the thick ascending limb of the loop of Henle.
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 Hypercalcemia 
Hypercalcemia often results in an ADH-resistant urinary con-
centrating defect, that is, nephrogenic diabetes insipidus. 255

At least part of this concentrating defect results from the 
inhibition of ADH-stimulated cAMP production in the TAL 
by calcium. 256 Preincubation of tubule segments with per-
tussis toxin abolishes the effect of hypercalcemia on cAMP 
generation, indicating that the inhibition of cAMP genera-
tion is mediated through the activation of G i.257 The effects of 
hypercalcemia are mediated by a G protein–coupled calcium-
sensing receptor (CaSR) present on the basolateral membrane 
of TAL cells. 258 Activation of this receptor also inhibits the 
activity of the 70-pS apical K channel (ROMK, see previous) 
via the production of 20-HETE, a P450 metabolite of arachi-
donic acid. 259,260 Even changes in serum calcium within the 
physiologic range can alter NaCl absorption via the CaSR. 261

This may help to explain the hypotensive effect of high cal-
cium intake in salt-sensitive hypertensive individuals. 262

 Modulation of NaCl Absorption by Other 
Peptide Hormones 
In addition to ADH, a number of other peptide hormones 
stimulate adenylate cyclase activity in the TAL. In the mouse 
and rat, glucagon stimulates NaCl reabsorption and increases 
the transepithelial potential in isolated microperfused mTAL 
segments. Calcitonin and PTH stimulate sodium transport 
in the cortical, but not the medullary, portions of the TAL. 263

Ang II receptors are present in the thick ascending 
limb.264 Ang II has been reported to both stimulate and inhibit 
sodium transport in the thick ascending limb. 265,266 Chronic 
infusion of Ang II increased the abundance of NKCC2 in the 
rat outer medulla by 87%. 267 In a model of heart failure, in 
which Ang II levels are elevated, NKCC2 expression was also 
increased and this increase could be prevented by treatment 
with an angiotensin receptor  antagonist.268

 Adrenergic Agents 
 -Agonist-sensitive adenylate cyclase activity is present in the 
rat, but not the rabbit TAL. 269 Likewise,   -adrenoceptors have 
been detected along the rat TAL by autoradiographic local-
ization.270 The physiologic effects of adrenergic agents have 
been tested in micropuncture and in in vitro microperfusion 
studies. DiBona and Sawin 271 demonstrated an enhancement 
of loop NaCl absorption during low-frequency renal nerve 
stimulation. Acute renal denervation, on the  other hand, 
depressed NaCl absorption by the loop of  Henle.272

Micromolar concentrations of isoproterenol stimulate 
net Cl   absorption by in vitro perfused mouse medullary 
and cortical TAL. 273 The effects of isoproterenol on NaCl ab-
sorption in these segments can be blocked by propranolol. 

 Nitric Oxide 
Acute administration of nitric oxide donor or L-arginine, the 
substrate for NOS, decreases NaCl absorption in isolated 
perfused thick ascending limb segments. 274 The effect of 

dependent increase in basolateral Cl   conductance. Schlat-
ter and Greger 183 have proposed that the ADH-induced 
increase in intracellular cAMP results in a direct increase 
in Cl   channel activity. Such a mechanism has been amply 
demonstrated in Cl  -secreting epithelia, such as the tra-
chea and intestine. Alternatively, ADH might enhance Cl  
conductance indirectly by increasing apical membrane Cl  
entry. 182 According to this proposal, an ADH-dependent 
activation of apical membrane NKCC2 and ROMK leads 
to an increase in intracellular Cl   concentration. Because 
the activity of basolateral Cl   channels is exquisitely sensi-
tive to changes in intracellular Cl   concentration, 246 this 
increase will translate into an increase in the basolateral 
membrane Cl   conductance. 

 Prostaglandins 
Prostaglandin 1 (PGE 2), the major product of prostaglan-
din synthesis in the renal medulla, participates in a local 
negative-feedback system that modulates the rate of NaCl 
absorption by the TAL. PGE 2 resulted in a 50% reduction 
in ADH- stimulated net Cl   absorption in isolated perfused 
mammalian mTAL segments, but had no effect in the absence 
of ADH. 247 It is likely that PGE 2 inhibits ADH-stimulated 
generation of cAMP in the mTAL by activating an inhibitory 
G protein, G i.247 Although interstitial cells are a major source 
of PGE 2 production in the renal medulla, thick ascending 
limb cells can metabolize arachidonic acid through at least 
two pathways. Escalante et al. 248 demonstrated that puri  ed 
medullary thick ascending limb cells produce 20-hydroxy-
eicosatetraenoic acid (20-HETE) via the cytochrome P450 
enzyme,  -hydroxylase. 20-HETE was subsequently shown 
to inhibit NaCl transport in the thick ascending limb at 
steps, which include the apical K   channel 249 and the Na  -
K -2Cl  cotransporter. 248 Thick ascending limb cells, par-
ticularly in the macula densa (MD), also express COX-2. 250

COX-2 expression in these cells may be coupled to renin 
secretion. Thus, COX-2 expression is increased by salt re-
striction, diuretics, and, in Bartter syndrome, all conditions 
characterized by hyperreninemia. 251 Moreover, COX-2 in-
hibitors reduce renin secretion in these settings. 252

 Osmolality 
Peritubular osmolality is a third factor regulating mTAL salt 
absorption. In isolated mouse and rabbit TAL segments, 
increases in peritubular osmolality rapidly and reversibly 
inhibit the ADH-stimulated rate of net Cl   absorption. 243

Molony and Andreoli 253 determined that hypertonicity in-
hibits the basolateral membrane Cl   conductance. This 
inhibition of transcellular salt absorption occurs at a locus 
beyond the generation of cAMP, because supramaximal con-
centrations of either ADH or cAMP are unable to reverse the 
hypertonicity-mediated effect. 254 Thus, increasing the abso-
lute magnitude of interstitial osmolality provides a negative 
feedback signal, which can reduce ADH-dependent salt 
absorption by the medullary TAL. 
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DCT, so that the Na   concentration averages 50 mM at a 
point 200 to 300  m from the macula densa. 285 From there, 
tubular Na   concentration decreases along the DCT to a 
value of approximately 30 mM at the end. 286 Tubular   uid 
to plasma Na   ratios as low as 0.10 have been observed dur-
ing stationary microperfusion. 287 This   nding, together with 
the presence of the lumen-negative potential difference (see 
the following), clearly establishes the active nature of Na  
absorption in this segment. 

Na  absorption by the DCT is load dependent. That is, 
over a wide range of delivery rates, the proportion of Na  
absorbed by the DCT remains constant at 80%. 286 At high 
tubular   uid   ow rates, the fall in luminal Na   concentra-
tion along the tubule is attenuated; thus, more Na   is avail-
able to distal Na   absorptive sites at high rather than at low 
  ow rates. 

 Electrophysiologic Considerations 
Depending on the type of electrodes that were used, mea-
surements of the transepithelial voltage in the earliest loops 
of the DCT vary from slightly lumen negative to slightly lu-
men positive. 288–291 Consistent among all measurements, 
however, is the observation that the transepithelial voltage 
becomes progressively more lumen negative as tubular   uid 
passes to the end of the DCT and into the CNT and CCD. 

The progressively lumen-negative transepithelial elec-
trical potential is primarily due to a change in Na   trans-
port pathways from the early DCT to more downstream 
nephron segments. As shown previously by Ellison et al., 292

Na  reabsorption in the early DCT is largely mediated by 
an electroneutral, thiazide-sensitive NaCl cotransporter, 
whereas Na   absorption in the late DCT also involves an 
amiloride-sensitive electrogenic pathway. 282 These and other 
mechanisms of Na   absorption are discussed in detail in the 
following sections. 

 The Mechanism of Na    Absorption 
A general model for these mechanism by which Na   is reab-
sorbed in the early and late DCT is presented in Figure 5.8. 

 The Apical NaCl Cotransport. The absorption of Na   and 
Cl  in the early DCT are coupled. 293 The coupling of Cl   to 
Na  entry provides a mechanism to maintain the intracellu-
lar Cl   activity above its electrochemical equilibrium. 294 The 
early distal tubule is the site of action of thiazide diuretics. 295

Autoradiographic studies 296 and immunocytochemical stud-
ies297 have demonstrated thiazide-binding sites in the apical 
membranes of DCT and connecting tubule cells. 

The thiazide-sensitive NaCl cotransporter (NCC, TSC, 
SLC12A3) mediates electroneutral NaCl reabsorption in 
the early and late DCT (Fig. 5.8). 298 The cotransporter 
shares considerable sequence homology to the bumetanide- 
sensitive Na  -K -2Cl  cotransporter (NKCC2) present in 
the TAL, 193 yet exhibits markedly different inhibitor sensi-
tivity and ionic requirements. NCC transports NaCl with a 

L-arginine on NaCl transport can be blocked by L-NAME, 
an inhibitor of NOS, indicating that endogenous production 
of NO mediates the effect of  L-arginine. The inhibitory effect 
of NO on net NaCl absorption appears to involve, at least in 
part, the inhibition of NKCC2 activity. 275 The thick ascend-
ing limb expresses all three isoforms of NOS. 276 Plato et al. 277

used mice de  cient in the various NOS isoforms to deter-
mine that the effect of  L-arginine is mediated by eNOS rather 
than iNOS or nNOS. In contrast to its effect on NaCl ab-
sorption, NO stimulates NaHCO 3  absorption in the thick 
ascending limb. 266 Finally, although short-term exposure to 
NO inhibits NaCl absorption, chronic exposure increases 
NKCC2 expression, 278 which could translate into increased 
NaCl absorption. 

 Sodium Balance 
Dietary Na   restriction in rats results in a transient decrease 
in NKCC2 expression, 279 whereas high Na   intake has no 
major effect on NKCC2 expression. 280 Chronic treatment 
with furosemide in conjunction with a high sodium diet in-
creases NKCC2 expression. 281 The latter phenomenon may 
account for the development of diuretic resistance and the 
interdose rebound in sodium absorption in patients chroni-
cally treated with loop diuretics. 

 THE DISTAL NEPHRON 
 Anatomic Considerations 
The distal nephron may be divided into three segments: the 
DCT, the connecting tubule (CNT), and the collecting duct. 
Perhaps owing to the nature of the original micropuncture 
studies characterizing the distal nephron, the DCT was ini-
tially thought to be a segment consisting of a homogeneous 
population of epithelial cells. However, more recent work 
clearly indicates that the DCT can be further divided into 
two functionally distinct subsegments, referred to as the 
“early” and “late” DCT (DCT1 and DCT2, respectively). 282

One of the primary features that distinguishes between the 
early and late portions of the DCT is the differential sensi-
tivity of these segments to the mineralocorticoid hormone 
aldosterone. More speci  cally, the late DCT expresses the en-
zyme 11beta-hydroxysteroid dehydrogenase 2 (11  -HSD2),
which metabolizes cortisol, thereby rendering mineralocor-
ticoid receptors sensitive to aldosterone. 283 For this reason, 
the late DCT, CNT, and the cortical collecting duct (CCD) 
are collectively termed the aldosterone-sensitive distal neph-
ron (ASDN). 

 Na    Transport in the Distal Convoluted 
Tubule and the Connecting Segment 
 General Characteristics 
The DCT absorbs roughly 5% to 10% of the   ltered Na  
load.284 Fluid enters the DCT with a Na   concentration of 
25 to 30 mM, but salt is added along the initial 20% of the 
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Gordon syndrome), have yielded additional insights into the 
regulation of NCC function. FHHt is the phenotypic opposite 
of Gitelman syndrome and is characterized by hypertension, 
hyperkalemia, and metabolic acidosis (Table 5.1). The disor-
der is largely corrected by the infusion of sodium with poorly 
reabsorbable anions, or by treatment with  thiazide diuretics. 304

These features suggested that the  hypertension in FHHt is 
chloride dependent, and that an increase in NCC activity may 
be involved in the pathogenesis of PHA II. Positional cloning 
demonstrated that FHHt is caused by mutations in either of 
two with-no-lysine (WNK) serine-threonine kinases, WNK1 
or WNK4. 305 These kinases have been intensely studied since 
their l inkage to FHHt in 2001, and are well-established regu-
lators of NCC, but the mechanisms by which they affect NCC 
function are complex. Both WNK1 and WNK4 have been 
shown to regulate NCC plasma membrane traf  cking and ac-
tivity (Fig. 5.9). In the current model it is believed that WNK4 
acts as an inhibitor of NCC traf  cking at the baseline state 
because it prevents the cotransporter from traf  cking from the 
biosynthetic pathway to the cell surface. 306–308 In contrast to 
this inhibitory effect on NCC traf  c, it has been hypothesized 
that under certain physiologic states that favor NaCl reabsorp-
tion, WNK4 stimulates NCC phosphorylation. Because NCC 
is structurally similar to NKCC2, it is activated by the serine–
threonine kinases SPAK and OSR1 (see  previous  section). 
WNK4 and WNK1 activate SPAK and OSR1, which then can 

1:1 stoichiometry, is K  -independent, and is inhibited by 
thiazide diuretics. 299 NCC is expressed in the apical mem-
brane of DCT cells and extends, in most species, into the 
connecting segment. 300

 Gitelman Syndrome. Loss-of-function mutations in the NCC 
gene have been linked to the pathogenesis of Gitelman 
syndrome. 218 This syndrome resembles Bartter syndrome 
(hypokalemia, alkalosis, sodium wasting), except that uri-
nary calcium excretion is reduced in Gitelman syndrome and 
is elevated in most cases of Bartter syndrome. Thus, physi-
ologically, Gitelman syndrome mimics the effects of thiazide 
diuretics. Several studies have evaluated the consequences 
of mutations causing Gitelman syndrome on NCC function, 
and in most cases, these mutations alter the NCC coding se-
quence in such a way that they reduce NCC expression and 
traf  cking to the apical plasma membrane of the DCT. 301,302

In this regard, most of these disease-causing mutations re-
sult in the conformational misfolding of NCC, resulting in 
the recognition of mutant NCC by chaperone-dependent 
endoplasmic reticulum (ER) quality control machinery that 
targets the cotransporter for proteasomal degradation. 301,303

 Familial Hyperkalemic Hypertension. Studies of another in-
herited disorder of distal Na   transport, familial hyperkale-
mic hypertension ([FHHt] type 2 pseudohypoaldosteronism, 

FIGURE 5.8 A model of NaCl absorption by cells of the 
early and late distal convoluted tubule (DCT). The early 
and late DCT express NCC, a thiazide-sensitive, electro-
neutral NaCl cotransporter. The late DCT also expresses 
the amiloride-sensitive Na  channel ENaC. Basolateral K 

channels include Kir4.1, mutated in EAST/SeSAME (epi-
lepsy, ataxia, sensorineural deafness, and tubulopathy/
seizures, sensorineural deafness, ataxia, mental retardation, 
and electrolyte imbalance) syndrome, a hereditary salt-
wasting disorder. ROMK, renal outer medullary K channel; 
NCC, thiazide-sensitive NaCl cotransporter.

177



178 SECTION I  STRUCTURAL AND FUNCTIONAL CORRELATIONS IN THE KIDNEY

Thus, the WNK1 gene mutations that cause FHHt presum-
ably do so by reversing the inhibitory effect of WNK4 on 
NCC traf  c and by stimulating NCC phosphorylation. 315

As with SPAK gene expression in the TAL (see previous), 
long and short WNK1 isoforms are expressed in the DCT. 
The long form of WNK1 (L-WNK1) is kinase active and 
stimulates NCC activity and traf  cking through the mecha-
nisms described previously. A short kidney-speci  c kinase- 
defective  product (KS-WNK1), in contrast, suppresses 
L-WNK1 activity (Fig. 5.9). 316 The balance of these two iso-
forms has been postulated to act as a “switch” that controls 
overall L-WNK1 kinase activity in the DCT, which should 
in turn regulate NCC activity. 310 Consistent with this idea, 
selective knockout of KS-WNK1 expression increases NCC 
activity, whereas overexpression of the kidney-speci  c 
isoform in  KS-WNK1 transgenic mice causes salt-wasting 
through NCC  inhibition.317

 The Basolateral Electrogenic Na    Pump. In both subseg-
ments, the basolateral extrusion of Na   from the cytosol into 
the peritubular space (and eventually, the plasma) occurs via 
the electrogenic Na  ,K –ATPase. The activity of this pump 
results in the generation of a constant transepithelial voltage 
across the basolateral membrane of   60 to  90 mV. 318,319

A reduction in the luminal sodium concentration causes  Vbl
to depolarize, whereas increases in the sodium concentra-
tion hyperpolarizes Vbl. In addition, Vbl depolarizes after 
ouabain treatment. 320 These observations are consistent with 
the notion that apical Na   entry stimulates the electrogenic 
Na ,K –ATPase system in the basolateral membrane. 

 Basolateral K    Ef  ux. Recent insights from rare Mendelian 
diseases highlight the importance of basolateral K   trans-
port in tubular sodium transport in the distal nephron. In 
2008, two groups identi  ed that patients with mutations in 
the K   channel gene  KCNJ10 (Kir4.1) develop hereditary 
salt wasting.321,322 Patients with these mutations develop a 
complex constellation of neurologic defects in addition to 
the renal salt wasting. The disease has been named EAST 
syndrome ( epilepsy,  ataxia, sensorineural deafness, and tu-
bulopathy) by some investigators and SeSAME syndrome 
(seizures,  sensorineural deafness,  ataxia,  mental retarda-
tion, and electrolyte imbalance) by others (Table 5.1). The 
salt-wasting phenotype in these patients is reminiscent of 
Gitelman syndrome, suggesting that the disorder results in 
an impairment of salt transport in the DCT. Indeed, Kir4.1 
is expressed on the basolateral membrane of DCT cells, 
and patients with EAST/SeSAME syndrome mutations de-
velop markedly reduced infoldings of the DCT basolateral 
membrane. This de  ciency in total basolateral membrane 
content results in a decrease in the number of surface 
Na ,K –ATPase molecules, resulting in decreased sodium 
pump activity and impaired salt reabsorptive capacity. 323

Additionally, it is thought that loss-of-function mutations of 
Kir4.1 impair K   recycling across the basolateral membrane, 
which reduces the ef  cacy of Na  ,K –ATPase (Fig. 5.8). 321

bind to NCC and stimulate its activity by phosphorylating a 
cluster of serines and threonines in its NH 2-terminus.307 In 
contrast to the TAL, only the full-length  kinase active SPAK is 
expressed in the DCT (i.e., no inhibitory KS-SPAK isoforms 
are expressed). 237 Due to the observations that WNK4 inhib-
its NCC under some experimental conditions and stimulates 
it under others, several have proposed that the WNK signal-
ing pathway acts as a “switch” that converts the DCT from 
a salt-wasting to a salt- reabsorptive segment, although more 
work is needed to con  rm this hypothesis. 309–311 In FHHt, 
missense mutations of WNK4 stimulate NCC activity through 
two mechanisms. First, mutant WNK4 is incapable of revers-
ing the inhibitory effect on NCC at the baseline; this results in 
increased NCC surface expression. 308,312 Second, the FHHt-
associated mutant increases NCC phosphorylation, presum-
ably through enhanced SPAK/OSR1 activity. Thus, through 
incompletely de  ned mechanisms, mutant WNK4 appears to 
“lock” the DCT into a high Na   reabsorptive state by increas-
ing the total number of active NCC molecules at the cell sur-
face, resulting in thiazide-sensitive hypertension. 313

In contrast, WNK1 appears to in  uence NCC traf  c 
indirectly by suppressing the inhibitory effect of WNK4 
(Fig. 5.9). This effect requires intact WNK1 kinase  activity
and releases NCC from intracellular retention, thereby fa-
cilitating NCC delivery to the cell surface. 307,308 Unlike 
WNK4, WNK1 mutations that cause FHHt do not alter 
the kinase’s coding sequence. Rather, WNK1 mutations 
are large intronic deletions that increase the mRNA abun-
dance of WNK1 isoforms.305 Kinase-active WNK1 is capa-
ble of phosphorylating and activating SPAK and OSR1. 314

FIGURE 5.9 A model of thiazide-sensitive cotransporter (NCC) 
regulation by the with-no-lysine SPS1-related proline alanine-
rich kinase/oxidative stress responsive kinase 1 (WNK-SPAK/
OSR1) signaling pathway. With-No-Lysine (WNK) kinases regu-
late NCC traf  cking and phosphorylation. L-WNK1, full-length 
kinase-active (“long”) WNK1; KS-WNK1, short kinase-defective 
“kidney-speci  c” WNK1.
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a signi  cant increase in NCC expression, which may have 
been because of the stimulation of mineralocorticoid secre-
tion.334 In contrast, rabbits fed a high Na   diet developed an 
increased rate of DCT Na   reabsorption and an increase in 
Na ,K –ATPase activity. 335

 Steroid Hormones. Currently available evidence suggests 
that adrenal steroid hormones regulate Na   transport in the 
DCT. The presence of both mineralocorticoid and gluco-
corticoid receptors in the DCT has been demonstrated by 
immunohistochemistry and by hormone binding. 283,336,337

In addition, an adrenalectomy resulted in a decrease in 
Na ,K –ATPase activity in the DCT. 338 The Na  ,K –ATPase 
activity could be restored by replacement doses of gluco-
corticoids, but not by mineralocorticoids. 338,339 Microper-
fusion studies of super  cial distal tubules (containing both 
DCT and CNT), however, demonstrated an increase in Na  
transport in animals receiving aldosterone infusions. 340,341

Both the thiazide-sensitive and the thiazide-insensitive 
components of Na   transport were increased by aldoste-
rone. 341 The former may re  ect neutral NaCl cotransport 
in the DCT, whereas the latter re  ects electrogenic Na  
absorption in the late DCT or CNT. Aldosterone infusion 
also resulted in an increase in thiazide-binding sites in the 
renal cortex, as determined by [ 3H]metolazone binding, an 
increase in the natriuretic response to thiazide diuretics, 
and a large increase in NCC protein. 341–343 These   ndings 
establish NCC as an aldosterone-regulated transporter. By 
combining immunohistochemical and in situ hybridization 
techniques, Bostanjoglo et al. 283 determined that DCT cells 
coexpress NCC, mineralocorticoid receptors, and 11beta- 
hydroxysteroid dehydrogenase type 2, an enzyme typically 
found in  mineralocorticoid target sites. Thus, DCT cells, 
particularly those in the late portions of the DCT,  express 
the key elements required for selective mineralocorticoid 
actions.

In 1998, Kim et al. 343 showed that aldosterone in-
creases the total protein abundance of NCC. This effect 
did not correlate with changes in NCC mRNA abun-
dance, suggesting that aldosterone regulates NCC abun-
dance by posttranslational mechanisms. Recent work in-
dicates that at least two molecular mechanisms account 
for this effect.  Aldosterone rapidly induces and activates 
the serine– threonine kinase serum and glucocorticoid-
regulated kinase 1 (SGK1), which directly phosphorylates 
and inactivates two inhibitors of NCC traf  cking, WNK4 
(described previously), and neural precursor cell-derived, 
developmentally downregulated 4-2 (Nedd4-2), an E3 
ubiquitin ligase. 344,345 SGK1-mediated phosphorylation of 
two residues located at the C-terminus of WNK4 releases 
NCC from inhibition. This results in WNK4 inactivation 
and diverts the cotransporter away from intracellular deg-
radation pathways, allowing NCC to traf  c directly to the 
plasma membrane from the biosynthetic pathway. 344 By 
phosphorylating Nedd4-2, SGK1 suppresses the ability of 
the E3 ligase to attach ubiquitin molecules to NCC; this 

 Basolateral Cl    Transport. As mentioned previously, 
ClC-Kb channels and barttin are both expressed in the 
DCT, where they mediate basolateral Cl   reabsorption. 172

Because the apical transport mechanism in the DCT via NCC 
occurs through the coupled reabsorption of Na   and Cl  ,
basolateral Cl   transport is essential to the development 
of a gradient for Na   entry and to reduce the intracellular 
Cl  concentration, which stimulates SPAK/OSR1–mediated 
NCC phosphorylation. 324 Mutations in either ClC-Kb or the 
accessory subunit result in impaired distal salt reabsorption. 
Because barttin is required for adequate basolateral Cl   re-
absorption in the loop of Henle and DCT (see previous), 
patients with barttin mutations develop a more severe form 
of Bartter syndrome. 172

 Apical Conductive Na    Channels. The entry of sodium 
into the Amphiuma distal tubular cell 325 and late rat DCT 
cell326 is inhibited by amiloride, a Na   channel blocker. 
A Na   channel in the apical membrane would serve to depo-
larize the membrane and create the observed lumen- negative
transepithelial potential. This transepithelial voltage, in turn, 
is a driving force for passive Cl   reabsorption. Na   chan-
nel subunits have been found by immunolocalization in the 
late DCT in mouse and rat kidney, 327,328 but not the human 
kidney. 329

 The Regulation of NaCl transport in the Distal 
Convoluted Tubule 
 Na    Delivery. NaCl reabsorption in the DCT is dependent 
on the delivered load of NaCl. 286 The DCT responds to 
chronic increases in the delivery of NaCl with an increase 
in the capacity for NaCl transport, 330 as well as marked ul-
trastructural changes in the DCT cell. These morphologic 
changes include an increase in the size of the DCT cell, 
an increase in the basolateral membrane surface area, and 
an increase in the size of mitochondria. 330 Accompanying 
the functional and morphologic changes are an increase in 
Na ,K –ATPase activity and an increase in thiazide-binding 
sites.331 These effects appear to result from an increase in 
Na  entry into the DCT cell rather than the increase in dis-
tal NaCl delivery or changes in plasma aldosterone or ADH 
levels that occur with chronic furosemide treatment. Inhi-
bition of NaCl entry into DCT cells with chronic thiazide 
treatment resulted in a loss of cell height, loss of normal po-
larity, and apoptosis of the DCT cells. 332 The cellular mech-
anisms whereby NaCl entry affects transport function and 
morphology are not known. 

 Dietary Na   . Studies in rats and rabbits have  yielded con-
  icting results regarding the effects of increased  dietary Na  
on DCT morphology and Na   transport. In rats, no con-
sistent effect of a high Na   diet on either cell  morphology, 
transport rates, or thiazide-receptor density could be 
demonstrated.330,331,333 Rats fed a low Na   diet 279 or 
treated with thiazide diuretics, 281 however, demonstrated 
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 Na    TRANSPORT IN THE CORTICAL 
COLLECTING DUCT 
 General Considerations 
 The transport processes in the collecting duct mediate   nal 
adjustments in urinary composition. The collecting duct is 
a major locus of action of mineralocorticoid hormones and 
plays a major role in K   homeostasis and acid–base balance. 
Quantitatively, it is a minor site of Na   absorption, reclaim-
ing only about 2% to 4% of the   ltered Na   load. 354

 Electrophysiologic Aspects 
 The transepithelial voltage in the CCD varies widely from 

 10 to   100 mV, 295,355,356  which largely results from dif-
ferences in mineralocorticoid levels at the time of measure-
ment in the animals. The reported values for transepithelial 
resistance also vary widely depending on apical Na   and 
K   channel activities, as shown by the effects of luminal 
amiloride and barium, respectively, on transepithelial resis-
tance. 356,357  The basolateral membrane is conductive to K 
and, at least in rabbits, Cl  . 357

 Mechanisms of Salt Absorption in 
Collecting Ducts 
 A proposed model for Na   absorption and K   secretion 
in the CCD is presented in Figure 5.10. As indicated previ-
ously, apical membranes of CCD principal cells possess con-
ductive pathways for Na   and K  . 358,359  Na   enters principal 
cells through Na   channels in the apical membrane down its 
electrochemical gradient. Na   is then pumped across the ba-
solateral membrane by the Na  ,K  –ATPase in exchange for 
K  . The Na   current across the apical membrane  depolarizes 

reduces NCC  degradation and increases its plasma mem-
brane expression. 345  Both of these effects  provide an expla-
nation for the aldosterone-induced increase in NCC total 
protein abundance that was initially seen by Kim et al 343

Aldosterone also appears to stimulate NCC transport ac-
tivity by promoting NCC phosphorylation, an effect that 
occurs independently of the effects of mineralocorticoids 
on NCC traf  c. 346,347  The mechanism by which this effect 
occurs remains unclear but appears to correlate directly 
with increased SPAK/OSR1 activity, suggesting that ad-
ditional connections between aldosterone and the WNK/
SPAK/OSR1 signaling pathway may exist. 

 As mentioned previously, glucocorticoids increase 
Na   ,K   –ATPase activity following an adrenalectomy in 
the DCT. 338,339  This effect was not blocked by spironolac-
tone, a mineralocorticoid receptor antagonist, suggesting 
that glucocorticoids were acting via glucocorticoid recep-
tors rather than mineralocorticoid receptors. 339  In addition, 
 dexamethasone infusions increased thiazide-sensitive NaCl 
transport and [ 3 H]metolazone binding sites in adrenalecto-
mized rats. 341,342  Nevertheless, the role of glucocorticoids in 
the physiologic regulation of Na   transport in the DCT re-
mains unclear. 

 Gonadal steroid hormones may also in  uence NaCl 
transport in the DCT. Chen et al. 348  reported gender 
 differences in the density of thiazide receptors and in the 
natriuretic response to thiazides in rats. Female rats had 
higher levels of thiazide-binding sites in the renal cortex 
than males. The levels in females fell following ovariectomy, 
whereas levels rose in males following orchiectomy. More-
over, the increase in urinary Na    excretion caused by thia-
zides was greater in females than in males, suggesting that 
the  differences in thiazide-binding sites were re  ective of dif-
ferences in thiazide-sensitive salt transport in vivo. Likewise, 
using antibodies against NCC, Verlander et al. 349  found that 
estrogen treatment increased NCC expression in the DCT. 
These results are consistent with the view that male sex hor-
mones (e.g., testosterone) may downregulate NCC expres-
sion and salt transport, whereas estrogens increase NCC 
 expression and salt transport in the DCT. The authors are 
not aware of gender differences in the response of humans 
to thiazide diuretics. 

 Vasopressin. Recent work indicates that vasopressin is a 
potent activator of the thiazide-sensitive  cotransporter. 350,351

Two groups have shown that the vasopressin analog 
 deamino-Cys-1, d-Arg-8 vasopressin (dDAVP) stimulates 
 increases in NCC abundance, traf  cking to the plasma mem-
brane, and activation through SPAK/OSR1-mediated phos-
phorylation of its amino terminus. This effect is  probably 
dependent on cyclic AMP and protein kinase A (PKA), 
well-established intermediaries of vasopressin-dependent 
 signaling. 352  The effect on NCC abundance may be a Nedd4-
2-dependent process, because PKA can phosphorylate and 
inactivate Nedd4-2 through mechanisms similar to SGK1 353 ; 
however, this hypothesis is yet to be tested. 

FIGURE 5.10 A model of salt transport by the principal cell 
of the cortical collecting duct. Apical Na  entry proceeds via 
amiloride-sensitive Na  channels (ENaC). Apical K  channels 
(ROMK) mediate K  secretion by this segment. Cl  absorption is 
driven by the lumen-negative voltage through the paracellular 
pathway.

180



CHAPTER 5  TUBULAR SODIUM TRANSPORT 181

cause excessive ENaC accumulation at the apical plasma 
membrane, increasing Na   absorption. Pseudohypoaldoste-
ronism type 1  (PHA-1), the clinical opposite of Liddle syn-
drome, is caused by  homozygous inactivating mutations in 
the ENaC channel, resulting in a syndrome of Na  -wasting,
hypotension, and hyperkalemia. 379 The majority of muta-
tions causing PHA-1 are frameshift or nonsense mutations 
that result in truncated, nonfunctional ENaC proteins. 374

 Apical Electroneutral Na    Transport 
It was   rst observed in rats that a portion of Na   entry across 
the apical membrane in perfused CCD segments was sen-
sitive to luminal hydrochlorothiazide, which inhibited Na  
and Cl   absorption without changing the transepithelial volt-
age.380 In addition, amiloride inhibited Na   transport in this 
segment by only 50%, and the effects of amiloride and hydro-
chlorothiazide were additive. It was thus concluded that the 
CCD may possess two parallel transport pathways for Na  :
an electrogenic pathway involving amiloride- sensitive Na  
channels and a thiazide-sensitive neutral NaCl cotransport 
pathway. 380 More recently, a Na  -dependent Cl  /HCO3

 

exchanger (NDCBE/SLC4A8) was identi  ed in intercalated 
cells and found to mediate the amiloride-resistant, thiazide-
sensitive electroneutral Na   reabsorption in the CCDs of 
mice.381 That NCC knockout mice also exhibited signi  cant 
natriuresis following treatment with thiazide diuretics sug-
gests the importance of this pathway. The mechanism for 
net NaCl reabsorption in this setting involves the parallel ac-
tivity of the NDCBE and Na  -independent Cl  /HCO3

  ex-
change via pendrin/SLC26A4 at the apical membrane of type 
B intercalated cells. The basolateral  reabsorption pathways 
for the Na   and Cl   that enter at the apical membrane in 
this model are the Na  ,K –ATPase and ClC-K Cl   channels. 
Thus, a novel target of thiazide  diuretics distinct from NCC 
has been identi  ed in the collecting duct with the implica-
tion that Cl   transport by intercalated cells plays an impor-
tant role in blood pressure regulation. 382 Because pendrin is 
a key mediator of bicarbonate secretion, and thus acid–base 
regulation, these   ndings also suggest a strong link between 
acid–base and volume/blood pressure regulation. 

 Control of Na    Absorption in the Cortical 
Collecting Duct 
 Aldosterone 
Aldosterone is one of the key regulators of Na   transport 
in the collecting duct, where it increases the rates of Na  
absorption and K   secretion. 383,384 The major target site for 
mineralocorticoid effects is the principal cell of the CCD, 
although actions in the DCT have also been documented 
(see previous). Mineralocorticoid effects are produced by the 
binding of either mineralocorticoids or glucocorticoids 385

to mineralocorticoid receptors found predominantly in the 
CCD.336,337 In addition, the binding of glucocorticoids to 
glucocorticoid receptors can also produce mineralocorti-
coid responses. 385 This lack of speci  city results from two 

the cell, so that the cellular K   is above its equilibrium con-
centration, and thus leaves the cell through conductive path-
ways in the apical or basolateral membrane.360

 Apical Na    Channels 
Apical Na   entry depolarizes the apical membrane  relative to 
the basolateral membrane, causing a lumen-negative trans-
epithelial voltage, which in turn provides the driving force 
for Cl   reabsorption through the paracellular pathway. Patch-
clamp studies of collecting duct cells and urinary bladder 
cells provided some details regarding the  electrophysiologic 
properties and regulation of apical membrane Na   chan-
nels.361 The amiloride-sensitive epithelial Na   channel 
(ENaC) has been cloned, 362,363 has a single-channel conduc-
tance to Na   of 4 to 5 pS, and is highly selective for Na   over 
K  ( PNa/PK 20). ENaC exhibits slow gating, with openings 
and closings lasting several seconds. Amiloride blocks ENaC 
at submicromolar concentrations. 364

ENaC consists of three homologous subunits (  ,  ,
and  ).363 The subunits share a common structure consist-
ing of two transmembrane domains, intracellular N- and C-
termini, and a large extracellular loop. 365,366 Although the 
  subunit of ENaC can form Na   channels on its own, 362

coexpression of all three subunits dramatically increases the 
membrane Na   conductance. 363 Based on homology to the 
related acid-sensing ion channel (ASIC1), the crystal struc-
ture of which was recently solved, 367 native ENaC likely 
exists as an  ,  , and   heterotrimer. The single channel 
properties of the expressed channel closely resemble those 
of the 4 to 5 pS highly selective channel studied in native 
tissues.363 The large extracellular domains of the    and   
subunits can get proteolytically cleaved by furin in the bio-
synthetic pathway. 368,369 Other proteases like prostasin and 
plasmin may cleave the   subunit. 370 These cleavage events 
release small inhibitory fragments of the    and    subunits, 
causing an increase in the open probability of ENaC. 370

ENaC activity is also enhanced by increasing luminal   ow 
rates, as the extracellular domain of ENaC subunits respond 
to laminar shear stress. 371,372 Thus, collecting duct Na   ab-
sorption is enhanced with increased distal   uid delivery via 
ENaC, a mechanosensitive channel. 373

The key importance of ENaC for Na   reabsorption in 
the collecting duct is highlighted by naturally occurring 
mutations in ENaC that are responsible for Liddle syn-
drome, an autosomal dominant form of hypertension, and 
pseudohypoaldosteronism type 1, an autosomal recessive 
form of salt wasting (see Table 5.1). 374 In Liddle syndrome, 
mutations in the ENaC subunits result in an increase in 
amiloride-sensitive Na   channel activity with a consequent 
increase in sodium reabsorption and volume-mediated hy-
pertension.375–377 Most Liddle mutations occur in the cy-
toplasmic C-termini of the   (SCNN1G) and    (SCNN1B) 
subunits.375 These mutations affect a conserved PY motif in 
the C- terminus, which is necessary for interaction with the 
ubiquitin ligase Nedd4-2 and subsequent internalization 
and degradation of ENaC. 378 Liddle syndrome mutations 
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As discussed earlier, the binding of Nedd4-2 to ENaC 
induces internalization and degradation of the channel. 

Recently, additional aldosterone-induced proteins have 
been discovered, including the glucocorticoid-induced leu-
cine zipper protein (GILZ1), the transcription of which is 
rapidly induced by aldosterone in collecting duct principal 
cells. GILZ1 stimulates ENaC-mediated Na   transport and 
ENaC surface expression by inhibiting Raf-1 in the extracel-
lular signal-regulated kinase (ERK) signaling pathway. 404,405

Soundararajan and colleagues 406 have also identi  ed another 
aldosterone-induced protein, CNK3 (connector enhancer of 
kinase suppressor of Ras 3), which also stimulates ENaC and 
appears to be a scaffolding protein. The emerging story is 
that a multiprotein complex exists in CCD cells that pro-
motes context-speci  c aldosterone signal transduction to 
induce ENaC activity and apical Na   conductance. Speci  -
cally, aldosterone stimulates ENaC activity through synergis-
tic aldosterone-dependent activation by SGK1 via Nedd4-2 
and by GILZ1 via Raf-1 and CNK3. 

Nongenomic effects of aldosterone (rapid effects that are 
mineralocorticoid receptor-independent) have also been de-
scribed in many tissues, including the kidney. 407 Elucidating 
the mechanisms of such effects is an area of active investiga-
tion and appears to include the mitogen-activated protein 
kinase (MAPK) pathway and the methylation of proteins and 
lipids. Aldosterone also increases the activity of a number of 
cellular methyltransferase enzymes. 408 Moreover, the    sub-
unit of ENaC itself is a substrate for methylation, and, when 
methylated, exhibits increased Na   transport activity. 409 The 
effects of aldosterone on Na   channel activity may also in-
volve small GTP-binding proteins, for example,  Ras,410 and 
phosphatidylinositol 3-kinase. 411 SGK1 is a downstream me-
diator of phosphoinositide-3-kinase. 412

Sometime after the increase in apical membrane Na   con-
ductance occurs, the basolateral membrane Na  ,K –ATPase
 activity and pump current increase. 413 This increase is due 
initially to the effect of increased cell sodium  activity on exist-
ing pump units. 414 Later, aldosterone induces the synthesis 
of additional Na  ,K –ATPase pump subunits. 415 Increased 
apical membrane Na   entry may promote the late synthesis 
of Na  ,K –ATPase, because the inhibition of sodium entry 
by amiloride markedly reduced the aldosterone-induced in-
crease in Na  ,K –ATPase activity. 416

Aldosterone also exerts an additional, late effect on 
the amiloride-sensitive Na   conductance. Patch-clamp 
studies in rats exposed to high levels of aldosterone for sev-
eral days demonstrated a large increase in the amiloride- 
sensitive whole cell Na   conductance, 417 which correlated 
with an increase in the number of active Na   channels in 
the apical membrane. 418 Increases in ENaC mRNA 419 and 
protein 334 levels in aldosterone-treated tissues suggest that 
the synthesis of new ENaC channels may contribute to the 
late aldosterone-induced increase in Na   conductance. 
SGK1, in addition to increasing the cell surface expression 
of ENaC, also regulates the transcription of ENaC subunits, 
principally  .420

factors:   rst, mineralocorticoid receptors do not discrimi-
nate  between aldosterone and glucocorticoids, 386 so that 
either class of steroids can bind to and activate the recep-
tor. Second, the DNA binding domains of mineralocorticoid 
and glucocorticoid receptors are highly conserved such that 
both receptors can activate many of the same genes. 387 The 
speci  city for mineralocorticoids in vivo is provided by the 
selective degradation of glucocorticoids, but not mineralo-
corticoids, by the enzyme 11  -hydroxysteroid dehydroge-
nase.386 11  -Hydroxysteroid dehydrogenase activity is high 
in CCD segments. 388,389 Illustrating the important role of this 
enzyme in regulating access of hormones to the mineralocor-
ticoid receptor, genetic de  ciency of this enzyme produces 
a syndrome, apparent mineralocorticoid excess, resembling 
hyperaldosteronism (hypertension, hypokalemia,  metabolic
alkalosis), except that aldosterone levels are low. 390 The 
clinical manifestations result from the stimulation of 
mineralocorticoid receptors by circulating  glucocorticoids.

In isolated perfused CCDs from mineralocorticoid-
treated rabbits, there is an increase in both the Na   and K  
conductance of the apical membrane and an increase in ba-
solateral Na  ,K –ATPase activity. 356 The functional changes 
after aldosterone treatment are accompanied by morpho-
logic changes in principal cells. The basolateral membrane 
length of principal cells falls by 35% after an adrenalectomy, 
and the administration of aldosterone, but not dexametha-
sone, restores the membrane length to control levels. 391

An early effect of aldosterone, occurring within a few 
hours of exposure, is an increase in the sodium permeability 
of the apical membrane of the CCD principal cell. Results 
from electrophysiologic and immunologic studies support 
the view that the early aldosterone-induced increase in a pical
sodium permeability is because of the activation of quiescent 
Na  channels rather than the synthesis and/or the insertion 
of new Na   channels into the membrane. 392–394 Several 
pathways have been implicated in the aldosterone-mediated 
increase in Na   channel activity. An important downstream 
mediator of aldosterone is the serum and glucocorticoid-
regulated kinase SGK1. 395 SGK1 is expressed in the thick 
ascending limb, DCT, connecting segment, and cortical 
collecting tubules. 396 Aldosterone increases the transcrip-
tion of SGK1 in vitro, 395 although the effects of aldosterone 
on SGK1 protein expression in vivo appear to be minor. 396

Coexpression of SGK1 with ENaC results in markedly  greater 
sodium currents than seen with ENaC alone. 395,397 SGK1 is 
required for the stimulation of sodium transport by aldoste-
rone both in vitro 397 and in vivo. 398 SGK1 increases sodium 
currents by increasing cell surface expression of ENaC 399

and also increasing the open probability of individual ENaC 
channels.400 The effect of SGK1 on cell surface expression of 
ENaC is largely mediated by Nedd4-2. Speci  cally, Nedd4-2 
is a substrate for SGK1. Upon phosphorylation by SGK1, 
the af  nity of Nedd4-2 for the PY domains of ENaC is di-
minished,401 whereas  Nedd4-2 binding to 14-3-3 scaffold-
ing proteins is increased. 402,403 Thus, 14-3-3 proteins act 
to sequester Nedd4-2 and prevent it from binding to ENaC. 
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in the apical membrane resistance, re  ecting decreased Na  
entry through Na   channels. These changes appear to result 
from an inhibition of adenylate cyclase and antagonism of 
ADH by  2 agonists. 435

Prostaglandin E2 exerts diuretic and natriuretic effects 
on the kidney. Part of this action is mediated by an inhi-
bition of Na   absorption in the CCD. 436 The application 
of PGE 2 to the basolateral surface of perfused rabbit CCD 
segments  reversibly inhibits the negative transepithelial 
voltage and net sodium absorption. 436 The effect of PGE 2
on sodium transport is coupled to a rise in intracellu-
lar [Ca 2 ] and is dependent on the activation of PKC. 437

Four PGE 2 receptor subtypes, designated EP1, EP2, EP3, 
and EP4, have been characterized. Studies using receptor 
subtype–speci  c agonists and antagonists suggest that the 
EP1 receptor  mediates PGE 2-dependent inhibition of Na  
transport in the CCD. 438 This inhibition of Na   transport is 
associated with depolarization of the apical membrane volt-
age, consistent with inhibition of the basolateral Na  ,K -
ATPase. 439 In contrast to the inhibitory effect of basolateral 
PGE2 on Na   transport, luminal PGE 2 increases transepi-
thelial voltage and presumably Na   absorption via the EP4 
receptor. 440

Epidermal growth factor (EGF) reduces Na   absorption 
in rabbit CCD by about 50% via the inhibition of apical elec-
trogenic Na   entry via ENaC. 441,442 More recent studies per-
formed on cultured mouse CCD cells suggest that the effects 
are mediated by the ErbB2 EGF receptor and that there is 
actually a biphasic effect of EGF on ENaC activity. 443 Acutely
( 4 h), EGF treatment increases the ENaC current, an  effect 
that appears to be mediated via the PI-3-kinase pathway. 
Chronically (  8 h), the ENaC current was inhibited via 
effects through the MEK/ERK pathway. 443

Endothelin-1 (ET-1) is heavily secreted from the basolat-
eral aspect of CD epithelial cells where it binds to basolateral 
ETB receptors and may thus act in an autocrine fashion to 
inhibit both Na   and water reabsorption in this segment, as 
shown in vitro. 444 The physiologic relevance of these   nd-
ings has been con  rmed in vivo, because mice with CD-
speci  c knockout of ET-1 or ET receptors are hypertensive 
on a normal Na   diet and have exacerbated Na   retention 
and hypertension when placed on a high-Na   diet. ET-1 
inhibits ENaC activity through Src- and MAPK-dependent 
pathways.444

Nitric oxide is also a downstream mediator of ET-1, 444

where it decreases Na   transport in rat CCD segments by 
40% to 80%. 445 The addition of nitric oxide to tubules de-
creased the intracellular [Na  ], but did not affect the  activity
of basolateral Na  ,K –ATPase, suggesting that the primary 
effect of nitric oxide is to inhibit apical Na   entry via ENaC. 
The inhibitory mechanism involving NO remains to be 
determined.444

Dopamine inhibits ADH-dependent Na   transport and 
transepithelial voltage in rat and rabbit CCD segments, al-
though the particular basolateral dopamine receptor subtype 
may be species speci  c. 446,447

Antidiuretic Hormone (ADH)
Exposure of rat CCD segments in vitro to ADH results in a 
sustained stimulation of Na   absorption. 421 ADH increases 
the transepithelial potential, depolarizes the apical mem-
brane, and increases the conductance of the apical membrane 
of principal cells. 422 These changes are entirely  reversed by 
luminal amiloride, indicating that ADH increases the apical 
membrane sodium conductance of the principal cell. These 
effects of ADH are mediated intracellularly by cAMP. 423

Moreover, the effects of ADH on Na   transport in the rat 
CCD are enhanced by prior treatment of the animals with 
mineralocorticoids.421

ADH and aldosterone increase apical membrane ENaC 
activity through both overlapping and distinct mechanisms 
of action. Like aldosterone via SGK1, ADH induces enhanced 
PKA-dependent phosphorylation of Nedd4-2 at phosphory-
lation sites that overlap those of SGK1. 353 As  described pre-
viously, these phosphorylation events promote sequestration 
of Nedd4-2 through enhanced binding to  14-3-3 proteins. In 
contrast to aldosterone, which can activate quiescent chan-
nels, ADH, via cAMP, promotes the insertion of  additional
Na  channels into the apical membrane. 424 In addition, 
PKA-mediated phosphorylation may also directly stimulate 
the activity of ENaC channels already present in the apical 
membrane, potentially both directly 425 and indirectly via 
Nedd4-2 inhibition, causing enhanced channel residency 
time at the membrane and thus proteolytic cleavage. 370

Long-term exposure to ADH may also increase the capacity 
of the collecting duct for Na   transport by increasing the 
expression of both Na  ,K –ATPase and ENaC. 426

 Other Agents 
Bradykinin is produced in the connecting duct 427 and binds 
to speci  c receptors in the CCD. 428 An intrarenal infu-
sion of bradykinin produces a diuresis. Bradykinin has 
been  reported to reduce Na   absorption in rat CCD seg-
ments.429 More recently, bradykinin was shown to acutely 
and  reversibly decrease the open probability of ENaC in 
patch-clamp studies performed ex vivo on split open CCDs 
isolated from rats. This effect appears to be mediated speci  -
cally through the bradykinin B 2 receptor. 430

As will be discussed in the following section, the ma-
jor site of action of atrial natriuretic peptide (ANP) is the 
inner medullary collecting duct. ANP stimulates cGMP 
production in the CCD, 431 and inhibits the hydro-osmotic 
actions of ADH in the CCD. 432 Biphasic effects of ANP on 
conscious, sedated rats have been observed with acute water 
and sodium excretion within minutes, followed by retention 
after 90 minutes, which was associated with increased api-
cal membrane expression of   - and  -ENaC. These delayed 
effects may represent a compensatory response to increase 
sodium and water reabsorption and prevent volume deple-
tion in response to prolonged ANP infusion. 433

 2-Adrenergic agonists inhibit sodium reabsorption in 
the rat CCD. 434 This inhibition is associated with an increase 
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 NA    TRANSPORT IN THE INNER 
MEDULLARY COLLECTING DUCT 
 Mechanism of Na    Transport 
 The analysis of salt transport by the inner medullary collecting 
duct (IMCD) has been confounded by problems of axial tu-
bule heterogeneity, species variability, and differences in exper-
imental approach. Based on morphologic factors, the IMCD 
has been divided into three subsegments: IMCD 1 , IMCD 2 , 
and IMCD 3 . 459  This morphologic heterogeneity is paralleled, 
to some extent, by functional heterogeneity. For example, the 
urea permeability and its responsiveness to ADH increases 
from IMCD 1  to IMCD 3  with increasing medullary depth. 460

Further complicating the analysis is the observation that simi-
lar subsegments from different species exhibit different proper-
ties relating to salt transport. 461,462  Finally, for unclear reasons, 
studies examining IMCD function in vivo (e.g., by microcathe-
terization) 463  have yielded markedly different results than have 
in vitro studies of isolated perfused tubules. 461,464

 Microelectrode impalement studies of IMCD segments 
from rats demonstrated that the apical membrane consti-
tuted the major cellular resistance, and the luminal appli-
cation of amiloride increased the apical membrane voltage 
and resistance and decreased the transepithelial voltage. 461

These results, and others, 465  are consistent with the  presence 
of an amiloride-sensitive sodium conductance in the apical 
membrane of IMCD cells. Patch-clamp studies of cultured 
rat IMCD cells indicate that Na   entry is mediated by a 20 to 
30 pS amiloride-sensitive, nonselective, cGMP-gated  cation 
channel in the apical membrane. 465,466  The basolateral mem-
brane of IMCD cells contains the Na  ,K  –ATPase, a K   con-
ductance and a HCO 3   conductance. 461

 The results discussed previously can be combined into 
a model for sodium transport in the IMCD (Fig. 5.11). Na 

Ang II  stimulates sodium channel activity in  rabbit and 
mouse CCDs. 448  Chronic Ang II infusion also  increases 
the abundance of the     subunit of ENaC, the rate-limit-
ing subunit for ENaC assembly. 449  Both the acute effects 
of Ang II on ENaC activity and the chronic effects on 
ENaC abundance are mediated by the AT1 receptor. 448,449

A more recent study performed on rats suggests that the 
Ang II-induced ENaC stimulation downstream of the AT1 
receptor involves a Ca 2    -independent PKC pathway that 
induces superoxide generation. The blocking of arachi-
donic acid–induced inhibition of ENaC may also play 
a role. 450  

  Bicarbonate  (HCO 3  ) changes in the CCD lumen, which 
may re  ect changes in total-body acid–base status or local 
HCO 3     secretion from neighboring intercalated cells via the 
apical Na   -independent Cl   /HCO 3     exchanger, pendrin, 
have been shown recently to modulate Na   reabsorption 
in the CCD. 451,452  Speci  cally, the bicarbonate-stimulated 
soluble adenylyl cyclase (sAC) appears to stimulate both 
basal and agonist-stimulated Na   reabsorption in the kidney 
collecting duct, acting to enhance Na   ,K   –ATPase catalytic 
activity. 451  Another study suggests that pendrin increases 
ENaC abundance and activity, at least in part by increasing 
luminal [HCO 3    ]. 452  

 The elucidation of other cellular signaling pathways and 
kinases that are important in the regulation of ENaC, and 
Na    transport in the CCD is a very active area of research and 
involves signaling pathways downstream of diverse stimuli, 
including in  ammation (IkappaB kinase/NF-kappaB/NF-   B 
pathway) 453  and metabolic stress (AMP-activated protein 
kinase). 454  A full treatment of these signaling pathways is 
beyond the scope of this chapter, but the interested reader is 
referred to a recent review. 455  

 NA    TRANSPORT IN THE OUTER 
MEDULLARY COLLECTING DUCT 
 The transport properties of the outer medullary collecting 
duct (OMCD) have been studied by in vitro perfusion of 
isolated tubule segments. The functional properties of the 
OMCD differ depending on the location of the segment with-
in the outer medulla. Segments within the outer stripe of the 
outer medulla (OMCD o ) exhibit electrophysiologic proper-
ties resembling the cortical collecting duct; that is, a lumen 
negative transepithelial voltage and electrogenic apical Na  
entry. 456  Compared to the CCD, the OMCD o  displays a less 
negative transepithelial voltage, much lower ionic perme-
abilities, and a lower rate of active reabsorption of Na   . 457

As the collecting duct descends into the medulla, principal 
cells, which mediate Na   and K    transport in the CCD (see 
previous), are replaced by cells the electrical  properties of 
which are similar to intercalated cells of the CCD (i.e., the 
apical membrane lacks a demonstrable Na    or K    conduc-
tance). 458  Within the inner stripe of outer medulla (OMCD i ), 
principal cells are virtually absent and no net Na    absorp-
tion occurs. 457  

FIGURE 5.11 A model of Na  transport in the inner medullary 
collecting duct. Apical Na  entry proceeds via a nonselective 
amiloride-sensitive cation channel. Basolateral Na -K -2Cl  
 cotransport may be involved in Na  secretion.
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entry across the apical membrane occurs down its steep elec-
trochemical gradient through amiloride-sensitive Na   chan-
nels. Na   is extruded across the basolateral membrane by the 
Na ,K –ATPase. The basolateral membrane K   conductance 
serves to recycle the K   that enters via the Na  ,K –ATPase. 
The K   conductance also hyperpolarizes the cell, thereby 
favoring Na   entry across the apical membrane. 

There is some evidence for additional electroneutral 
Na  entry pathways in rat IMCD cells, although their im-
portance in net Na   absorption by the IMCD in other spe-
cies remains unclear. Furosemide and thiazide diuretics both 
inhibit a portion of Na   absorption by rat IMCD segments in 
vivo.467,468 However, Zeidel and colleagues 469 failed to dem-
onstrate sensitivity of rabbit IMCDs to loop diuretics and 
found that conductive Na   entry at the apical membrane 
predominated. A Na  -K -2Cl  cotransporter appears to be 
present in the basolateral membrane of terminal IMCD seg-
ments.470 The cloned Na  -K -2Cl  cotransporter from cul-
tured IMCD cells represents the “secretory” isoform of the 
Na -K -2Cl  cotransporter (NKCC1) rather than the ab-
sorptive isoform present in the apical membrane of the thick 
ascending limb. 471 Finally, the Na  -HCO3

  cotransporter 
NBCn1 has been found in the basolateral membrane of rat 
IMCDs, which may contribute to cellular  defense against 
both acidi  cation and volume changes in this segment. 472

 Regulation of Na    Transport 
The IMCD appears to be the major target site for the potent 
diuretic hormone ANP. 473 This hormone, working through 
cGMP, 474 inhibits Na   entry via apical Na   channels. In cell-
attached and excised patches of cultured inner medullary 
cells, both ANP and dibutyryl cGMP inhibited the activity of 
the cation channel. 475

In addition to inhibiting Na   reabsorption, ANP may 
stimulate Na   secretion in the IMCD. 470 In isolated perfused 
IMCD segments, ANP increased the bath to lumen   ux rate 
of Na   and Cl  , an effect that was inhibited by peritubu-
lar furosemide and by omission of either counterion, thus 
suggesting the role of a basolateral membrane Na  -K -2Cl 
cotransporter. 476 Sands et al., 464 however, found no effect of 
ANP on the Na   permeability of the rat IMCD. 

In one study, 477 ADH stimulated amiloride-sensitive 
Na  absorption by terminal IMCD segments perfused in vi-
tro. Other studies, however, failed to   nd an effect of ADH 
or cAMP on the amiloride-sensitive cation channel in apical 
membranes of cultured IMCD cells. 464,465

Micropuncture studies by Ullrich and Papavassiliou 478

demonstrated that mineralocorticoids increased net Na   ab-
sorption in the terminal IMCD, which was attributed to a de-
crease in the passive Na   permeability of the tubule leading to a 
decrease in back leak of NaCl into the lumen.  Mineralocorticoids 
may also increase active Na   reabsorption in the IMCD. For ex-
ample, aldosterone produced a three- to seven-fold stimulation 
of electrogenic Na   transport in cultured rat IMCD cells, 479 and 
chronic  mineralocorticoid exposure in vivo increased the activ-
ity of Na  ,K  ATPase in the IMCD. 480
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