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SODIUM AND CHLORIDE TRANSPORT

Daily sodium (Na+) intake for adults in the United States 
is approximately 180 mmol (4.2 g) for men and 150 mmol 
(3.5 g) for women (https://www.cdc.gov/nchs/nhanes/
wweia.htm). As Na+ is the principal osmole in extracellular 
fluid, the total body content of Na+ and chloride (Cl−), its 
primary anion, determine the extracellular fluid volume. 
Renal excretion or retention of salt (Na+-Cl−) is thus the 
major determinant of the extracellular fluid volume, such 
that genetic loss- or gain-of-function in renal Na+-Cl− transport 
can be associated with relative hypotension or hyperten-
sion, respectively. On a quantitative level, at a glomerular 
filtration rate (GFR) of 180 L/day and serum Na+ of about 
140 mmol/L, the kidney filters some 25,000 mmol/day of 
Na+; this is equivalent to about 1.5 kg of salt, which would 
occupy roughly 10 times the extracellular space.1 Minute 
changes in renal Na+-Cl− excretion can thus have massive 
effects on the extracellular fluid volume. In addition, 99.6% 
of filtered Na+-Cl− must be reabsorbed to excrete 140 mmol/L 
per day. Energetically, this renal absorption of Na+ consumes 1 
molecule of adenosine triphosphate (ATP) per five molecules 
of Na+.1 This is gratifyingly economical, given that the absorp-
tion of Na+-Cl− is primarily, but not exclusively, driven by 
basolateral Na+-K+-ATPase, which has a stoichiometry of three 
molecules of transported Na+ per molecule of ATP.2 This 
estimate reflects a net expenditure, however, because the 
cost of transepithelial Na+-Cl− transport varies considerably 
along the nephron, from a predominance of passive trans-
port by thin ascending limbs to the purely active transport 
mediated by the “aldosterone-sensitive distal nephron” (distal 
convoluted tubule [DCT], connecting tubule [CNT], and  
collecting duct).

As much as 60% to 70% of filtered Na+-Cl− is reabsorbed 
along the proximal tubule (PT), and approximately 25% along 
the thick ascending limb (TAL; Fig. 6.1). Whereas the PT 

can theoretically absorb as much as nine Na+ molecules for 
each hydrolyzed ATP, paracellular Na+ transport by the TAL 
doubles the efficiency of transepithelial Na+-Cl− transport (six 
Na+ molecules per ATP).1,3 By the time filtered fluid reaches 
the macula densa, more than 90% of filtered Na+ has been 
reabsorbed,4 a percentage that varies only slightly, when dietary 
NaCl intake ranges from very low to very high.5 Thus the 
terminal segments of the nephron, while reabsorbing only 
5% to 10% of filtered Na+, are a primary site of transport 
regulation. Here, renal Na+-Cl− absorption occurs at full cost  
(3 Na+ per ATP) in the aldosterone-sensitive distal nephron 
while affording the generation of considerable transepithelial 
gradients.1

The nephron thus constitutes a serial arrangement of 
tubule segments with considerable heterogeneity in the 
physiologic consequences, mechanisms, and regulation of 
transepithelial Na+-Cl− transport. These issues will be reviewed 
in this section in anatomic order.

PROXIMAL TUBULE

A primary function of the renal PT is the near-isosmotic 
reabsorption of two-thirds to three-quarters of the glomerular 
ultrafiltrate. This encompasses the reabsorption of at least 
60% of filtered Na+ with accompanying anions (Fig. 6.1), 
such that this nephron segment plays a critical role in the 
maintenance of extracellular fluid volume. Although all 
segments of the PT share the ability to transport a variety 
of inorganic and organic solutes, there are considerable 
differences in the transport characteristics and capacity of 
early, mid, and late segments of the PT. There is thus a 
gradual reduction in the volume of transported fluid and 
solutes as one proceeds along the proximal nephron. This 
corresponds to distinct ultrastructural characteristics in the 
tubular epithelium, moving from the S1 segment (early 
proximal convoluted tubule [PCT]) to the S2 segment (late 
PCT and beginning of the proximal straight tubule) and the 
S3 segment (remainder of the proximal straight tubule). 
Cells of the S1 segment are thus characterized by a tall brush 
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paracellular Cl− absorption and a backleak of Na+ from the 
peritubular space to the lumen. Paracellular Cl− absorption  
in this setting accomplishes the net transepithelial absorp-
tion of a solute such as glucose, along with equal amounts 
of Na+ and Cl−; by contrast, backleak of Na+ leads only to 
reabsorption of the organic solute, with no net transepithelial 
transport of Na+ or Cl−. The amount of Cl− reabsorption 
that is driven by this lumen-negative PD thus depends on 
the relative permeability of the paracellular pathway to 
Na+ and Cl−. There appears to be considerable heteroge-
neity in the relative paracellular permeability to Na+ and 
Cl−; for example, whereas superficial PCTs and proximal 
straight tubules in the rabbit are Cl− selective, juxtamed-
ullary PTs in this species are reportedly Na+ selective.12,13 
Regardless, the component of paracellular Cl− transport 
that is driven by this lumen-negative PD is restricted to the  
very early PT.

The second phase of volume reabsorption by the PT is 
dominated by Na+-Cl− reabsorption via paracellular and 
transcellular pathways.11 In addition to the Na+-dependent 
reabsorption of organic solutes, the early PT has a much 
higher capacity for HCO3

− absorption via the coupling of 
apical Na+-H+ exchange, carbonic anhydrase, and basolateral 
Na+-HCO3

− cotransport.9 As the luminal concentrations of 
HCO3

− and other solutes begin to drop, the concentration 
of Na+-Cl− rises to a value greater than that of the peritubular 
space.14 This is accompanied by a reversal of the lumen-
negative PD to a lumen-positive value generated by passive 
Cl− diffusion (Fig. 6.2).15 This lumen-positive PD serves 

border, with extensive lateral invaginations of the basolateral 
membrane.6 Numerous elongated mitochondria are located 
in lateral cell processes, with a proximity to the plasma 
membrane that is characteristic of epithelial cells involved 
in active transport. Ultrastructure of the S2 segment is similar, 
albeit with a shorter brush border, fewer lateral invaginations, 
and less prominent mitochondria. In epithelial cells of the 
S3 segment, lateral cell processes and invaginations are 
essentially absent, with small mitochondria that are randomly 
distributed within the cell.6 The extensive brush border of 
proximal tubular cells serves to amplify the apical cell surface 
that is available for reabsorption; again, this amplification 
is axially distributed, increasing the apical area 36-fold in 
S1 and 15-fold in S3.7 At the functional level, bicarbonate 
reabsorption rates decline by at least 80% between the first and 
last portions of the PT, whereas Cl– reabsorption declines by  
approximately 50%.8

There is also considerable axial heterogeneity in the 
quantitative capacity of the proximal nephron for organic 
solutes such as glucose and amino acids, with predominant 
reabsorption of these substrates in S1 segments.9 The Na+-
dependent reabsorption of glucose, amino acids, and other 
solutes in S1 segments results in a transepithelial potential 
difference (PD) that is initially lumen negative due to elec-
trogenic removal of Na+ from the lumen (Fig. 6.2).10 This is 
classically considered the first phase of volume reabsorption 
by the PT.11 The lumen-negative PD serves to drive both 
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Fig. 6.1  Percentage reabsorption of filtered Na+-Cl− along the 
euvolemic nephron. ALH, Thin ascending limb of the loop of Henle; 
CCD, cortical collecting duct; DCT, distal convoluted tubule; DLH, 
descending thin limb of the loop of Henle; IMCD, inner medullary 
collecting duct; OMCD, outer medullary collecting duct; PCT, proximal 
convoluted tubule; PST, proximal straight tubule; TALH, thick ascending 
limb of the loop of Henle. (From Moe OW, Baum M, Berry CA, Rector 
Jr FC. Renal transport of glucose, amino acids, sodium, chloride, and 
water. In: Brenner BM, ed. Brenner and Rector’s the Kidney. Philadelphia: 
WB Saunders; 2004:413–452.)
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Transcellular Na+-Cl− reabsorption is accomplished by the 
coupling of luminal Na+-H+ exchange or Na+-SO4

2− cotransport 
with a heterogeneous population of anion exchangers, as  
reviewed later.

PARACELLULAR NA+-CL− TRANSPORT
A number of factors serve to optimize the conditions for 
paracellular Na+-Cl− transport by the mid to late PT. First, 
the PT is a low-resistance, so-called leaky epithelium, with 
tight junctions that are highly permeable to both Na+ and 
Cl−.12,13 Second, these tight junctions are preferentially perme-
able to Cl− over HCO3

−, a feature that helps generate the 
lumen-positive PD in the mid to late PT.14 Third, the increase 
in luminal Na+-Cl− concentrations in the mid to late PT 
generates a chemical driving force for paracellular reabsorp-
tion of Cl−.15 This increase in luminal Na+-Cl− is the direct 
result of the robust reabsorption of HCO3

− and other solutes 
by the early S1 segment, combined with the isosmotic reab-
sorption of filtered water.9,19

A highly permeable paracellular pathway is a consistent 
feature of epithelia that function in the near-isosmolar 
reabsorption of Na+-Cl−, including the small intestine, PT, 
and gallbladder. Morphologically, the apical tight junction 
of proximal tubular cells and other leaky epithelia is consider-
ably less complex than that of tight epithelia. Freeze-fracture 
microscopy thus reveals that the tight junction of proximal 
tubular cells is comparatively shallow, with as few as one 
junctional strand (Fig. 6.4); by contrast, high-resistance 

to drive paracellular Na+ transport, whereas the chemical 
gradient between the lumen and peritubular space provides 
the driving force for paracellular reabsorption of Cl−. This 
passive paracellular pathway is thought to mediate about 
40% of transepithelial Na+-Cl− reabsorption by the mid to late 
PT.12 Of note, however, there may be heterogeneity in the 
relative importance of this paracellular pathway, with evidence 
that active (i.e., transcellular) reabsorption predominates 
in PCTs from juxtamedullary versus superficial nephrons.16 
Regardless, the combination of passive and active transport 
of Na+-Cl− explains how the PT is able to reabsorb about 
60% of filtered Na+-Cl−, despite Na+-K+-ATPase activity that is 
considerably lower than that of distal segments of the nephron  
(Fig. 6.3).17

The transcellular component of Na+-Cl− reabsorption 
initially emerged from studies of the effect of cyanide, 
ouabain, luminal anion transport inhibitors, cooling, and 
luminal-peritubular K+ removal.11 For example, the luminal 
addition of SITS (4-acetamido-4′-isothiocyanostilbene-2,2′-
disulfonic acid), an inhibitor of anion transporters, reduces 
volume reabsorption of PCTs perfused with a high Cl−, low 
HCO3

− solution that mimics the luminal composition of the 
late PT; this occurs in the absence of an effect on carbonic 
anhydrase.14 This transcellular component of Na+-Cl− reabsorp-
tion is clearly electroneutral. For example, in the absence of 
anion gradients across the perfused PT, there is no change in 
transepithelial PD after the inhibition of active transport by 
ouabain, despite a marked reduction in volume reabsorption.18 
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This action enhances the energy efficiency of proximal solute 
reabsorption. Although reabsorption is lower in claudin-2 
knockout mice, overall sodium handling is normal because 
solute transport is increased along more distal segments. 
This requirement for more transcellular solute transport 
along the loop of Henle contributes to lower medullary oxygen 
tension, and increased susceptibility to renal ischemia.31 
Terminal differentiation of proximal tubular claudin-2 expres-
sion requires the integrin β1-subunit, such that deletion of 
this protein in mice converts the PT to a tight epithelium 
expressing low levels of claudin-2.32

The molecular identification of anion-selective claudins 
in the PT has lagged, but claudin-17 has been shown to 
generate a predominantly anion-selective paracellular con-
ductance in Madin-Darby canine kidney (MDCK) C7 cells, 
whereas knockdown of the protein was able to reverse a 
predominantly cation-selective LLC-PK(1) epithelial cell line 
to an anion-selective cell line.28 Claudin-17 is expressed along 
the PT, suggesting a significant role in paracellular chloride 
absorption by this nephron segment. Recently, it has been 
suggested that a form of claudin-10, claudin-10a, is another 
anion-selective paracellular pathway along the PT.33

The reabsorption of HCO3
− and other solutes from the 

glomerular ultrafiltrate would be expected to generate an 
osmotic gradient across the epithelium, resulting in a hypo-
tonic lumen. This appears to be the case, although the 
absolute difference in osmolality between the lumen and 
peritubular space has been a source of considerable contro-
versy.19 Another controversial issue has been the relative 
importance of paracellular versus transcellular water transport 
from this hypotonic lumen. These issues have been elegantly 
addressed through characterization of knockout mice with 
a targeted deletion of aquaporin-1, a water channel protein 
expressed at the apical and basolateral membranes of the 
PT. Mice deficient in aquaporin-1 have an 80% reduction 
in water permeability in perfused S2 segments, with a 50% 
reduction in transepithelial fluid transport.34 Aquaporin-1 
deficiency also results in a marked increase in luminal 
hypotonicity, providing definitive proof that near-isosmotic 
reabsorption by the PT requires transepithelial water transport 
via aquaporin-1.19 The residual water transport in the PTs of 
aquaporin-1 knockout mice is mediated in part by aquaporin-7 
and/or by claudin-2–dependent paracellular water trans-
port.30,35 Combined knockout of aquaporin-1 and claudin-2 
in mice demonstrates sustained PT water reabsorption (25% 
of wild type), suggestive of compensation from other path-
ways.36 Alternative pathways for water reabsorption may include 
cotransport of H2O via the multiple Na+-dependent solute 
transporters in the early PT; this novel hypothesis is, however, 
a source of considerable controversy.37,38 A related issue is 
the relative importance of diffusional versus convective 
(solvent drag) transport of Na+-Cl− across the paracellular 
tight junction; convective transport of Na+-Cl− with water 
would seem to play a lesser role than diffusion, given the 
evidence that the transcellular pathway is the dominant 
transepithelial pathway for water in the PT.12,19,34,35

TRANSCELLULAR NA+-CL− TRANSPORT
Apical Mechanisms

Apical Na+-H+ exchange plays a critical role in the transcellular 
and paracellular reabsorption of Na+-Cl− by the PT. In addition 

epithelia have deeper tight junctions, with a complex and 
extensive network of junctional strands.20 At the functional 
level, tight junctions of epithelia function as charge- and 
size-selective paracellular tight junction channels, physiologic 
characteristics that are thought to be conferred by integral 
membrane proteins that cluster together at the tight junction. 
Changes in the expression of these proteins can have marked 
effects on permeability without affecting the number of 
junctional strands.14,21,22 In particular, the charge and size 
selectivity of tight junctions appears to be conferred in large 
part by the claudins, a large (>20) gene family of tetraspan 
transmembrane proteins,23–25 one of which was recently 
crystallized.26 The repertoire of claudins expressed by proximal 
tubular epithelial cells may thus determine the high paracel-
lular permeability of this nephron segment. At a minimum, 
proximal tubular cells coexpress claudin-2, claudin-10, and 
claudin-17.14,27,28

The robust expression of claudin-2 in the PT is of particular 
interest because this claudin can dramatically decrease the 
resistance of transfected epithelial cells.22 Overexpression of 
claudin-2, but not claudin-10, also increases Na+-dependent 
water flux in epithelial cell lines, suggesting that claudin-2 
directly modulates paracellular water permeability.29 Consistent 
with this cellular phenotype, targeted deletion of claudin-2 
in mice generates a tight epithelium in the PT, with a reduc-
tion in Na+, Cl−, and fluid absorption.30 Loss of claudin-2 
expression does not affect the ultrastructure of tight junctions, 
but leads to a reduction in paracellular cation permeability 
and secondary reduction in transepithelial Cl− transport.30 

Grooves

Lumen

A

B

Fig. 6.4  Freeze-fracture electron microscopy images of tight junctions 
in mouse proximal and distal nephron. (A) Proximal convoluted tubule, 
a “leaky” epithelium; the tight junction contains only one junctional 
strand, seen as a groove in the fracture face (arrows). (B) Distal 
convoluted tubule, a “tight” epithelium. The tight junction is deeper 
and contains several anastamosing strands, seen as grooves in the 
fracture face. (From Claude P, Goodenough DA. Fracture faces of zonulae 
occludentes from “tight” and “leaky” epithelia. J Cell Biol. 1973;58: 
390–400.)
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by the renal phenotype of NHE3 knockout mice, which have 
a 62% reduction in proximal fluid absorption and a 54% 
reduction in baseline chloride absorption.43,44 A recent  
study in which Nhe3 was disrupted specifically in the kidney 
showed that it plays a role in maintaining blood pressure  
at baseline, and plasma Na+ in response to increased or 
reduced dietary Na+-Cl–, with compensatory upregulation of 
Na+-Cl− cotransporter (NCC) and epithelial Na+ channel 
(ENaC) occurring.45 The severe salt-wasting phenotype seen 
in global Nhe3 knockout mice occurs due to its deletion in 
intestine.

Much as amiloride and other inhibitors of Na+-H+ 
exchange have revealed an important role for this trans-
porter in transepithelial salt transport by the PT, evidence 
for the involvement of an apical anion exchanger first 
came from the use of anion transport inhibitors; DIDS 
(4,4′-diisothiocyanostilbene-2,2′-disulfonic acid), furosemide, 
and SITS all reduce fluid absorption from the lumen of PT 
segments perfused with solutions containing Na+-Cl−.14 In the 
simplest arrangement for the coupling of Na+-H+ exchange 
to Cl− exchange, Cl− would be exchanged with the OH− ion 
during Na+-Cl− transport (Fig. 6.5). Evidence for such a 
Cl−-OH− exchanger was reported by a number of groups in 
the early 1980s that used membrane vesicles isolated from 

to providing an entry site in the transcellular transport of 
Na+, Na+-H+ exchange plays a dominant role in the functional 
“absorption” of HCO3

− by the early PT (HCO3
− does not 

actually move across the apical membrane, but rather is 
generated within cells together with H+); as the movement 
of Na+ and HCO3

− drives osmotic water movement, it also 
acts to increase the luminal concentration of Cl−, which in 
turn increases the driving forces for the passive paracellular 
transport of Cl−.39 Increases in luminal Cl− also help drive 
the apical uptake of Cl− during transcellular transport. Not 
surprisingly, there is a considerable reduction in fluid 
transport of perfused PTs exposed to concentrations of 
amiloride that are sufficient to inhibit proximal tubular Na+-H+ 
exchange.14

Na+-H+ exchange is predominantly mediated by the NHE 
proteins, encoded by the nine members of the SLC9 gene 
family; NHE3 in particular plays an important role in proximal 
tubular physiology.40 The NHE3 protein is expressed at the 
apical membrane of S1, S2, and S3 segments.41 The apical 
membrane of the PT also expresses alternative Na+-dependent 
H+ transporters, including NHE8.40,42 NHE8 predominates 
over NHE3 in the neonatal PT, with subsequent induction 
of NHE3 and downregulation of NHE8 in mature, adult 
nephrons.40 The primacy of NHE3 in mature PTs is illustrated 
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that is expressed at the apical membrane of proximal tubular 
cells. Murine SLC26A6, when expressed in Xenopus oocytes, 
mediates the multiple modes of anion exchange that have 
been implicated in transepithelial Na+-Cl− by the PT, including 
Cl−-formate, Cl−-OH−, Cl−-SO4

2−, and SO4
2−-oxalate exchange.55 

However, tubule perfusion experiments in mice deficient in 
SLC26A6 did not reveal a reduction in baseline Cl− or fluid 
transport, indicative of considerable heterogeneity in apical 
Cl− transport by the PT.56 Candidates for the residual Cl− 
transport in SLC26A6-deficient mice include SLC26A7 and 
SLC26A9, which are expressed at the apical membrane of 
PTs; however, these members of the SLC26 family appear to 
function as Cl− channels rather than as exchangers.57–59 
SLC26A2 may also contribute to apical anion exchange in 
the PT.60 It does, however, appear that SLC26A6 is the 
dominant Cl−-oxalate exchanger of the proximal brush border; 
the usual increase in tubular fluid transport induced by oxalate 
is abolished in Slc26a6 knockout mice, with an attendant 
loss of Cl−-oxalate exchange in brush border membrane 
vesicles.56,61

Somewhat surprisingly, SLC26A6 mediates electrogenic 
Cl−-OH− and Cl−-HCO3

− exchange, and most if not all the 
members of this family are electrogenic in at least one mode 
of anion transport.14,55,58,62,63 This begs the question of how 
the electroneutrality of transcellular Na+-Cl− transport is 
preserved. Notably, however, the stoichiometry and electro-
physiology of Cl−-base exchange differ for individual members 
of the family; for example, SLC26A6 exchanges one Cl− for 
two HCO3

− anions, whereas SLC26A3 exchanges two Cl− anions 
for one HCO3

− anion.14,63 Coexpression of two or more 
electrogenic SLC26 exchangers in the same membrane may 
thus yield a net electroneutrality of apical Cl− exchange. 
Alternatively, apical K+ channels in the PT may function to 
stabilize membrane potential during Na+-Cl− absorption.64

Another puzzle is why Cl−-formate exchange preferentially 
couples to Na+-H+ exchange mediated by NHE3 (Fig. 6.5), 
without evident coupling of Cl−-oxalate exchange to Na+-H+ 
exchange or Cl−-formate exchange to Na+-SO4

2− cotransport; 
it is evident that SLC26A6 is capable of mediating SO4

2−-
formate exchange, which would be necessary to support 
coupling between Na+-SO4

2− cotransport and formate.44,55 
Scaffolding proteins may serve to cluster these different 
transporters together in separate microdomains, leading to 
preferential coupling. Notably, whereas both SLC26A6 and 
NHE have been reported to bind to the scaffolding protein 
PDZK1, distribution of SLC26A6 is selectively impaired in 
Pdzk1 knockout mice.65 Petrovic and colleagues have also 
reported a novel activation of proximal Na+-H+ exchange by 
luminal formate, suggesting a direct effect of formate per 
se on NHE3; this may in part explain the preferential coupling 
of Cl−-formate exchange to NHE3.66 Despite these intriguing 
observations, the relative importance of transcellular versus 
passive paracellular Cl– reabsorption in the PT remains to 
be established with certainty.

Basolateral Mechanisms

As in other absorptive epithelia, basolateral Na+-K+-ATPase 
activity establishes the Na+ gradient for transcellular Na+-
Cl− transport by the PT and provides a major exit pathway 
for Na+. To preserve the electroneutrality of transcellular 
Na+-Cl− transport, this exit of Na+ across the basolateral 
membrane must be balanced by an equal exit of Cl−.18 Several 

the PT.46 These findings could not, however, be replicated in 
similar studies from other groups.46,47 Moreover, experimental 
evidence was provided for the existence of a dominant Cl−-
formate exchange activity in brush border vesicles in the 
absence of significant Cl−-OH− exchange.47 It was postulated 
that recycling of formate by the back diffusion of formic acid 
would sustain the net transport of Na+-Cl− across the apical 
membrane. Vesicle formate transport stimulated by a pH 
gradient (H+-formate cotransport or formate-OH− exchange) 
is saturable, consistent with a carrier-mediated process rather 
than diffusion of formic acid across the apical membrane 
of the PT.48 Transport studies using brush border vesicles 
have also detected the presence of Cl−-oxalate exchange 
mechanisms in the apical membrane of the PT, in addition 
to SO4

2−-oxalate exchange.39,49 Based on differences in the 
affinities and inhibitor sensitivity of the Cl−-oxalate and Cl−-
formate exchange activities, it was suggested that there are 
two separate apical exchangers in the proximal nephron, a 
Cl−-formate exchanger and a Cl−-formate-oxalate exchanger 
capable of transporting both formate and oxalate (Fig. 6.5).

The physiological relevance of apical Cl−-formate and 
Cl−-oxalate exchange has been addressed by perfusing 
individual PT segments with solutions containing Na+-Cl− and 
formate or oxalate. Both formate and oxalate significantly 
increased fluid transport under these conditions in rabbit, 
rat, and mouse PTs.44 This increase in fluid transport was 
inhibited by DIDS, suggesting involvement of the DIDS-
sensitive anion exchanger(s) detected in brush border vesicle 
studies. A similar mechanism for Na+-Cl− transport in the 
DCT has also been detected, independent of thiazide-sensitive 
Na+-Cl− cotransport.50 Further experiments have indicated 
that the oxalate- and formate-dependent anion transporters 
in the PT are coupled to distinct Na+ entry pathways, to 
Na+-SO4

2− cotransport and Na+-H+ exchange, respectively.51 
The coupling of Cl−-oxalate transport to Na+-SO4

2− cotransport 
requires the additional presence of SO4

2−-oxalate exchange, 
which has been demonstrated in brush border membrane 
vesicle studies.52 The obligatory role for NHE3 in formate-
stimulated Cl− transport was illustrated using Nhe3 null mice, 
in which the formate effect is abolished; as expected, oxalate 
stimulation of Cl− transport is preserved in the Nhe3 null 
mice.44 Finally, tubular perfusion data from superficial and 
juxtamedullary PCTs have suggested that there is heterogeneity 
in the dominant mode of anion exchange along the PT, such 
that Cl−-formate exchange is absent in juxtamedullary PCT, 
in which Cl−-OH− exchange may instead be dominant.14

The molecular identity of the apical anion exchanger(s) 
involved in transepithelial Na+-Cl− reabsorption by the PT 
has been the object of almost 3 decades of investigation. A 
key breakthrough was the observation that the SLC26A4 
anion exchanger, also known as pendrin, is capable of Cl−-
formate exchange when expressed in Xenopus laevis oocytes.53 
However, expression of SLC26A4 in the PT is minimal or 
absent in several species, and formate-stimulated Na+-Cl− 
transport in this nephron segment is unimpaired in Slc26a4 
null mice.14 There is, however, robust expression of SLC26A4 
in distal type B intercalated cells; the role of this exchanger 
in Cl− transport by the distal nephron is reviewed elsewhere 
in this chapter (see the “Connecting Tubules and the Cortical 
Collecting Duct: Cl− Transport” section).54 Regardless, these 
data for SLC26A4 led to the identification and characterization 
of SLC26A6, a widely expressed member of the SLC26 family 
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membrane of proximal tubular cells.13,74,79 The impact of 
Na+-independent Cl−-HCO3

− exchange on basolateral exit is 
thought to be minimal.74 First, this exchanger is expected 
to mediate Cl− entry under physiologic conditions.79 Second, 
there is only a modest difference between the rate of decrease 
in intracellular Cl− activity and the combined removal of Na+ 
and Cl− versus Cl− and HCO3

−, suggesting that pure Cl−-HCO3
− 

exchange does not contribute significantly to Cl− exit. By 
contrast, there is a 75% reduction in the rate of decrease in 
intracellular Cl− activity after the removal of basolateral Na+.74 
The Na+-dependent Cl−-HCO3

− exchanger may thus play a 
considerable role in basolateral Cl− exit, with recycled exit 
of Na+ and HCO3

− via the basolateral Na+-HCO3
− cotransporter 

NBC1 (Fig. 6.5). The molecular identity of this proximal 
tubular Na+-dependent Cl−-HCO3

− exchanger is not as yet 
known.

REGULATION OF PROXIMAL TUBULAR 
NA+-CL− TRANSPORT
Glomerulotubular Balance

A fundamental property of the kidney is the phenomenon 
of glomerulotubular balance, wherein changes in the GFR 
are offset by changes in tubular reabsorption, thus maintaining 
a constant fractional reabsorption of fluid and Na+-Cl− (Fig. 
6.6). Although the distal nephron is capable of adjusting 
reabsorption in response to changes in tubular flow, the 
impact of GFR on Na+-Cl− reabsorption by the PT is particularly 
pronounced (Fig. 6.7).80 Glomerulotubular balance is inde-
pendent of direct neuronal and systemic hormonal control, 
and is thought to be mediated by the additive effects of 
luminal and peritubular factors.81

Until recently, there was some controversy regarding the 
role of luminal factors in glomerulotubular balance because 
experiments performed using isolated rabbit PTs failed to 
demonstrate a significant effect of tubular flow on fluid 
absorption.82 This issue has largely been resolved, however, 

exit pathways for Cl− have been identified in proximal tubular 
cells, including K+-Cl− cotransport, Cl− channels, and various 
modalities of Cl−-HCO3

− exchange (Fig. 6.5).
Several lines of evidence support the existence of a 

swelling-activated basolateral K+-Cl− cotransporter (KCC) in 
the PT.67 The KCC proteins are encoded by four members 
of the cation-chloride cotransporter gene family; Kcc1, Kcc3, 
and Kcc4 are all expressed in the kidney. In particular, 
there is very heavy coexpression of KCC3 and KCC4 at the 
basolateral membrane of the PT, from S1 to S3.68 At the 
functional level, basolateral membrane vesicles from the 
renal cortex reportedly contain K+-Cl− cotransport activity.67 
The use of ion-sensitive microelectrodes, combined with 
luminal charge injection and manipulation of bath K+ and 
Cl−, suggest the presence of an electroneutral KCC at the 
basolateral membrane of proximal straight tubules. Increases 
or decreases in basolateral K+ increase or decrease intracellular 
Cl− activity, respectively, with reciprocal effects of basolateral 
Cl− on K+ activity; these data are consistent with coupled 
K+-Cl− transport.69,70 Notably, a 1-mmol/L concentration of 
furosemide, sufficient to inhibit all four of the KCCs, does 
not inhibit this K+-Cl− cotransport under baseline conditions.69 
However, only 10% of baseline K+ efflux in the PT is mediated 
by furosemide-sensitive K+-Cl− cotransport, which is likely 
quiescent in the absence of cell swelling. Thus the activation of 
apical Na+-glucose transport in proximal tubular cells strongly 
activates a barium-resistant (Ba2+) K+ efflux pathway that is 75% 
inhibited by 1-mmol/L furosemide.71 In addition, a volume 
regulatory decrease (VRD) in Ba2+-blocked PTs swollen by 
hypotonic conditions is blocked by 1-mmol/L furosemide.67 
Cell swelling in response to apical Na+ absorption is postu-
lated to activate a volume-sensitive basolateral KCC, which 
participates in transepithelial absorption of Na+-Cl−.14 Notably, 
targeted deletion of Kcc3 and Kcc4 in the respective knockout 
mice reduces VRD in the PT.72 Furthermore, perfused PTs 
from KCC3-deficient mice have a considerable reduction 
in transepithelial fluid transport, suggesting an important 
role for basolateral K+-Cl− cotransport in transcellular Na+-Cl−  
reabsorption.73

The basolateral chloride conductance of mammalian 
proximal tubular cells is relatively low, suggesting a lesser 
role for Cl− channels in transepithelial Na+-Cl− transport. 
Basolateral anion substitutions have minimal effect on the 
membrane potential, despite considerable effects on intracel-
lular Cl− activity, nor for that matter do changes in basolateral 
membrane potential affect intracellular Cl−.69,70,74 However, 
as with basolateral K+-Cl− cotransport, basolateral Cl− channels 
in the PT may be relatively inactive in the absence of cell 
swelling. Cell swelling thus activates both K+ and Cl− channels 
at the basolateral membranes of proximal tubular cells.14,75,76 
Seki and associates have reported the presence of a basolateral 
Cl− channel in S3 segments of the rabbit nephron, wherein 
they did not see an effect of the KCC inhibitor H74 on 
intracellular Cl− activity.77 The molecular identity of these 
and other basolateral Cl− channels in the proximal nephron 
is not known with certainty, although S3 segments have  
been shown to express messenger RNA (mRNA) exclusively 
for the swelling-activated CLC-2 Cl− channel; the role of  
this channel in transcellular Na+-Cl− reabsorption is not as 
yet clear.78

Finally, there is functional evidence for Na+-dependent 
and Na+-independent Cl−-HCO3

− exchange at the basolateral 
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experiments in rabbits, the more recent report used mice; 
other studies that had found an effect of flow used perfusion 
of rat PTs, presumably more similar to mouse than rabbit.80–82,84 
Increased flow has a considerably greater effect on tubular 
diameter in the rabbit PT, thus reducing the increase in 
torque. Mathematical analysis of the rabbit data thus predicts 
a 43% increase in torque due to a 41% increase in tubule 
diameter at a threefold increase in flow; this corresponds to 
the statistically insignificant 36% increase in volume reabsorp-
tion reported by Burg and Orloff.82

Pharmacologic inhibition reveals that tubular flow activates 
proximal HCO3

− reabsorption mediated by NHE3 and apical 
H+-ATPase.81 The flow-dependent increase in proximal fluid 
and HCO3

− reabsorption is also attenuated in NHE3-deficient 
knockout mice.81,84 Inhibition of the actin cytoskeleton with 
cytochalasin D reduces the effect of flow on fluid and HCO3

− 
transport. This maneuver blocked the effects of flow on NHE3 
and Na+/K+-ATPase, but not on H+-ATPase. It also blocks the 
effects of FSS on movement of these transporters to the 
plasma membranes, suggesting that flow-dependent movement 
of microvilli activates these transport proteins via their linkage 
to the cytoskeleton (see Fig. 6.12 for NHE3).85 FSS induces 
densely distributed peripheral actin bands and increases the 
formation of tight junctions and adherens junctions in 
cultured tubule cells; this junctional buttressing is hypoth-
esized to maximize flow-activated transcellular salt and water 
absorption.86

The roles of dopamine, angiotensin II (Ang II), and calcium 
on FSS-induced sodium and bicarbonate transport have been 
examined. Luminal dopamine completely inhibited the 
flow-induced increase in Na+ transport,83 with the major effects 
being mediated through the D1A receptor. Deletion of AT1A 
receptors in mice also abrogated flow-induced increments 
in Na+ transport,87 but these effects may be related to the 
profound basal reductions in NHE3 activity. When AT1 
receptor blockers are employed, flow-induced Na+ transport 
remained.87,88 Intracellular activation of IP3 through a local 
calcium signal may mediate the effects of flow on NHE3 
activity, although increased calcium influx does not appear 
to play a role.89 Flow and torque were not found to have any 
effects on chloride absorption, suggesting no convective flow 
of chloride through the paracellular pathway.

with clear evidence that fluid shear stress (FSS) increases 
solute and water absorption.83 Du and coworkers reported 
linear flow dependence of fluid and HCO3

− transport in 
isolated perfused murine PTs (Fig. 6.8),81,84 mediated by NHE3 
and the H+-ATPase, as discussed later. These data were 
analyzed using a mathematical model that estimated microvil-
lus torque as a function of tubular flow; accounting for 
increases in tubular diameter, which reduce torque, there is 
a linear relationship between calculated torque and fluid 
and HCO3

− absorption.81,84 Consistent with an effect of torque 
rather than flow per se, increasing viscosity of the perfusate 
by the addition of dextran increases the effect on fluid 
transport; the extra viscosity increases the hydrodynamic 
effect of flow and thus increases torque. The mathematical 
analysis of Du and associates provides an excellent explanation 
of the discrepancy between their results and those of Burg 
and Orloff.82 Whereas Burg and Orloff performed their 
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Absorption also increases when bath albumin concentration increases from 2.5 to 5 g/dL. (From Du Z, Yan Q, Duan Y, et al. Axial flow modulates 
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via the paracellular pathway.14 However, the mechanism of 
the stimulatory effect of peritubular protein on transcellular 
transport is still not completely clear.81 There are also changes 
in absorption that correlate with changes in peritubular 
hydrostatic pressure, as occurs during expansion or contrac-
tion of the extracellular fluid volume.91

Neurohumoral Influences

Fluid and Na+-Cl− reabsorption by the PT are affected by 
a number of hormones and neurotransmitters. The major 
hormonal influences on renal Na+-Cl− transport are shown in 
Fig. 6.9. Renal sympathetic tone exerts a particularly important 
stimulatory influence, as does Ang II; dopamine is a major 
inhibitor of proximal tubular Na+-Cl− reabsorption.

Unilateral denervation of the rat kidney causes a marked 
natriuresis and a 40% reduction in proximal Na+-Cl− reabsorp-
tion, without effects on single-nephron GFR or on the 
contralateral innervated kidney.92 By contrast, low-frequency 
electrical stimulation of renal sympathetic nerves increases 
proximal tubular fluid absorption, with a 32% drop in 
natriuresis and no change in GFR.93 Basolateral epinephrine 
and/or norepinephrine stimulate proximal Na+-Cl− reabsorp-
tion via both α- and β-adrenergic receptors. Several lines  
of evidence suggest that α1-adrenergic receptors exert a 

Another mechanism for glomerulotubular balance operat-
ing from the luminal side involves limiting solute concentra-
tion. Solutes, such as bicarbonate, amino acids, and glucose, 
that are reabsorbed coupled to sodium will be depleted earlier 
along the PT when flow is low, thereby limiting reabsorption 
rates along the segment as a whole.90

Peritubular factors also play an important additive role in 
glomerulotubular balance, perhaps accounting for the dif-
ficulties in documenting flow-induced alterations using 
isolated rabbit PTs. Specifically, increases in GFR result in 
an increase in filtration fraction and an attendant increase 
in postglomerular protein and peritubular oncotic pressure. 
It has long been appreciated that changes in peritubular 
protein concentration have important effects on proximal 
tubular Na+-Cl− reabsorption; these effects are also seen in 
combined capillary and tubular perfusion experiments.81,91 
Peritubular protein also has an effect in isolated perfused 
PT segments, where the effect of hydrostatic pressure is 
abolished.81 Increases in peritubular protein concentration 
have an additive effect on the flow-dependent activation of 
proximal fluid and HCO3

− absorption (Fig. 6.8). The effect 
of peritubular protein on HCO3

− absorption, which is a 
predominantly transcellular phenomenon, suggests that 
changes in peritubular oncotic pressure do not affect transport 
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(cGMP) pathway on extracellular signal–regulated kinase 
(ERK) phosphorylation.99 Although the plasma Ang II 
concentration is typically below the inhibitory concentration, 
it should be noted, as discussed further later, that the con-
centration of Ang II in the lumen of the PT frequently exceeds 
that in plasma, and thus plasma concentrations may not be 
the sole determining factor. Given the substantial effects of 
proximal AT1A receptor deletion to reduce blood pressure 
and shift the pressure natriuresis,96 it seems likely that the 
predominant effect of Ang II is stimulatory along the PT 
under most physiological conditions.

Further complexity of Ang II signaling arises from the 
presence of AT1 receptors at both the luminal and basolateral 
membranes in the PT.100 Ang II application to the luminal 
or peritubular side of perfused tubules has a similar bimodal 
effect on fluid transport, albeit with more potent effects at 
the luminal side.101 Traditionally, experiments using receptor 
antagonists and knockout mice have indicated that the 
stimulatory and inhibitory effects of Ang II are both mediated 
via AT1 receptors due to signaling at the luminal and baso-
lateral membranes.102 However, other work has identified 
that AT2 receptors working through NO-cGMP pathway are 
able to downregulate NHE3 and Na+-K+-ATPase, leading to 
natriuresis and reduced blood pressure.103 Finally, Ang II is 
also synthesized and secreted by the PT, exerting a potent 
autocrine effect on proximal tubular Na+-Cl− reabsorption.104 
Proximal tubular cells thus express mRNA for angiotensino-
gen, renin, and angiotensin-converting enzyme (ACE),94 
allowing for the autocrine generation of Ang II. Indeed, 
luminal concentrations of Ang II can be 100- to 1000-fold 
higher than circulating levels of the hormone.94 Proximal 
tubular and systemic synthesis of Ang II may be subject to 
different control. In fact, intrarenal Ang II appears to stimulate 
proximal Na+-Cl– and fluid reabsorption even when dietary 
salt intake is high, thereby helping to prevent rises in glo-
merular filtration from increasing late proximal flow.105 It 
should be recalled, however, that in this, as in many salt 
loading studies in rodents, animals received 1% saline as 
drinking solution. Thus the high salt load was accompanied 
by free water deprivation, a circumstance shown recently to 
lead to stress and inflammation.106

The PT is also a target for natriuretic hormones; in par-
ticular, dopamine synthesized in the PT has negative autocrine 
effects on proximal Na+-Cl− reabsorption.94 Proximal tubular 
cells have the requisite enzymatic machinery for the synthesis 
of dopamine, using l-dopa reabsorbed from the glomerular 
ultrafiltrate. Dopamine synthesis by proximal tubular cells 
and release into the tubular lumen are increased after volume 
expansion or a high-salt diet, resulting in a considerable 
natriuresis.107,108 Luminal dopamine antagonizes the stimula-
tory effect of epinephrine on volume absorption in perfused 
PCTs, consistent with an autocrine effect of dopamine released 
into the tubular lumen.107,109 Dopamine primarily exerts its 
natriuretic effect via D1-like dopamine receptors (D1 and D5 
in humans); as is the case for the AT1 receptors for Ang II, 
D1 receptors are expressed at the apical and luminal mem-
branes of PTs.100,110 Targeted deletion of the D1A and D5 
receptors in mice leads to hypertension by mechanisms that 
include reduced proximal tubular natriuresis.111,112 The 
proximal tubular-specific deletion of aromatic amino acid 
decarboxylase, which produces dopamine, generates mice 
that are a vivid demonstration of the role of intrarenal 

stimulatory effect on proximal Na+-Cl− transport via activation 
of basolateral Na+-K+-ATPase and apical Na+-H+ exchange; 
the role of α2-adrenergic receptors is more controversial.94 
Ligand-dependent recruitment of the scaffolding protein 
NHE regulatory factor-1 (NHERF-1) by β2-adrenergic receptors 
results in direct activation of apical NHE3, bypassing the 
otherwise negative effect of downstream cyclic adenosine 
monophosphate (cAMP; see later).95,96 Ang II has potent 
effects on proximal Na+-Cl− reabsorption and therefore on 
blood pressure. Genetic deletion of AT1A receptors from PT 
cells reduced proximal fluid reabsorption, lowered basal 
blood pressure, shifted the pressure natriuresis, and attenuated 
the hypertensive response to Ang II infused chronically.96 
Although basal abundances of NHE3 and NaPi2 were similar 
in PTs from control and knockout mice, the abundance of 
NHE3 and NaPi2 was lower following Ang II infusion in mice 
lacking AT1A, suggesting that these effects are mediated, at 
least in part, through these two prominent Na+ transport 
pathways.

Despite this clear stimulatory effect, it has also been 
appreciated for 3 decades that Ang II has a bimodal (some-
times called “biphasic”) effect on the PT Na+ transport in 
rats, rabbits, and mice; stimulation of Na+-Cl− reabsorption 
occurs at 10−12 to 10−10 M, whereas inhibition of Na+-Cl− reab-
sorption occurs at concentrations greater than 10−7 M (Fig. 
6.10).97 Note, however, that plasma Ang II concentrations 
typically do not exceed 10–9 M, even during pathological 
states, such as 2 kidney/1 clip Goldblatt hypertension.98 
Furthermore, this biphasic role of Ang II may not hold true 
for all species, and in human PT samples, obtained during 
nephrectomy, concentrations up to 10−6 M Ang II stimulate 
Na+-Cl− reabsorption, primarily owing to a stimulatory effect 
of the nitric oxide (NO)–cyclic guanosine monophosphate 
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Regulation of Proximal Tubular Transporters

The apical Na+-H+ exchanger NHE3 and the basolateral 
Na+-K+-ATPase are primary targets for signaling pathways 
elicited by the various antinatriuretic and natriuretic stimuli 
discussed earlier; NHE3 mediates the rate-limiting step in 
transepithelial Na+-Cl− absorption and, as such, is the dominant 
target for regulatory pathways.84 NHE3 is regulated by the 
combined effects of direct phosphorylation and dynamic, 
carboxyl-terminal interaction with scaffolding proteins and 
signal transduction proteins, which primarily regulate trans-
port via changes in trafficking of the exchanger protein to 
and from the brush border membrane (Fig. 6.11).40,119 Basal 
activity of the exchanger is also dependent on carboxyl-terminal 
binding of casein kinase 2 (CK2); phosphorylation of serine 
719 by CK2 contributes significantly to the transport activity 
of NHE3 by modulating membrane trafficking of the transport 
protein.120

Increases in cAMP have a profound inhibitory effect on 
apical Na+-H+ exchange in the PT. Intracellular cAMP is 
increased in response to dopamine signaling via D1-like 
receptors and/or parathyroid hormone (PTH)–dependent 
signaling via the PTH receptor, whereas Ang II–dependent 
activation of NHE3 is associated with a reduction in cAMP.121 
PTH is a potent inhibitor of NHE3, presumably so as to 
promote the distal delivery of Na+-HCO3

− and an attendant 
stimulation of distal calcium reabsorption.122 The activation 
of protein kinase A (PKA) by increased cAMP results in 
direct phosphorylation of NHE3; although several sites in 
NHE3 are phosphorylated by PKA, the phosphorylation of 
serine 552 (S552) and 605 (S605) has been specifically 
implicated in the inhibitory effect of cAMP on Na+-H+ 
exchange.123 So-called phospho-specific antibodies, which 
specifically recognize the phosphorylated forms of S552 and 
S605, have demonstrated dopamine-dependent increases in 
the phosphorylation of both these serines.124 Moreover, 

dopamine. This intrarenal dopamine deficiency leads to 
upregulation of sodium transporters along the nephron, 
upregulation of the intrarenal renin–angiotensin axis, 
decreased natriuresis in response to l-dopa, and reduced 
medullary cyclooxygenase-2 (COX-2) expression, with reduced 
urinary prostaglandin levels. These mice also exhibit salt-
sensitive hypertension and ultimately a significantly shorter 
life span compared with wild type mice.113

The natriuretic effect of dopamine in the PT is modulated 
by atrial natriuretic peptide (ANP), which inhibits apical 
Na+-H+ exchange via a dopamine-dependent mechanism.14 
ANP appears to induce recruitment of the D1 dopamine 
receptor to the plasma membrane of proximal tubular cells, 
thus sensitizing the tubule to the effect of dopamine.114 The 
inhibitory effect of ANP on basolateral Na+-K+-ATPase occurs 
via a D1-dependent mechanism, with a synergistic inhibition 
of Na+-K+-ATPase by the two hormones.114 Furthermore, 
dopamine and D1 receptors appear to play critical permissive 
roles in the in vivo natriuretic effect of ANP.14

Finally, there is considerable crosstalk between the major 
antinatriuretic and natriuretic influences on the PT. For 
example, ANP inhibits Ang II–dependent stimulation of 
proximal tubular fluid absorption, presumably via the 
dopamine-dependent mechanisms discussed earlier.14,115 
Dopamine also decreases the expression of AT1 receptors 
for Ang II in cultured proximal tubular cells.116 Furthermore, 
the provision of l-dopa in the drinking water of rats decreases 
AT1 receptor expression in the PT, suggesting that dopamine 
synthesis in the PT resets the sensitivity to Ang II.116 Ang II 
signaling through AT1 receptors decreases expression of the 
D5 dopamine receptor, whereas renal cortical expression of 
AT1 receptors is in turn increased in knockout mice deficient 
in the D5 receptor.117 Similar interactions have been found 
between proximal tubular AT1 receptors and the D2-like D3 
receptor.118

Bath DA, 10�5 mol/LLuminal DA, 10�5 mol/LVehicle

Fig. 6.11  Effect of dopamine on trafficking of the Na+-H+ exchanger NHE3 in the proximal tubule. Microdissected proximal convoluted tubules 
were perfused for 30 minutes with 10−5 mol/L dopamine (DA), in the lumen or the bath, inducing a retraction of immunoreactive NHE3 protein 
from the apical membrane. (From Bacic D, Kaissling B, McLeroy P, et al. Dopamine acutely decreases apical membrane Na/H exchanger NHE3 
protein in mouse renal proximal tubule. Kidney Int. 2003;64:2133–2141.)
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domain.128 The NHERFs assemble a multiprotein, dynamically 
regulated signaling complex that includes NHE3 and several 
other transport proteins. In addition to NHE3, they bind to 
the actin-associated protein, ezrin, thus linking NHE3 to the 
cytoskeleton; this linkage to the cytoskeleton may be particu-
larly important for the mechanical activation of NHE3 by 
microvillar bending, as has been implicated in glomerulo-
tubular balance (see earlier discussion).81,84,128 Ezrin also 
interacts directly with NHE3, binding to a separate binding 
site within the carboxyl-terminus of the transport protein.119 
Ezrin functions as an anchoring protein for PKA, bringing 
PKA into close proximity with NHE3 and facilitating its 
phosphorylation (Fig. 6.12).128 Analysis of knockout mice 
for Nherf-1 has revealed that it is not required for baseline 
activity of NHE3; as expected, however, it is required for 
cAMP-dependent regulation of the exchanger by PTH.128 
One long-standing paradox has been that β-adrenergic 
receptors, which increase cAMP in the PT, cause an activation 
of apical Na+-H+ exchange.94 This was resolved by the observa-
tion that the first PDZ domain of NHERF-1 interacts with 
the β2-adrenergic receptor in an agonist-dependent fashion; 
this interaction serves to disrupt the interaction between the 
second PDZ domain and NHE3, resulting in a stimulation 
of the exchanger, despite the catecholamine-dependent 
increase in cAMP.128

As discussed earlier, at concentrations higher than 10−7 M 
(Fig. 6.10), Ang II has an inhibitory effect on proximal tubular 
Na+-Cl− absorption.97 This inhibition is dependent on the 
activation of brush border phospholipase A2 (PLA2), which 
results in the liberation of arachidonic acid.101 Metabolism 
of arachidonic acid by cytochrome P450 monooxygenases, 
in turn, generates 20-hydroxyeicosatetraenoic acid (20-HETE) 
and epoxyeicosatrienoic acids (EETs), compounds that inhibit 
NHE3 and the basolateral Na+-K+-ATPase.94,129 EETs and 
20-HETE have also been implicated in the reduction in 
proximal Na+-Cl− absorption that occurs during pressure 
natriuresis, inhibiting Na+-K+-ATPase and retracting NHE3 
from the brush border membrane.130

Antinatriuretic stimuli such as Ang II acutely increase the 
expression of NHE3 at the apical membrane, at least in part 
by inhibiting the generation of cAMP.121 Low-dose Ang II 
0.1 nmol/L (10−10 M) also increases exocytic insertion of 
NHE3 into the plasma membrane via a mechanism that is 
dependent on phosphatidylinositol-3-kinase (PI3K).131 Treat-
ment of rats with captopril thus results in a retraction of 
NHE3 and associated proteins from the brush border of PT 
cells.132 Glucocorticoids also increase NHE3 activity due to 
transcriptional induction of the Nhe3 gene and an acute 
stimulation of exocytosis of the exchanger to the plasma 
membrane.40 Glucocorticoid-dependent exocytosis of NHE3 
appears to require NHERF-2, which acts in this context as a 
scaffolding protein for the glucocorticoid-induced serine-
threonine kinase SGK1 (see the “Regulation of Na+-Cl− Trans-
port in the Connecting Tubule and Cortical Collecting Duct: 
Aldosterone” section).133 The acute effect of dexamethasone 
has thus been shown to require direct phosphorylation of 
serine 663 in the NHE3 protein by SGK1.134

Finally, many of the natriuretic and antinatriuretic pathways 
that influence NHE3 have parallel effects on the basolateral 
Na+-K+-ATPase (see Feraille and Doucet94 for a detailed review). 
The molecular mechanisms underlying inhibition of Na+-K+-
ATPase by dopamine have been particularly well characterized. 

immunostaining of rat kidney has revealed that S552- 
phosphorylated NHE3 localizes at the coated pit region of 
the brush border membrane, where the oligomerized inactive 
form of NHE3 predominates.124,125 The cAMP-stimulated 
phosphorylation of NHE3 by PKA thus results in a redistribu-
tion of the transporter from the microvillar membrane to 
an inactive submicrovillar population (Fig. 6.11). Notably, 
however, phosphorylation of these residues appears to be 
necessary but not sufficient for regulation of NHE3.40 A 
number of regulators of NHE3, including gastrin and uro-
guanylin, have been found to exert a functional effect through 
phosphorylation of S552 and/or S605.126,127

The regulation of NHE3 by cAMP also requires the par-
ticipation of a family of homologous scaffolding proteins 
that contain protein–protein interaction motifs known as 
PDZ domains (named for the PSD95, Drosophila disc large, 
and ZO-1 proteins in which these domains were first dis-
covered; Fig. 6.12). The first of these proteins, NHERF-1, 
was purified as a cellular factor required for the inhibition 
of NHE3 by PKA.128 NHERF-2 was in turn cloned by yeast 
two-hybrid screens as a protein that interacts with the 
carboxyl-terminus of NHE3; NHERF-1 and NHERF-2 have 
very similar effects on the regulation of NHE3 in cultured 
cells. The related protein PDZK1 interacts with NHE3 and a 
number of other epithelial transporters and is required for  
expression of the anion exchanger SLC26A6 at brush border 
membranes of the PT.65

NHERF-1 and NHERF-2 are both expressed in human 
and mouse PT cells; NHERF-1 colocalizes with NHE3 in 
microvilli of the brush border, whereas NHERF-2 is predomi-
nantly expressed at the base of microvilli in the vesicle-rich 
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Fig. 6.12  Scaffolding protein NHERF (Na+-H+ exchanger regulatory 
factor) links the Na+-H+ exchanger NHE3 to the cytoskeleton and 
signaling proteins. NHERF binds to ezrin, which in turn links to protein 
kinase A (PKA) and the actin cytoskeleton. NHERF also binds to SGK1 
(serum- and glucocorticoid-regulated kinase 1), which activates NHE3. 
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(Drosophila), and ZO-1 proteins; R, regulatory. 
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hamster contains two morphologic subtypes, a rough-surfaced 
cell type (R cells) with prominent apical microvilli and a 
smooth-surfaced cell type (S cells) with an abundance of 
subapical vesicles.6,139–141 In the hamster TAL, cells can also 
be separated into those with high apical and low basolateral 
K+ conductance and weak basolateral Cl− conductance (LBC 
cells) versus a second population with low apical and high 
basolateral K+ conductance combined with high basolateral 
Cl− conductance (HBC).140,142 The relative frequency of the 
morphologic and functional subtypes in the cortical and 
medullary TAL suggests that HBC cells correspond to S cells 
and LBC cells to R cells.140

TRANSPORT CHARACTERISTICS OF THE DESCENDING 
THIN LIMB
It has long been appreciated that the osmolality of tubular 
fluid increases progressively between the corticomedullary 
junction and papillary tip due to active secretion of solutes 
or passive absorption of water along the descending thin 
limb.143 Subsequent reports have revealed a very high water 
permeability of perfused outer medullary thin descending 
limbs in the absence of significant permeability to Na+-Cl−.144 
Notably, however, the permeability properties of descending 
thin limbs vary as a function of depth in the inner medulla 
and inclusion in short- versus long-looped nephrons.145,146 
Descending thin limbs from short-looped nephrons contain 
type I cells, very flat, endothelial-like cells, with intermediate-
depth tight junctions suggesting a relative tight epithe-
lium.145,146 The epithelium of descending limbs from 
long-looped nephrons is initially more complex, with taller 
type II cells possessing more elaborate apical microvilli and 
more prominent mitochondria. In the lower medullary 
portion of long-looped nephrons, these cells change into a 
type III morphology, endothelial-like cells similar to the type 
I cells from short-looped nephrons.145 The permeability 
properties appear to change as a function of cell type, with 
a progressive axial drop in water permeability of long-looped 
descending limbs; the water permeability of descending thin 
limbs in the middle part of the inner medulla is thus about 
42% that of outer medullary thin descending limbs.147 Fur-
thermore, the distal 20% of descending thin limbs have a 
very low water permeability.147 These changes in water perme-
ability along the descending thin limb are accompanied by 
a progressive increase in Na+-Cl− permeability, although the 
ionic permeability remains considerably less than that of the 
ascending thin limb.146

Consistent with a primary role in passive water and solute 
absorption, Na+-K+-ATPase activity in the descending thin 
limb is almost undetectable,17 suggesting that these cells do 
not actively transport Na+-Cl−; those ion transport pathways 
that have been identified in descending thin limb cells are 
thought to contribute primarily to cellular volume regula-
tion.148 In contrast to the relative lack of Na+-Cl− transport, 
transcellular water reabsorption by the thin descending limb 
is a critical component of the renal countercurrent concentrat-
ing mechanism (see Chapter 10).136,144

NA+-CL− TRANSPORT BY THE THIN ASCENDING LIMB
Fluid entering the thin ascending limb has a very high 
concentration of Na+-Cl− due to osmotic equilibration by the 
water-permeable descending limbs. The passive reabsorption 
of this delivered Na+-Cl− by the thin ascending limb is a 

Inhibition by dopamine is associated with removal of active 
Na+-K+-ATPase units from the basolateral membrane, somewhat 
analogous to the effect on NHE3 expression at the apical 
membrane.135 This inhibitory effect is primarily mediated by 
protein kinase C (PKC), which directly phosphorylates the 
α1-subunit of Na+-K+-ATPase, the predominant α-subunit in 
the kidney.94 The effect of dopamine requires phosphorylation 
of serine 18 of the α1-subunit by PKC; this phosphorylation 
does not affect enzymatic activity of the Na+-K+-ATPase, but 
rather induces a conformational change that enhances the 
binding of PI3K to an adjacent, proline-rich domain. The 
PI3K recruited by this phosphorylated α1-subunit then 
stimulates the dynamin-dependent endocytosis of the Na+-
K+-ATPase complex via clathrin-coated pits.135

LOOP OF HENLE

The loop of Henle encompasses the thin descending limb, 
thin ascending limb, and TAL. The descending and ascending 
thin limbs function in passive absorption of water and Na+-Cl−, 
respectively, whereas the TAL reabsorbs about 30% of filtered 
Na+-Cl− via active transport.136,137 There is considerable cellular 
and functional heterogeneity along the entire length of the 
loop of Henle, with consequences for the transport of water, 
Na+-Cl−, and other solutes. The thin descending limb begins 
in the outer medulla after an abrupt transition from S3 
segments of the PT, marking the boundary between the outer 
and inner stripes of the outer medulla. Thin descending 
limbs end at a hairpin turn at the end of the loop of Henle. 
Short-looped nephrons that originate from superficial and 
midcortical nephrons have a short descending limb within 
the inner stripe of the outer medulla; these tubules merge 
abruptly into the TAL close to the hairpin turn of the loop 
(see also discussion later). Long-looped nephrons originating 
from juxtamedullary glomeruli have a long ascending thin 
limb that then merges with the TAL. The TALs of long-looped 
nephrons begin at the boundary between the inner and 
outer medulla, whereas the TALs of short-looped nephrons 
may be entirely cortical. The ratio of medullary to cortical 
TAL for a given nephron is a function of the depth of its 
origin, such that superficial nephrons are primarily composed 
of cortical TALs, whereas juxtamedullary nephrons primarily 
possess medullary TALs.

The TAL begins abruptly after the thin ascending limb of 
long-looped nephrons and after the aquaporin-negative 
segment of short-limbed nephrons.138 The TAL extends into 
the renal cortex, where it meets its parent glomerulus at the 
vascular pole; the plaque of cells at this junction form the 
macula densa, which function as the tubular sensor for 
tubuloglomerular feedback (TGF) and tubular regulation 
of renin release by the juxtaglomerular apparatus. Cells in 
the medullary TAL are 7 to 8 µm in height, with extensive 
invaginations of the basolateral plasma membrane and 
interdigitations between adjacent cells.6 As in the PT, these 
lateral cell processes contain numerous elongated mitochon-
dria, perpendicular to the basement membrane. Cells in the 
cortical TAL are considerably shorter, 2 µm in height at the 
end of the cortical TAL in rabbits, with fewer mitochondria 
and a simpler basolateral membrane.6 Macula densa cells 
also lack the lateral cell processes and interdigitations 
characteristic of medullary TAL cells.6 However, scanning 
electron microscopy has revealed that the TAL of rat and 
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have suggested additional expression in the TAL, DCT, and 
cortical collecting duct (CCD).156–158 Notably, immunofluo-
rescence and immunogold labeling indicate that CLC-K1 is 
expressed exclusively at both the apical and basolateral 
membranes of thin ascending limbs, such that both the 
luminal and basolateral Cl− channels of this nephron segment 
are encoded by the same gene.142,156 Homozygous knockout 
mice with a targeted deletion of Clc-k1 have a vasopressin-
resistant nephrogenic diabetes insipidus, reminiscent of the 
phenotype of aquaporin-1 knockout mice.136,159 Given that 
CLC-K1 is potentially expressed in the TAL, dysfunction of 
this nephron segment might also contribute to the renal 
phenotype of Clc-k1 knockout mice; however, the closely 
homologous channel CLC-K2 (CLC-NKB) is clearly expressed 
in the TAL, where it can likely substitute for CLC-K1.158 
Furthermore, loss-of-function mutations in CLC-NKB cause 
Bartter syndrome, which is phenocopied in Clc-k2 knockout 
mice, indicating that CLC-K2, rather than CLC-K1, is critical 
for transport function of the TAL.160–162

Detailed characterization of Clc-k1 knockout mice has 
revealed a selective impairment in Cl− transport by the thin 
ascending limb.137 Whereas Cl− absorption is profoundly 
reduced, Na+ absorption by thin ascending limbs is not sig-
nificantly impaired (Fig. 6.13). The diffusion voltage induced 
by a transepithelial Na+-Cl− gradient is reversed by the absence 
of CLC-K1, from +15.5 mV in homozygous wild type controls 
(+/+) to −7.6 mV in homozygous knockout mice (−/−). This 
change in diffusion voltage is due to the dominance of paracel-
lular Na+ transport in the CLC-K1-deficient −/− mice, leading 
to a lumen-negative potential; this corresponds to a marked 
reduction in the relative permeability of Cl− to that of Na+ (PCl/
PNa), from 4.02 to 0.63 (Fig. 6.13). Protamine, an inhibitor 
of paracellular Na+ transport, has a comparable effect on 

critical component of the passive equilibration model of the 
renal countercurrent multiplication system (see Chapter 10). 
Consistent with this role, the permeability properties of the 
thin ascending limb are dramatically different from those 
of the descending thin limb, with a much higher permeability 
to Na+-Cl− and vanishingly low water permeability.146,149 Passive 
Na+-Cl− reabsorption by thin ascending limbs occurs via a 
combination of paracellular Na+ transport and transcellular 
Cl− transport.137,142,150–153 The inhibition of paracellular con-
ductance by protamine thus selectively inhibits Na+ transport 
across perfused thin ascending limbs, consistent with paracel-
lular transport of Na+.150 As in the descending limb, thin 
ascending limbs have a modest Na+-K+-ATPase activity (Fig. 
6.3); however, the active transport of Na+ across thin ascending 
limbs accounts for only an estimated 2% of Na+ reabsorption 
by this nephron segment.154 Chloride channel blockers reduce 
Cl− permeability of the thin ascending limb, consistent with 
passive transcellular Cl− transport.153 Direct measurement of 
the membrane potential of impaled hamster thin ascending 
limbs has also yielded evidence for apical and basolateral 
Cl− channel activity.142 This transepithelial transport of Cl−, 
but not Na+, is activated by vasopressin, with a pharmacologic 
profile that is consistent with direct activation of thin ascend-
ing limb Cl− channels.155

Both apical and basolateral Cl− transport in the thin 
ascending limb appear to be mediated by the CLC-K1 Cl− 
channel in cooperation with the Barttin subunit (see also 
the “Na+-Cl− Transport by the Thick Ascending Limb: 
Basolateral Mechanisms” section). Immunofluorescence and 
in situ hybridization indicate a selective expression of CLC-K1 
(homologous to the human chloride channel Kb, CLC-NKB) 
in thin ascending limbs, although single-tubule, reverse 
transcriptase-polymerase chain reaction (RT-PCR) studies 
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apical Na+-Cl− transport in the TAL appears to be K+ inde-
pendent; this issue is reviewed later (see the “Regulation of 
Na+-Cl− Transport by the Thick Ascending Limb” section). 
Apical Na+-K+-2Cl− cotransport is mediated by the cation-
chloride cotransporter NKCC2, encoded by SLC12A1.168 This 
is a member of the cation chloride cotransporter family of 
proteins that includes the thiazide-sensitive transporter NCC, 
and the potassium chloride cotransporters. Functional expres-
sion of NKCC2 in Xenopus oocytes yields Cl−- and Na+-
dependent uptake of Rb+ (a radioactive substitute for K+) 
and Cl−- and K+-dependent uptake of 22Na+.97,168–170 As expected, 
NKCC2 is sensitive to micromolar concentrations of furose-
mide, bumetanide, and other loop diuretics.168

Immunofluorescence indicates expression of NKCC2 
protein along the entire length of the TAL.168 In particular, 
immunoelectron microscopy reveals expression in both rough 
(R) and smooth (S) cells of the TAL (see earlier discussion).141 
NKCC2 expression in subapical vesicles is particularly promi-
nent in smooth cells, suggesting a role for vesicular trafficking 
in the regulation of NKCC2 (see the “Regulation of Na+-
Cl− Transport by the Thick Ascending Limb” section).141 
NKCC2 is also expressed in macula densa cells, which have 
been shown to possess apical Na+-K+-2Cl− cotransport activ-
ity.141,171 This latter observation is of considerable significance, 
given the role of the macula densa in TGF and renal renin 
secretion; luminal loop diuretics block TGF and the sup-
pression of renin release by luminal Cl−.14

Alternative splicing of exon 4 of the SLC12A1 gene yields 
NKCC2 proteins that differ within transmembrane domain 
2 and the adjacent intracellular loop; the functional signifi-
cance of these variants appears primarily related to differences 
in binding to chloride.172 There are thus three different 
variants of exon 4, denoted “A,” “B,” and “F”; the variable 
inclusion of these cassette exons yields NKCC2-A, NKCC2-B, 

the diffusion voltage in −/− mice versus +/− and +/+ mice 
that have been treated with 5-nitro-2-(3-phenylpropylamino)-
benzoate (NPPB) to inhibit CLC-K1; the respective diffusion 
voltages are 7.9 mV (−/− plus protamine), 8.6 mV (+/− plus 
protamine and NPPB), and 9.8 (+/+ plus protamine and 
NPPB). Therefore the paracellular Na+ conductance is 
unimpaired and essentially the same in Clc-k1 knockout 
mice when compared with littermate controls. This study 
thus provided elegant proof for the relative independence 
of paracellular and transcellular conductances for Na+ and 
Cl−, respectively, in thin ascending limbs.137

CLC-K1 associates with Barttin, an accessory subunit identi-
fied via positional cloning of the gene for Bartter syndrome 
with sensorineural deafness (see the “Na+-Cl− Transport by the 
Thick Ascending Limb: Basolateral Mechanisms” section).163 
Barttin is expressed with CLC-K1 in thin ascending limbs, 
in addition to the TAL, DCT, and α-intercalated cells.158,163 
Rat CLC-K1 is unique among the CLC-K orthologs and 
paralogs (CLC-K1/2 in rodents, CLC-NKB/NKA in humans) 
in that it can generate Cl− channel activity in the absence 
of coexpression with Barttin; however, its human ortholog 
CLC-NKA is nonfunctional in the absence of Barttin.156,158,164 
Regardless, Barttin coimmunoprecipitates with CLC-K1 
and increases expression of the channel protein at the cell 
membrane.158,164 This so-called chaperone function seems to 
involve the transmembrane core of Barttin, whereas domains 
within the cytoplasmic carboxy terminus modulate channel 
properties (open probability and unitary conductance).164

With respect to regulation in this nephron segment, 
vasopressin has stimulatory effects on Cl− transport by  
the thin ascending limb, acting as in principal cells and  
TAL through V2 receptors and cAMP.155 Water deprivation 
induces a fourfold increase in CLC-K1 mRNA, indicating 
transcriptional effects of vasopressin or medullary tonicity.165 
Basolateral calcium in turn inhibits Cl− and Na+ transport in 
the thin ascending limb via activation of the calcium-sensing 
receptor (CaSR).166

NA+-CL− TRANSPORT BY THE THICK ASCENDING LIMB
Apical Na+-Cl− Transport

The TAL reabsorbs about 30% of filtered Na+-Cl− (Fig. 6.1). 
In addition to an important role in the defense of the 
extracellular fluid volume, Na+-Cl− reabsorption by the water-
impermeable TAL is a critical component of the renal 
countercurrent multiplication system. The separation of 
Na+-Cl− and water by the TAL is thus responsible for the 
capability of the kidney to dilute or concentrate the urine. 
In concert with the countercurrent mechanism, Na+-Cl− reab-
sorption by the thin ascending limb and TAL increases 
medullary tonicity, facilitating water absorption by the col-
lecting duct.

Notwithstanding the morphological heterogeneity described 
earlier, the cells of the medullary TAL, cortical TAL, and 
macula densa share the same basic transport mechanisms 
(Fig. 6.14). Na+-Cl− reabsorption by the TAL is thus a sec-
ondarily active process, driven by the favorable electrochemical 
gradient for Na+ established by the basolateral Na+-K+-
ATPase.14,167 Na+, K+, and Cl− are cotransported across the 
apical membrane by an electroneutral Na+-K+-2Cl− cotrans-
porter, which generally requires the simultaneous presence 
of all three ions.14 Of note, under certain circumstances, 
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Several lines of evidence have indicated that apical K+ 
channels are required for transepithelial Na+-Cl− transport 
by the TAL.14,167 First, the removal of K+ from luminal perfusate 
results in a marked decrease in Na+-Cl− reabsorption by the 
TAL, as measured electrophysiologically; the residual Na+-
Cl− transport in the absence of luminal K+ is sustained by K+ 
movement into the luminal fluid apical K+ channels, because 
the combination of K+ removal and a luminal K+ channel 
inhibitor (barium) almost abolishes the equivalent short 
circuit current.14 Apical K+ channels are thus required for 
continued functioning of NKCC2, the apical Na+-K+-2Cl− 
cotransporter; the low luminal concentration of K+ in this 
nephron segment would otherwise become limiting for 
transepithelial Na+-Cl− transport.

Second, the net transport of K+ across perfused TAL is 
less than 10% that of Na+ and Cl−; about 90% of the K+ 
transported by NKCC2 is recycled across the apical membrane 
via K+ channels, resulting in minimal net K+ absorption by 
the TAL.14,181

Third, the intracellular K+ activity of perfused TAL cells 
is about 15 to 20 mV above equilibrium due to furosemide-
sensitive entry of K+ via NKCC2.182 Given an estimated apical 
K+ conductivity of about 12 mS/cm2, this intracellular K+ 
activity yields a calculated K+ current of about 200 µA/cm2, 
which corresponds quantitatively to the uptake of K+ by the 
apical Na+-K+-2Cl− cotransporter.167

Fourth, the observation that Bartter syndrome can be 
caused by mutations in renal outer medullary potassium 
(ROMK, encoded by KCNJ1) provides genetic proof for the 
importance of K+ channels in Na+-Cl− absorption by the TAL 
(see later).183 Finally, a novel ROMK inhibitor functions as 
a potent diuretic in vivo, primarily due to inhibition of TAL 
Na+-Cl− transport.184

Three types of apical K+ channels have been identified in 
the TAL, a channel with a conductance of 30 picosiemen 
(30 pS), a channel with a conductance of 70 pS, and a high-
conductance, calcium-activated maxi-K+ channel (Fig. 
6.14).185–187 The higher Po and greater density of the 30-pS 
and 70-pS channels versus the maxi-K+ channel suggest that 
these are the primary routes for K+ recycling across the apical 
membrane; the 70-pS channel in turn appears to mediate 
about 80% of the apical K+ conductance of TAL cells.188 The 
low-conductance, 30-pS channel shares several electrophysi-
ologic and regulatory characteristics with ROMK, the cardinal 
inward-rectifying K+ channel that was initially cloned from 
renal outer medulla.14 In humans, three isoforms of ROMK 
(ROMK1, 2, and 3) are generated by alternative splicing of 
the KCNJ1 gene; ROMK3 has not been detected in rat or 
mouse.189 ROMK2 has the shortest amino terminus, ROMK1 
has an additional 16 residues, and ROMK3 an additional 22 
residues (compared with ROMK2). ROMK1 mRNA is 
expressed in the mid and late distal tubule and the CCD, 
and in the outer medullary collecting duct (OMCD), but 
not along the TAL (see later). ROMK2 mRNA is expressed 
from the medullary TAL through the CCD, but is absent 
from the OMCD.189 ROMK3 is expressed from the medullary 
TAL through the DCT. ROMK protein has been identified 
at the apical membrane of medullary TAL, cortical TAL, and 
macula densa.190 Furthermore, the 30-pS channel is also absent 
from the apical membrane of mice with homozygous deletion 
of the gene encoding ROMK.191 Notably, not all cells in the 
TAL are labeled with ROMK antibody, suggesting that ROMK 

and NKCC2-F proteins.168,170 Kinetic characterization reveals 
that these isoforms differ dramatically in ion affinities.168,170 
In particular, NKCC2-F has a very low affinity for Cl− (Km = 
113 mmol/L) and NKCC2-B has a very high affinity (Km = 
8.9 mmol/L); NKCC2-A has an intermediate affinity for 
Cl− (Km = 44.7 mmol/L).170 These isoforms differ in axial 
distribution along the tubule, with the F cassette expressed 
in the inner stripe of the outer medulla, the A cassette in 
the outer stripe, and the B cassette in cortical TAL.14 There 
is thus an axial distribution of the anion affinity of NKCC2 
along the TAL, from a low-affinity, high-capacity transporter 
(NKCC2-F) to a high-affinity, low-capacity transporter 
(NKCC2-B). Although technically compromised by the 
considerable homology between the 3′ end of these 96-base 
pair exons, in situ hybridization has suggested that rabbit 
macula densa exclusively expresses the NKCC2-B isoform.14 
Notably, however, selective knockout of the B cassette exon 
4 does not eliminate NKCC2 expression in the murine macula 
densa, which also seems to express NKCC2-A by in situ 
hybridization.173 The comparative phenotypes of NKCC2-A 
and NKCC2-B knockout mice are consistent with the relative 
Cl− affinity of each isoform, with NKCC2-B functioning as a 
high-affinity, low-capacity isoform and NKCC2-A functioning 
as a low-affinity, high-capacity isoform. Thus targeted deletion 
of NKCC2-A selectively reduces TGF responses at the higher 
range of tubular flow rates (a low-affinity, high-capacity situ-
ation), whereas NKCC2-B deletion reduces responses at low 
flow rates.174 Loss of NKCC2-A almost abolishes the suppres-
sion of plasma renin activity by isotonic saline infusion, which 
is, if anything, more robust in NKCC2-B knockout mice than 
wild type littermates.174

It should be mentioned in this context that the Na+-H+ 
exchanger NHE3 functions as an alternative mechanism for 
apical Na+ absorption by the TAL. There is also evidence in 
mouse cortical TAL for Na+-Cl− transport via parallel Na+-H+ 
and Cl−-HCO3

− exchange, although the role of this mechanism 
in transepithelial Na+-Cl− transport seems less prominent than 
in the PT.14 Indeed, apical Na+-H+ exchange mediated by 
NHE3 appears to function primarily in HCO3

− absorption 
by the TAL.175 There is thus a considerable upregulation of 
both apical Na+-H+ exchange and NHE3 protein in the TAL 
of acidotic animals, paired with an induction of AE2, a 
basolateral Cl−-HCO3

− exchanger.176,177 NHE3 in the TAL is 
also upregulated by increased flow. However, this is not via 
shear stress, as demonstrated in the PT, but by the production 
of endogenous O2

− and activation of PKC, a potential pathway 
for flow-stimulated bicarbonate reabsorption.178

Apical K+ Channels

Microperfused TALs develop a lumen-positive PD during 
perfusion with Na+-Cl−.179,180 This lumen-positive PD plays a 
critical role in the physiology of the TAL, driving the paracel-
lular transport of Na+, Ca2+, and Mg2+ (Fig. 6.14). Originally 
attributed to electrogenic Cl− transport, the lumen-positive 
transepithelial PD in the TAL is generated by the combination 
of apical K+ channels and basolateral Cl− channels.14,167,180 
The conductivity of the apical membrane of TAL cells is 
predominantly, if not exclusively, K+ selective. Luminal 
recycling of K+ via Na+-K+-2Cl− cotransport and apical K+ 
channels, along with basolateral depolarization due to Cl− exit 
through Cl− channels, results in the lumen-positive trans-
epithelial PD.14,167
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results in a doubling of active Na+-Cl− transport for a given 
level of oxygen consumption.3,197

Unlike in the PT, the voltage-positive PD in the TAL is 
generated almost entirely by transcellular transport, rather 
than by diffusion across the lateral tight junction.15 Mouse 
TAL segments primarily express claudin-14, -16, -19, and 
-10.14,198–200 In vasopressin-stimulated mouse TAL segments, 
with a lumen-positive PD of 10 mV, the maximal increase in 
Na+-Cl− in the lateral interspace is about 10 mmol/L.196 Tight 
junctions in the TAL are cation selective, with PNa/PCl ratios 
of 2 to 5.167,196 Notably, however, PNa/PCl ratios can be highly 
variable in individual tubules, ranging from 2 to 5 in a single 
study of perfused mouse TAL.196 Recently, it has been sug-
gested that the claudin profile of cells along the TAL rep-
resents a mosaic, with some cell interfaces expressing the 
Na+-selective claudin-10, whereas others express claudin-3, 
-16, or -19. It was suggested that this mosaic pattern reveals 
the existence of spatially separated paracellular routes for 
Na+ and Ca2+/Mg2+.201 Regardless, assuming a net PNa/PCl 
ratio of about 3, the maximal dilution potential in the mouse 
TAL is between 0.7 and 1.1 mV, consistent with a dominant 
effect of transcellular processes on the lumen-positive PD.196

The reported transepithelial resistance in the TAL is 
between 10 and 50 Ω⋅cm2; although this resistance is higher 
than that of the PT, the TAL is not considered a tight epi-
thelium.14,167 Notably, however, water permeability of the TAL 
is extremely low, less than 1% that of the PT.167 These hybrid 
characteristics—relatively low resistance and very low water 
permeability—allow the TAL to generate and sustain Na+-
Cl− gradients of up to 120 mmol/L.14,167 Not unexpectedly, 
given its lack of water permeability, the TAL does not express 
aquaporin water channels; as in the PT, the particular rep-
ertoire of claudins expressed in the TAL determines the 
resistance and ion selectivity of this nephron segment.

Mutations in human claudin-16 (previously called 
paracellin-1) and claudin-19 are associated with hereditary 
hypomagnesemia, suggesting that these claudins are particu-
larly critical for the cation selectivity of TAL tight junctions.14,199 
Heterologous expression of claudin-16 (paracellin-1) in the 
anion-selective LLC-PK1 cell line markedly increases Na+ 
permeability without affecting Cl− permeability; this generates 
a significant increase in the PNa/PCl ratio (Fig. 6.15).202 
LLC-PK1 cells expressing claudin-16 also have increased 
permeability to other monovalent cations. There is, however, 
only a modest increase in Mg2+ permeability, suggesting that 
claudin-16 does not form an Mg2+-specific pathway in the 
tight junction; rather, it may serve to increase the overall 
cation selectivity of the tight junction. Claudin-19 appears 
in turn to reduce PCl in LLC-PK1 cells, without having much 
effect on Mg2+ or Na+ permeability.203 The claudin-16 and 
claudin-19 proteins interact in multiple systems, and coexpres-
sion of claudin-16 and claudin-19 synergistically increases 
the PNa/PCl ratio in LLC-PK1 cells.203,204 Knockdown of 
claudin-16 in transgenic mice increases Na+ absorption in 
the downstream collecting duct, with the development of 
hypovolemic hyponatremia after treatment with amiloride; 
claudin-19 knockdown mice exhibit an increase in fractional 
excretion of Na+ and a doubling in serum aldosterone 
levels.204,205 In summary, therefore, claudin-16 and claudin-19 
interact to confer the cation selectivity of tight junctions in 
the TAL, contributing significantly to the transepithelial 
absorption of Na+ in this nephron segment.

might be absent in the so-called HBC cells with HBC and 
low apical K+ conductance (also see earlier discussion).140,142 
HBC cells are thought to correspond to the smooth-surfaced 
morphologic subtype of TAL cells (S cells)140; however, dis-
tribution of ROMK protein by immunoelectron microscopy 
has not as yet been reported.

ROMK clearly plays a critical role in Na+-Cl− absorption 
by the TAL, given that loss-of-function mutations in this gene 
are associated with Bartter syndrome.183 The role of ROMK 
in Bartter syndrome was initially discordant with the data, 
suggesting that the 70-pS K+ channel is the dominant con-
ductance at the apical membrane of TAL cells; heterologous 
expression of the ROMK protein in Xenopus oocytes had 
yielded a channel with a conductance of about 30 pS, sug-
gesting that the 70-pS channel was distinct from ROMK.14,188 
This paradox has been resolved by the observation that the 
70-pS channel is absent from the TAL of ROMK knockout 
mice, indicating that ROMK proteins form a subunit of the 
70-pS channel.192 A recent study specifically examined the 
effects of ROMK1 disruption in mice, and consistent with 
its absence along the TAL, discussed earlier, these mice did 
not display a Bartter syndrome phenotype.193

ROMK activity in the TAL is clearly modulated by associa-
tion with other proteins, such that coassociation with other 
subunits to generate the 70-pS channel is perfectly compatible 
with the known physiology of this protein. ROMK thus 
associates with scaffolding proteins NHERF-1 and NHERF-2 
(see the “Regulation of Proximal Tubular Na+-Cl− Transport: 
Neurohumoral Influences” section) via the carboxyl-terminal 
PDZ-binding motif of ROMK; NHERF-2 is coexpressed with 
ROMK in the TAL.194 The association of ROMK with NHERFs 
serves to bring ROMK into closer proximity to the cystic 
fibrosis transmembrane regulator protein (CFTR).194 This 
ROMK–CFTR interaction is, in turn, required for the native 
ATP and glibenclamide sensitivity of apical K+ channels in  
the TAL.195

Paracellular Transport

TALs perfused with Na+-Cl− develop a lumen-positive, tran-
sepithelial PD generated by the combination of apical K+ 
secretion and basolateral Cl− efflux.14,167,179,180,182 This lumen-
positive PD plays a critical role in the paracellular reabsorption 
of Na+, Ca2+, and Mg2+ by the TAL (Fig. 6.14). In the trans
epithelial transport of Na+, the stoichiometry of NKCC2 
(1Na+:1K+:2Cl−) is such that other mechanisms are necessary 
to balance the exit of Cl− at the basolateral membrane; 
consistent with this requirement, data from mouse TAL have 
indicated that about 50% of transepithelial Na+ transport 
occurs via the paracellular pathway.3,196 For example, the 
ratio of net Cl− transepithelial absorption to net Na+ absorption 
through the paracellular pathway is 2.4 ± 0.3 in microperfused 
mouse medullary TAL segments, and the expected ratio of 
50% of Na+ transport occurs via the paracellular pathway. In 
the absence of vasopressin, apical Na+-Cl− cotransport is not 
K+ dependent (see the “Regulation of Na+-Cl− Transport by 
the Thick Ascending Limb” section), reducing the lumen-
positive PD; switching to K+-dependent Na+-K+-2Cl− cotransport 
in the presence of vasopressin results in a doubling of 
Na+-Cl− reabsorption, without an effect on oxygen consump-
tion.3,196 Therefore, the combination of a cation-permeable 
paracellular pathway and an “active transport,” lumen-positive 
PD,167 generated indirectly by the basolateral Na+-K+-ATPase, 
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at the apical and basolateral membranes of the thin ascending 
limb, and the phenotype of the corresponding knockout 
mouse is consistent with primary dysfunction of thin ascending 
limbs, rather than the TAL (see Na+-Cl− transport by the thin 
ascending limb).3,137,156,159 Second, loss-of-function mutations 
in CLC-NKB are associated with Bartter syndrome, providing 
genetic evidence for a dominant role of this channel in 
Na+-Cl− transport in the TAL.160 More recently, a very common 
T481S polymorphism in human CLC-NKB was shown to 
increase channel activity by a factor of 20; preliminary data 
have indicated an association with hypertension, suggesting 
that this gain-of-function in CLC-NKB increases Na+-Cl− trans-
port by the TAL and/or other segments of the distal 
nephron.211–213 Finally, CLC-K2 protein is heavily expressed 
at the basolateral membrane of the mouse TAL, with addi-
tional expression in the DCT, CNT, and α-intercalated cells.214 
Recently, Clc-k2 was deleted from mice, leading to salt wasting, 
resembling Bartter syndrome, and to a loss of the around 
10-pS chloride channel in TAL cells.162 Deletion of this gene 
also abrogated the response to furosemide, indicating the 
central role that this channel plays in transepithelial NaCl 
transport. This approach also permitted conclusions to be 
drawn regarding the location of ClC-K1 and ClC-K2 in the 
kidney, even though antibodies cross-react against the two 
related chloride channels. In the Clc-k2 knockout mice, the 
reaction product could be seen to extend beyond the thin 
ascending limb into the medullary TAL, suggesting that 
ClC-K1 plays a role there.

A key advance was the characterization of the Barttin 
subunit of CLC-K channels, which is coexpressed with CLC-K1 
and CLC-K2 in several nephron segments, including TAL.158,163 
Unlike rat CLC-K1, the rat CLC-K2, human CLC-NKA, and 
human CLC-NKB paralogs are not functional in the absence 
of Barttin coexpression.163,164 CLC-NKB coexpressed with 
Barttin is highly selective for Cl−, with a permeability series 

Other claudins expressed in the TAL modulate the function 
of claudin-16–claudin-19 heterodimers or have independent 
effects. Claudin-14 interacts with claudin-16, disrupting cation 
selectivity of the paracellular barrier in cells that also coexpress 
claudin-19.206 Claudin-14 expression in the TAL is calcium 
dependent via the CaSR, providing a novel axis for calcium-
dependent regulation of paracellular calcium transport (see 
later).206–208 Claudin-10 appears to modulate paracellular Na+ 
permeability specifically, with impaired paracellular Na+ 
transport in claudin-10 knockout mice and a salt-wasting 
nephropathy in humans bearing compound heterozygous 
claudin-10 mutations.33,209

Basolateral Mechanisms

The basolateral Na+-K+-ATPase is the primary exit pathway 
for Na+ at the basolateral membrane of TAL cells. The Na+ 
gradient generated by Na+-K+-ATPase activity is also thought 
to drive the apical entry of Na+, K+, and Cl− via NKCC2, the 
furosemide-sensitive Na+-K+-2Cl− cotransporter.14 Inhibition 
of Na+-K+-ATPase with ouabain thus collapses the lumen-
positive PD and abolishes transepithelial Na+-Cl− transport 
in the TAL.179,180,197 Basolateral exit of Cl− from TAL cells is 
primarily but not exclusively electrogenic, mediated by an 
approximately 10-pS Cl− channel.14,167,210 Reductions in 
basolateral Cl− depolarize the basolateral membrane, whereas 
decreases in intracellular Cl− induced by luminal furosemide 
have a hyperpolarizing effect.14 Intracellular Cl− activity during 
transepithelial Na+-Cl− transport is above its electrochemical 
equilibrium,14 with an intracellular negative voltage of −40 
to −70 mV that drives basolateral Cl− exit.14,167

At least two CLC chloride channels, CLC-K1 and CLC-K2 
(CLC-NKA and CLC-NKB in humans), are coexpressed in 
this nephron segment.158,163 However, an increasing body of 
evidence has indicated that the dominant Cl− channel in the 
TAL is encoded by CLC-K2. First, CLC-K1 is heavily expressed 
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increases in basolateral K+ cause Cl−-dependent cell swelling 
in Amphiuma early distal tubule, an analog of the mammalian 
TAL; in Amphiuma LBC cells with low basolateral conductance, 
analogous to mammalian LBC cells (see the “Na+-Cl− Transport 
by the Thick Ascending Limb: Apical Na+-Cl− Transport” 
section), this cell swelling was not accompanied by changes 
in basolateral membrane voltage or resistance, consistent 
with K+-Cl− transport.140,142,222

There is thus considerable evidence for basolateral K+-
Cl− cotransport in the TAL, mediated by KCC4.217,218 However, 
direct confirmation of a role for basolateral K+-Cl− cotransport 
in transepithelial Na+-Cl− transport is lacking. Indeed, KCC4-
deficient mice do not have a prominent defect in function 
of the TAL, but exhibit instead a renal tubular acidosis.217 
The renal tubular acidosis in these mice has been attributed 
to defects in acid extrusion by H+-ATPase in α-intercalated 
cells; however, this phenotype is conceivably the result of a 
reduction in medullary NH4

+ reabsorption by the TAL due 
to the loss of basolateral NH4

+ exit mediated by KCC4.217,220,223

Finally, there is also evidence for the existence of Ba2+-
sensitive K+ channel activity at the basolateral membrane 
of the TAL, providing an alternative exit pathway for K+ 
to that mediated by KCC4.224–226 Such channel activity may 
help stabilize the basolateral membrane potential above the 
equilibrium potential for Cl−, thus maintaining a continuous 
driving force for Cl− exit via CLC-NKB/Barttin Cl− chan-
nels.226 Patch-clamp experiments have identified two types 
of K+ channels in the basolateral membrane of the TAL: a 
40-pS inwardly rectifying K+ channel and an Na+- and Cl–

-activated, 80- to 150-pS K channel (Kca4.1 or slo2.2).225,227 The 
40-pS K+ channel was absent in the TAL of Kcnj10 knockout 
mice, suggesting that the 40-pS K+ channel is a KIR4.1 and 
KIR4.5 heterotetramer.227 Although KIR4.1 is also detected 
in human TAL, loss-of-function KCNJ10 mutations do not 
show the phenotype of Bartter syndrome, suggesting that the 
disruption of KIR4.1 has no significant effect on transport 
function in the TAL.228 This may reflect secondary activation 
of alternative K+ channels along TAL, as Kcnj10 knockout mice 
demonstrate vasopressin-induced stimulation of the 80- to 
150-pS K channel. Basolateral K+ channels may also attenuate 
the increases in intracellular K+ that are generated by the 
basolateral Na+-K+-ATPase, thus maintaining transepithelial 
Na+-Cl− transport.224–226

REGULATION OF NA+-CL− TRANSPORT BY THE THICK 
ASCENDING LIMB
Activating Influences

Transepithelial Na+-Cl− transport by the TAL is regulated by 
a complex blend of competing neurohumoral influences, 
which are required to maintain the urinary concentrating 
capacity, and modulate salt balance. In particular, increases 
in intracellular cAMP tonically stimulate ion transport in the 
TAL; the stimulatory hormones and mediators that increase 
cAMP in this nephron segment include vasopressin, PTH, 
glucagon, calcitonin, and β-adrenergic activation (Fig. 6.9). 
These overlapping cAMP-dependent stimuli are thought to 
result in maximal baseline stimulation of transepithelial 
Na+-Cl− transport.94 For example, characterization of the in 
vivo effect of these hormones requires the prior simultaneous 
suppression or absence of circulating vasopressin, PTH, 
calcitonin, and glucagon.94 This baseline activation is, in turn, 

of Cl− ≫ Br− = NO3
− > I−.14,158,163 CLC-NKB/Barttin channels 

are activated by increases in extracellular Ca2+ and are pH 
sensitive, with activation at an alkaline extracellular pH and 
marked inhibition at an acidic pH.163 CLC-NKA/Barttin 
channels have similar pH and calcium sensitivities, but exhibit 
higher permeability to Br−.163 Strikingly, despite the consider-
able homology between the CLC-NKA/NKB proteins, these 
channels also differ considerably in pharmacologic sensitivity 
to various Cl− channel blockers, potential lead compounds 
for the development of paralog-specific inhibitors.215

Correlation between functional characteristics of CLC-K 
proteins with native Cl− channels in TAL has been problematic, 
but the recent knockout work discussed earlier has begun 
to provide clarity. Wide variation in single-channel conduc-
tance has been reported for basolateral Cl−channels in the 
TAL.216 This is perhaps due to the use of collagenase and 
other conditions for the preparation of tubule fragments 
and/or basolateral vesicles, manipulations that potentially 
affect channel characteristics.216 Notably, single-channel 
conductance has not been reported for CLC-NKB/Barttin 
channels because of the difficulty in expressing the channel 
in heterologous systems; this complicates the comparison of 
CLC-NKB/Barttin with native Cl− channels. Single-channel 
conductance has, however, been reported for the V166E 
mutant of rat CLC-K1, which alters gating of the channel 
without expected effects on single-channel amplitude – 
coexpression with Barttin increases the single-channel 
conductance of V166E CLC-K1 from about 7 to 20 pS.164 
Therefore, part of the reported variability in native single-
channel conductance may reflect heterogeneity in the 
interaction between CLC-NKB and/or CLC-NKA with Barttin. 
Regardless, a study using whole-cell recording techniques 
has suggested that CLC-K2 (CLC-NKB in humans) is the 
dominant Cl− channel in TAL and other segments of the 
distal nephron.216 Like CLC-NKB/Barttin, this native channel 
is highly Cl− selective, with considerably weaker conductance 
for Br− and I−; CLC-NKA/Barttin channels exhibit higher 
permeability to Br−.14,158,163,216 TAL cells from wild type mice 
exhibited a dominant basolateral chloride conductance of 
8 pS, which was entirely absent in Clc-k2 knockout mice. 
Coupled with the strong Bartter syndrome phenotype, these 
results support the key role of this chloride channel in driving 
transepithelial NaCl transport along the TAL.

Electroneutral K+-Cl− cotransport has also been implicated 
in transepithelial Na+-Cl− transport in the TAL (Fig. 6.14), 
functioning in K+-dependent Cl− exit at the basolateral 
membrane.14 The KCC KCC4 is thus expressed at the baso-
lateral membrane of medullary and cortical TAL, in addition 
to the macula densa.217,218 There is also functional evidence 
for K+-Cl− cotransport at the basolateral membrane of this 
section of the nephron. First, TAL cells contain a Cl−-
dependent NH4

+ transport mechanism that is sensitive to 
1.5-mmol/L furosemide and 10-mmol/L barium (Ba2+).219 
NH4

+ ions have the same ionic radius as K+ and are transported 
by KCC4 and other KCCs; KCC4 is also sensitive to Ba2+ and 
millimolar furosemide, consistent with the pharmacology of 
NH4

+-Cl− cotransport in the TAL.219–221 Second, to account 
for the effects on the transmembrane PD of basolateral Ba2+ 
and/or increased K+, it has been suggested that the basolateral 
membrane of TAL contains a Ba2+-sensitive K+-Cl− transporter; 
this is also consistent with the known expression of Ba2+-
sensitive KCC4 at the basolateral membrane.14,217,218,221 Third, 
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strain, in which the knocked-in mutant SPAK cannot be 
activated by upstream WNK kinases; these mice have a marked 
reduction in amino-terminal phosphorylation of both NKCC2 
and the thiazide-sensitive NCC, with associated salt-sensitive 
hypotension.242 The upstream WNK kinases appear to regulate 
SPAK and NKCC2 in a chloride-dependent fashion, phos-
phorylating and activating SPAK and the transporter in 
response to a reduction in intracellular chloride concentration 
(see the “Integrated Na+-Cl− and K+ Transport in the Distal 
Nephron” section).243

Of the two kinases, SPAK and OSR1, OSR1 is perhaps 
more critical for NKCC2 function in the TAL, because pan-
renal epithelial-specific deletion of Osr1 leads to decreased 
amino-terminal phosphorylation of NKCC2, and a Bartter 
syndrome-like phenotype.244 Several groups reported an 
increase in NKCC2 amino-terminal phosphorylation and an 
increased response to furosemide in Spak knockout mice, 
suggesting overcompensation by OSR1.245–247 By contrast, it 
was reported that baseline Na+ absorption by isolated perfused 
TAL segments is profoundly impaired in SPAK-deficient mice, 
though this may reflect an absence of activating factors present 
in vivo.248 Truncated species of SPAK protein have also been 
detected in kidney due to generation of alternative mRNA 
species that lack the amino-terminal kinase domain and to 
proteolytic degradation; both forms of SPAK function as 
dominant-negative inhibitors of the full-length kinase, abrogat-
ing the usual stimulatory effect on coexpressed NKCC2 or 
NKCC1.247,249 A lack of these species in SPAK knockout mice 
may also contribute to the increased amino-terminal NKCC2 
phosphorylation observed, due to the removal of a dominant-
negative effect on OSR1. Further complexity arises from the 
influence of the adaptor protein calcium-binding protein 
39 (CAB39, also called mouse protein-25, MO25250), which 
can both increase SPAK/OSR1-driven phosphorylation of 
NKCC2 and also activate SPAK/OSR1 directly, without the 
need for upstream phosphorylation by WNK kinases, by 
promoting dimerization of the kinases.250,251 WNK4 is also 
capable of direct interaction with CAB39, promoting activation 
of NKCC2 in the absence of SPAK or OSR1 expression.252 
In support of SPAK/OSR1-independent activation of NKCC2, 
in mice in which both SPAK and OSR1 were disrupted in 
the kidney, significant amino-terminal phosphorylation of 
NKCC2 was still detected. However, although this could reflect 
a direct effect of WNK4 on NKCC2, it could also result from 
phosphorylation by an as-yet unidentified kinase. Therefore, 
there appear to be at least three potential pathways for NKCC2 
activation—a WNK4-dependent SPAK/OSR1 pathway, a 
WNK4-independent SPAK/OSR1 pathway, and a SPAK/
OSR1-independent WNK4 pathway.252 It should be noted, 
however, that amino-terminal phosphorylation has a smaller 
effect on NKCC2 activity than it does on NKCC1 and NCC.238 
Thus changes in NKCC2 phosphorylation may not always 
reflect changes in NKCC2 activity.253

Vasopressin has also been shown to alter the stoichiometry 
of furosemide-sensitive apical Cl− transport in the TAL, from 
a K+-independent Na+-Cl− mode to the classic Na+-K+-2Cl− 
cotransport stoichiometry.3 In the absence of vasopressin, 
22Na+ uptake by mouse medullary TAL cells is not dependent 
on the presence of extracellular K+, whereas the addition of 
the hormone induces a switch to K+-dependent 22Na+ uptake. 
Underscoring the metabolic advantages of paracellular Na+ 
transport, which is critically dependent on the apical entry 

modulated by a number of negative influences, most promi-
nently prostaglandin E2 (PGE2) and extracellular Ca2+ (Fig. 
6.9). Other hormones and autocoids working through 
cGMP-dependent signaling, including NO, have potent 
negative effects on Na+-Cl− transport within the TAL.230 By 
contrast, Ang II has a stimulatory effect on Na+-Cl− transport 
within the TAL.231

Vasopressin is perhaps the most extensively studied positive 
modulator of transepithelial Na+-Cl− transport in the TAL. The 
TAL, with the exception of macula densa cells,232 expresses type 
2 vasopressin receptors (V2Rs) at both the mRNA and protein 
levels, and microdissected TALs respond to the hormone with 
an increase in intracellular cAMP.233 Vasopressin activates 
apical Na+-K+-2Cl− cotransport within minutes in perfused 
mouse TAL segments and also exerts a longer-term influence 
on NKCC2 expression and function. The acute activation of 
apical Na+-K+-2Cl− cotransport is achieved at least in part by 
the stimulated exocytosis of NKCC2 proteins, from subapical 
vesicles to the plasma membrane.234 This trafficking-dependent 
activation is abrogated by treatment of perfused tubules with 
tetanus toxin, which cleaves the vesicle-associated membrane 
proteins VAMP-2 and VAMP-3.234 As V2Rs are prominently 
expressed along the collecting duct, as well as along the 
TAL and DCT, it has been difficult to separate the roles of 
vasopressin signaling in the two sites. This limitation was 
recently overcome by introducing a dominant-negative V2R 
mutant into TAL cells of rat. The rats demonstrated polyuria 
and defective urinary concentration, as well as hypercalciuria, 
reminiscent of mild Bartter syndrome.232 The absence of V2R 
expression by macula densa cells was suggested to maintain 
TGF independent of vasopressin signaling.

Activation of NKCC2 by vasopressin is also associated with 
the phosphorylation of a cluster of amino-terminal threonines 
in the transporter protein; treatment of rats with the V2 agonist 
desmopressin (DDAVP) induces phosphorylation of these 
residues in vivo, as measured with a phosphospecific anti-
body.234 These threonine residues are substrates for SPAK 
(STE20/SPS1-related proline/alanine-rich kinase) and OSR1 
(oxidative stress–responsive kinase 1), first identified by 
Gagnon and colleagues as key regulatory kinases for NKCC1 
and other cation-chloride cotransporters.235 SPAK and OSR1 
are in turn activated by upstream WNK (with no lysine [K] 
kinases), such that SPAK or OSR1 requires coexpression with 
WNK4 to activate NKCC1 fully, at least in in vitro systems.235 
By contrast, two reports of Wnk4 knockout mice suggested 
that WNK4 does not regulate NKCC2 in vivo.236,237 Regardless, 
expression of WNK3 in Xenopus oocytes results in activatory 
phosphorylation of the amino-terminal threonines in NKCC2 
that are phosphorylated in TAL cells after treatment with 
DDAVP.234,238

The amino-terminal phosphorylation of NKCC2 by SPAK 
and/or OSR1 kinases appears to be important for activity of 
the transporter in the native TAL. The amino-terminus of 
NKCC2 contains a predicted binding site for SPAK,239 proximal 
to the sites of regulatory phosphorylation; the analogous 
binding site is required for activation of the NKCC1 cotrans-
porter.240 SPAK also requires the sorting receptor SORLA 
(sorting protein-related receptor with A-type repeats) for 
proper trafficking within TAL cells, such that targeted deletion 
of Sorla results in a marked reduction in amino-terminal 
NKCC2 phosphorylation.241 The role of the upstream WNK 
kinases is illustrated by the phenotype of a “knock-in” mouse 
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agonist BRL37344 increasing NKCC2 phosphorylation ex 
vivo in wild type but not β3-adrenergic receptor knockout 
mice, which also displayed a mild Na+- and K+-wasting  
phenotype.261

Inhibitory Influences

The stimulation of transepithelial Na+-Cl− transport by cAMP-
generating hormones (e.g., vasopressin, PTH) is modulated 
by a number of negative neurohumoral influences (Fig. 6.9).94 
In particular, extracellular Ca2+ and PGE2 exert dramatic 
inhibitory effects on ion transport by this and other segments 
of the distal nephron through a plethora of synergistic 
mechanisms. Extracellular Ca2+ and PGE2 both activate the 
Gi inhibitory G protein in TAL cells, opposing the stimulatory, 
Gs-dependent effects of vasopressin on intracellular levels of 
cAMP.262,263 Extracellular Ca2+ exerts its effect through the 
CaSR, which is heavily expressed at the basolateral membrane 
of TAL cells; PGE2 primarily signals through EP3 prostaglandin 
receptors.94,263,264 The increases in intracellular Ca2+ due to 
the activation of the CaSR and other receptors directly inhibit 
cAMP generation by a Ca2+-inhibitable adenylate cyclase that 
is expressed in the TAL, accompanied by an increase in 
phosphodiesterase-dependent degradation of cAMP (Fig. 
6.16).263,265 These negative stimuli likely inhibit baseline 
transport in the TAL; abrogation of the negative effect of 
PGE2 with indomethacin results in a considerable increase 
in abundance of the NKCC2 protein, whereas targeted dele-
tion of the CaSR in mouse TAL activates NKCC2 via increased 
amino-terminal phosphorylation.189,209

Activation of the CaSR and other receptors in the TAL 
also results in the downstream generation of arachidonic acid 
metabolites, with potent negative effects on Na+-Cl− transport 
(Fig. 6.16). Extracellular Ca2+ thus activates PLA2 in TAL 
cells, leading to the liberation of arachidonic acid. This 
arachidonic acid is in turn metabolized by cytochrome P450 
ω-hydroxylase to 20-HETE or by COX-2 to PGE2; cytochrome 
P450 ω-hydroxylation generally predominates in response 
to activation of the CaSR in TAL.263 20-HETE has very 
potent negative effects on apical Na+-K+-2Cl− cotransport, 
apical K+ channels, and the basolateral Na+-K+-ATPase.94,263 
PLA2-dependent generation of 20-HETE also underlies 
in part the negative effect of bradykinin and Ang II on 
Na+-Cl− transport.94,263 Activation of the CaSR also induces 
tumor necrosis factor-α expression in the TAL, which 
activates COX-2 and thus generation of PGE2 (Fig. 6.16); 
this PGE2 in turn results in additional inhibition of Na+-Cl−  
transport.263

The relative importance of the CaSR in the regulation of 
Na+-Cl− transport by the TAL is dramatically illustrated by 
the phenotype of a handful of patients with gain-of-function 
mutations in this receptor. In addition to suppressed PTH 
and hypocalcemia, the usual phenotype caused by gain-of-
function mutations in the CaSR (autosomal dominant 
hypoparathyroidism), these patients manifest a hypokalemic 
alkalosis, polyuria, and increases in circulating renin and 
aldosterone.266,267 Therefore, the persistent inhibition of 
Na+-Cl− transport in the TAL by these overactive mutants of 
the CaSR causes a rare subtype of Bartter syndrome, type V, 
in the genetic classification of this disease.263

Activation of the CaSR also affects claudin expression in 
TAL cells via downregulation of microRNAs, leading to 
PTH-independent hypercalciuria (see Chapter 7).206–208,268

of K+ via Na+-K+-2Cl− cotransport (see previously), vasopressin 
accomplishes a doubling of transepithelial Na+-Cl− transport 
without affecting 22Na+ uptake (an indicator of transcellular 
Na+-Cl− transport); this doubling in transepithelial absorption 
occurs without an increase in O2 consumption, highlighting 
the energy efficiency of ion transport by the TAL.3 The 
mechanism of this shift in the apparent stoichiometry of 
NKCC2 is not completely clear. However, splice variants of 
mouse NKCC2 with a novel, shorter carboxyl-terminus have 
been found to confer sensitivity to cAMP when coexpressed 
with full-length NKCC2.254 Notably, these shorter splice variants 
appear to encode furosemide-sensitive, K+-independent NCCs 
when expressed alone in Xenopus oocytes.255 The in vivo 
relevance of these phenomena is not clear, however, nor is 
it known whether similar splice variants exist in species other 
than mouse.

In addition to its acute effects on NKCC2, the apical 
Na+-K+-2Cl− cotransporter, vasopressin increases transepithelial 
Na+-Cl− transport by activating apical K+ channels and baso-
lateral Cl− channels in the TAL.94,233 Details have yet to emerge 
of the regulation of the basolateral CLC-K2/Barttin Cl− 
channel complex by vasopressin, cAMP, and related pathways. 
However, the apical K+ channel ROMK is directly phosphory-
lated by PKA on three serine residues (S25, S200, and S294 
in the ROMK2 isoform). Phosphorylation of at least two of 
these three serines is required for detectable K+ channel 
activity in Xenopus oocytes; mutation of all three serines to 
alanine abolishes phosphorylation and transport activity, and 
all three serines are required for full channel activity.256 These 
three phospho acceptor sites have distinct effects on ROMK 
activity and expression.257 Phosphorylation of the amino-
terminal S25 residue appears to regulate trafficking of the 
channel to the cell membrane, without effects on channel 
gating; this serine is also a substrate for the SGK1 kinase, 
which activates the channel via an increase in expression at 
the membrane.257 By contrast, phosphorylation of the two 
carboxyl-terminal serines modulates open channel probability 
via effects on pH-dependent gating and on activation by the 
binding of phosphatidylinositol 4,5-bisphosphate (PIP2) to 
the carboxyl-terminal domain of the channel.258,259

Vasopressin also has considerable long-term effects on 
transepithelial Na+-Cl− transport by the TAL. Sustained 
increases in circulating vasopressin result in marked hyper-
trophy of medullary TAL cells, accompanied by a doubling 
in baseline active Na+-Cl− transport.233 Water restriction or 
treatment with DDAVP also results in an increase in abundance 
of the NKCC2 protein in rat TAL cells. Consistent with a 
direct effect of vasopressin-dependent signaling, expression 
of NKCC2 is reduced in mice with a heterozygous deletion 
of the Gs stimulatory G protein, through which the V2R 
activates cAMP generation.233 Increases in cAMP are thought 
to induce transcription of the Slc12a1 gene that encodes 
NKCC2 directly, given the presence of a cAMP-response 
element in the 5′ promoter.233,234 Abrogation of the tonic 
negative effect of PGE2 on cAMP generation with indometha-
cin also results in a considerable increase in abundance of 
the NKCC2 protein.233 Finally, in addition to these effects 
on NKCC2 expression, water restriction or DDAVP treatment 
increases abundance of the ROMK protein at the apical 
membrane of TAL cells.260

Recently, a role for β3-adrenergic receptors in activation 
of NKCC2 was proposed, with administration of the selective 
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transgenic mice leads to distal tubular injury, with segmental 
dilation and an increased tubular cast area relative to wild 
type mice; similar lesions are increased in frequency in older 
adults homozygous for susceptibility variants in UMOD when 
compared with those homozygous for protective variants.273

Uromodulin-transgenic mice also manifest salt-sensitive 
hypertension due to activation of the SPAK kinase and activat-
ing amino-terminal phosphorylation of NKCC2. Human 
hypertensive individuals homozygous for susceptibility variants 
in UMOD appear to have an analogous phenotype, with 
exaggerated natriuresis in response to furosemide compared 
with those who are homozygous for protective variants.273 
These findings are compatible with the stimulatory effects 
of uromodulin on NKCC2 and ROMK—that is, a net gain 
of function in TAL transport.270,271 Uromodulin excretion 
also appears to parallel transport activity of the TAL, with 
common polymorphisms in the KCNJ1 gene encoding ROMK 
and two genes involved in regulating SPAK and OSR1 kinase 
activity (SORL1 and CAB39).274

ANATOMY OF THE DISTAL NEPHRON

The distal nephron that extends beyond the TAL is the final 
arbiter of urinary Na+-Cl− excretion and a critical target for 
natriuretic and antinatriuretic stimuli. The understanding 
of the cellular organization and molecular phenotype of the 
distal nephron continues to evolve and merits a brief review 
in this context. The DCT begins at a variable distance after 
the macula densa, with an abrupt transition between NKCC2-
positive cortical TAL cells and DCT cells that express the 
thiazide-sensitive NCC. Considerable progress has been made 
in the phenotypic classification of cell types in the DCT and 
adjacent nephron segments, based on the expression of an 

Uromodulin

TAL cells are unique in expressing the membrane-bound, 
glycosylphosphatidylinositol (GPI)–anchored protein, uro-
modulin (Tamm-Horsfall glycoprotein), which is not expressed 
by macula densa cells or the downstream DCT. Uromodulin 
is released by proteolytic cleavage at the apical membrane 
and is secreted as the most abundant protein in normal 
human urine (20 to 100 mg/day).269 Uromodulin has a host 
of emerging roles in the physiology and biology of the TAL. 
A high-salt diet increases uromodulin expression, suggesting 
a role in ion transport.269 In this regard, uromodulin facilitates 
membrane trafficking and function of the NKCC2 protein, 
with similar effects on apical ROMK protein.270,271

Autosomal dominant mutations in the UMOD gene encod-
ing uromodulin are associated with medullary cystic disease 
type 2 and familial juvenile hyperuricemic nephropathy. 
Now referred to as uromodulin-associated kidney disease, 
this syndrome includes progressive tubulointerstitial damage 
and chronic kidney disease (CKD), variably penetrant hyper-
uricemia and gout, and variably penetrant renal cysts that 
are typically confined to the corticomedullary junction.269 
The causative mutations tend to affect conserved cysteine 
residues within the amino-terminal half of the protein, leading 
to protein misfolding and retention within the endoplasmic 
reticulum.269,272 More common genetic variants in the UMOD 
promoter have recently been linked in genomewide associa-
tion studies with a risk of CKD and hypertension.269 These 
susceptibility variants have a high frequency (≈0.8) and confer 
an approximately 20% higher risk for CKD and a 15% risk 
for hypertension.273 These polymorphisms are associated 
with more abundant renal uromodulin transcript and higher 
urinary uromodulin excretion due to activating effects on 
the UMOD promoter.273,274 Overexpression of uromodulin in 
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Although primarily contiguous with the DCT, CNT cells 
share several traits with principal cells of the CCD, including 
apical expression of ENaC and ROMK, the K+ secretory 
channel; the capacity for Na+-Cl− reabsorption and K+ secretion 
in this nephron segment is as much as 10 times higher than 
that of the CCD.279 Intercalated cells are the minority cell 
type in the distal nephron, emerging within the DCT and 
CNT and extending into the early inner medullary collecting 
duct (IMCD).280 Three subtypes of intercalated cells have 
been defined, based on differences in the subcellular distribu-
tion of the H+-ATPase and the presence or absence of the 
basolateral AE1 Cl−-HCO3

− exchanger. Type A intercalated 
cells extrude protons via an apical H+-ATPase in series with 
basolateral AE1; type B intercalated cells secrete HCO3

− and 
OH− via an apical anion exchanger (SLC26A4 or pendrin) 
in series with basolateral H+-ATPase.280 In rodents, the most 
prevalent subtype of intercalated cells in the CNT is the 
non-A, non-B intercalated cell, which possesses an apical 
Cl−-HCO3

− exchanger (SLC26A4 or pendrin) along with apical 
H+-ATPase.280 Although intercalated cells play a dominant 
role in acid–base homeostasis, Cl− transport by type B inter-
calated cells performs an increasingly appreciated role in 
distal nephron Na+-Cl− transport (see the “Connecting Tubules 
and the Cortical Collecting Duct: Cl− Transport” section).

The OMCD encompasses two separate subsegments cor-
responding to the outer and inner stripes of the outer 
medulla, OMCDo and OMCDi, respectively. OMCDo and 
OMCDi contain principal cells with apical amiloride-sensitive 
Na+ channels (ENaCs); however, the primary role of this 
nephron segment is renal acidification, with a particular 
dominance of type A intercalated cells in OMCDi.6,281 The 
OMCD may also play a role in K+ reabsorption via the activity 
of apical H+-K+-ATPase pumps,282–284 although deletion of this 
transport protein does not alter the ability to conserve K+ 
substantially.285

Finally, the IMCD begins at the boundary between the 
outer and inner medulla and extends to the tip of the papilla. 
The IMCD is arbitrarily separated into three equal zones, 
denoted IMCD1, IMCD2, and IMCD3; at the functional level, 
an early IMCD (IMCDi) and a terminal portion (IMCDt) 
can be appreciated.6 The IMCD plays a particularly prominent 
role in vasopressin-sensitive water and urea transport.6 The 
early IMCD contains principal cells and intercalated cells; 
all three subsegments (IMCD1–3) express apical ENaC 
protein, albeit considerably weaker expression than in the 
CNT and CCD.286 The roles of the IMCD and OMCD in 
Na+-Cl− homeostasis have been more elusive than those of 
the CNT and CCD; however, to the extent that ENaC is 
expressed in the IMCD and OMCD, homologous mechanisms 
are expected to function in Na+-Cl− reabsorption by the CNT, 
CCD, OMCD, and IMCD segments.

DISTAL CONVOLUTED TUBULE
Mechanisms of Na+-Cl− Transport in the Distal 
Convoluted Tubule

Earlier micropuncture studies that did not distinguish between 
early and late DCT indicated that this nephron segment 
reabsorbs about 10% of filtered Na+-Cl−.5,287 The apical absorp-
tion of Na+ and Cl− by the DCT is mutually dependent; ion 
substitution does not affect transepithelial voltage, suggesting 
electroneutral transport.288 The absorption of Na+ by perfused 

expanding list of transport proteins and other markers.275 
This analysis has revealed considerable differences in the 
organization of the DCT, CNT, and CCD in rodent, rabbit, 
and human kidneys. In general, rabbit kidneys are unique 
in the axial demarcation of DCT, CNT, and CCD segments, 
at both a molecular and morphologic level; the organization 
of the DCT to CCD is considerably more complex in other 
species, with boundaries that are much less absolute.275 
Notably, however, the overall repertoire of transport proteins 
expressed does not vary among these species; what differs is 
the specific cellular and molecular organization of this 
segment of the nephron.

The early DCT (DCT1) of mouse kidney expresses NCC 
and a specific marker, parvalbumin, which also distinguishes 
the DCT1 from the adjacent cortical TAL (Fig. 6.17).276 
Targeted deletion of parvalbumin in mice reveals that this 
intracellular Ca2+-binding protein is required for full activity 
of NCC in the DCT.277 Cells of the late DCT (DCT2) in mice 
coexpress NCC with proteins involved in transcellular Ca2+ 
transport, including the apical calcium channel, TRPV5 
(previously ECaC1), the cytosolic calcium-binding protein 
calbindin D28K, and the basolateral Na+-Ca2+ exchanger 
NCX1.276 NCC is coexpressed with ENaC in the late DCT2 
of mouse, where the two proteins physically and may function-
ally interact,278 with robust expression of ENaC continuing 
in the downstream CNT and CCD.276 By contrast, rabbit kidney 
does not have a DCT1 or DCT2 and exhibits abrupt transitions 
between NCC- and ENaC-positive DCT and CNT segments, 
respectively.275 Human kidneys that have been studied thus 
far exhibit expression of calbindin D28K all along the DCT 
and CNT, extending into the CCD; however, the intensity of 
expression varies at these sites. Approximately 30% of cells 
in the distal convolution of human kidney express NCC, with 
70% expressing ENaC (CNT cells); ENaC and NCC overlap 
in expression at the end of the human DCT segment. Finally, 
cells of the early CNT of human kidneys express ENaC in 
the absence of aquaporin-2, the apical vasopressin-sensitive 
water channel.275

DCT1 DCT2 CNT CCD

NCC
ENaC

PV

TRPM6

TRPV5
TRPV6
NCX1
PMCA

CBP-D28K

Fig. 6.17  Schematic representation of the segmentation of the mouse 
distal nephron and distribution and abundance of Na+-, Ca2+-, and 
Mg2+-transporting proteins. CBP-D28K, calbindin-D28K; CCD, cortical 
collecting duct; CNT, connecting tubule; DCT1 and DCT 2, distal 
convoluted tubules 1 and 2, respectively; ENaC, epithelial Na+ channel; 
NCC, thiazide-sensitive Na+-Cl− cotransporter; NCX1, Na+-Ca2+ 
exchanger; PMCA, plasma membrane Ca2+-ATPase; PV, parvalbumin; 
TRPM6, apical Mg2+ entry channel; TRPV5 and TRPV6, apical Ca2+ 
entry channels.276,614,615 
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in ultrastructural appearance.295,296 Similarly, thiazide treatment 
promotes marked apoptosis of the proximal part of DCT, 
suggesting that thiazide-sensitive Na+-Cl− cotransport plays 
an important role in modulating growth and regression of 
this nephron segment.297

Coexpression of NCC and ENaC occurs in the “late DCT” 
(DCT2) and CNT segments of many species, either in the 
same cells or in adjacent cells in the same tubule.275 Notably, 
ENaC is the primary Na+ transport pathway of CNT and CCD 
cells, rather than DCT. There is, however, evidence for other 
Na+ and Cl− entry pathways in DCT cells. In particular, the 
Na+-H+ exchanger NHE2 (SLC9A2) is coexpressed with NCC 
at the apical membrane of rat DCT cells.298 As in the PT, 
perfusion of the DCT with formate and oxalate stimulates 
DIDS-sensitive Na+-Cl− transport that is distinct from the 
thiazide-sensitive transport mediated by NCC.50 Therefore 
a parallel arrangement of Na+-H+ exchange and Cl− anion 
exchangers may play an important role in electroneutral 
Na+-Cl− absorption by the DCT (Fig. 6.18). The Na+-H+ 
antiporter NHA2 (SLC9B2) has been localized to the DCT, 
and the anion exchanger SLC26A6 may be expressed in 
DCT cells; NHE2, NHA2, and SLC26A6 are thus candidate 
mechanisms for this alternative pathway of DCT Na+-Cl−  
absorption.298–300

At the basolateral membrane, as in other nephron seg-
ments, Na+ exits via Na+-K+-ATPase; bearing in mind the 
considerable caveats in morphologic identification of the 
DCT, this nephron segment appears to have the highest 
Na+-K+-ATPase activity of the entire nephron (Fig. 6.3).17,275 
Basolateral membranes of DCT cells in both rabbit and 
mouse express the KCC KCC4, a potential exit pathway for 

DCT segments is also inhibited by chlorothiazide, localized 
proof that this nephron segment is the target for thiazide 
diuretics.289 Similar thiazide-sensitive Na+-Cl− cotransport exists 
in the urinary bladder of winter flounder, the species in which 
the thiazide-sensitive NCC was first identified by expression 
cloning.290 Functional characterization of rat NCC indicates 
very high affinities for both Na+ and Cl− (Michaelis–Menten 
constants of 7.6 ± 1.6 and 6.3 ± 1.1 mmol/L, respectively); 
equally high affinities had previously been obtained by 
Velázquez and associates in perfused rat DCT.288,291 The 
measured Hill coefficients of rat NCC are about 1 for each 
ion, consistent with electroneutral cotransport.291

NCC expression is the defining characteristic of the DCT 
(Fig. 6.18).275 There is also evidence for expression of this 
transporter in osteoblasts, peripheral blood mononuclear 
cells, and intestinal epithelium; however, the functional 
significance of expression reported for these sites remains 
unclear.168,292 The human SLC12A3 gene encodes three 
isoforms (NCC1, NCC2, and NCC3), but only NCC3 has 
been studied extensively, because NCC1 and NCC2 are not 
expressed in rats or mice.293 These isoforms may undergo 
differential regulation. For example, NCC1 and NCC2 contain 
a region in their carboxyl-termini that is absent from NCC3 
and contain a serine (S811), which undergoes phosphorylation 
and contributes to cotransporter activity.294 Loss-of-function 
mutations in the SLC12A3 gene encoding human NCC cause 
Gitelman syndrome, familial hypokalemic alkalosis with 
hypomagnesemia, and hypocalciuria (see Chapter 44). Mice 
with homozygous deletion of the Slc12a3 gene encoding NCC 
exhibit marked morphologic defects in the early DCT, with 
a reduction in the absolute number of DCT cells and changes 
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Ang II. DCT cells express AT1 receptors, and Ang II activates 
NCC, through a mechanism that requires the kinase WNK4 
(see discussion later).237,312–316

Aldosterone has also been suggested as a factor that 
modulates NCC, which would make the DCT part of the 
aldosterone-sensitive distal nephron. Aldosterone, given to 
adrenalectomized rats, activated NCC.317 Dietary salt restriction 
and exogenous mineralocorticoids were also shown to increase 
the abundance of NCC, and phosphorylated NCC.318 DCT 
cells, at least in rats, were shown to express 11 beta hydroxy
steroid dehydrogenase type 2 (11β-HSD2),319 at least at low 
levels, and its deletion from mice resulted in a phenotype 
that includes hypertrophy of DCT cells, and increases in the 
abundance of phosphorylated NCC.320 Aldosterone has been 
reported to enhance NCC activity acutely in cultured DCT 
cells.321 Roy and colleagues identified two alternatively spliced 
exons in WNK1 that contain PY motifs, which bind the E3 
ubiquitin ligase NEDD4-2. These motifs were suggested to 
mediate NCC activation by aldosterone.322

It was only the recognition that dietary potassium intake 
is a powerful NCC and DCT regulatory factor that has modi-
fied the view of aldosterone’s role. Vallon and colleagues 
documented that dietary potassium deprivation increased 
the abundance of phosphorylated NCC in mice.323 Two groups 
subsequently showed that low potassium intake can increase 
NCC abundance and activity even in the setting of high salt 
intake, and another showed that high potassium intake can 
suppress NCC, even when dietary salt intake is low.324 Thus 
it appears that the effects of potassium predominate over 
those of sodium. These effects of high potassium intake raised 
the possibility that aldosterone may not be playing a dominant 
role in NCC regulation, as high potassium diets are associated 
with high aldosterone secretion and low NCC activity.324 
Increasingly, it has become apparent that DCT cells, and 
NCC, are exquisitely sensitive to plasma [K+]. These effects 
occur very rapidly, as a short-term gavage with high potassium 
solution leads to rapid dephosphorylation of the NCC.325 
Similarly, raising the plasma potassium concentration, either 
by potassium infusion,326 by administering the sodium channel 
blocking drug amiloride,327 or by deleting Na+ channels,328 
strikingly reduces the abundance of phosphorylated NCC. 
These effects on the abundance of phosphorylated NCC are 
functionally relevant, as several groups have documented 
that directional changes in pNCC abundance, in the setting 
of potassium challenge, are associated with concordant 
changes in thiazide-sensitive NaCl excretion.329 The mecha-
nisms involved in the potassium effect will be discussed later, 
with the discussion of WNK kinases.

The recognition that potassium plays a dominant role in 
regulating NCC and the DCT suggested that some effects 
observed during aldosterone infusion might be secondary 
to induced potassium imbalance. Mice with nephron-specific 
disruption of the mineralocorticoid receptor (MR) did exhibit 
low NCC activity, as would be expected if aldosterone stimu-
lates NCC directly, but NCC could be stimulated to normal 
levels by dietary K+ restriction, proving that it was effects of 
MR deletion on potassium balance that were responsible for 
changes in NCC.329,330 A second group showed that in mice 
with deletion of MR in approximately 20% of renal tubule 
cells, which allowed side-by-side comparison of cells in the 
same segment, no differences in NCC abundance and 
phosphorylation were observed between DCT cells that did 

Cl−.218,301 However, several lines of evidence have indicated 
that Cl− primarily exits DCT cells via basolateral Cl− chan-
nels. First, the basolateral membrane of rabbit DCT contains 
Cl− channel activity, with functional characteristics similar to 
those of CLC-K2.216,302 Second, CLC-K2 protein is expressed at 
the basolateral membrane of DCT and CNT cells. Although 
mRNA for CLC-K1 can also be detected by RT-PCR of 
microdissected DCT segments,158,214 recent data show that 
deletion of CLC-K2 from mice leads to a loss of response 
to furosemide, and a markedly blunted one to thiazide, 
implicating this channel in chloride reabsorption along both 
the TAL and the DCT.162 Finally, loss-of-function mutations 
in CLC-NKB, the human ortholog of CLC-K2, cause classic 
Bartter syndrome; this Bartter subtype has a phenotype that is 
typically intermediate between Bartter syndrome type I, and 
Gitelman syndrome, consistent with loss of function of DCT  
segments.160,162,303

K+ channels at the basolateral membrane of DCT cells 
play a critical role in the function of this nephron segment. 
Cell-attached patches in basolateral membranes of microdis-
sected DCTs detect an inward rectifying K+ channel, with 
characteristics similar to those of heteromeric KIR4.1/KIR5.1 
and KIR4.2/KIR5.1 channels.228,304–306 Basolateral membranes 
of the DCT express immunoreactive KIR4.1 and KIR5.1 
protein, and DCT cells express KIR4.2 mRNA.228,304–306 Patients 
with loss-of-function mutations in the KCNJ10 gene that  
encodes KIR4.1 develop a syndrome encompassing epilepsy, 
ataxia, sensorineural deafness, and tubulopathy (EAST or 
SeSAME syndrome).228,307 The associated tubulopathy includes 
hypokalemia, metabolic alkalosis, hypocalciuria, and hypo-
magnesemia.228,307 Mice in which Kcnj10 has been deleted 
following development demonstrate hypokalemic alkalosis 
with hypocalciuria, and suppression of NCC abundance,308 
indicating a key role of this channel in supporting trans-
epithelial NaCl transport.228,308,309 While KIR4.1 activity is 
detected in the TAL, KIR4.1 disruption in mice has no sig-
nificant effect on TAL membrane potential or NKCC2 
expression, so the physiological relevance of this is unclear.310 
By contrast, Kcnj10 disruption markedly depolarizes the 
basolateral cell membrane of DCT cells, indicating that these 
K+ channels play a key role in setting the membrane potential 
in the DCT.308,311 In addition to sensing the membrane 
potential, the KIR4.1/KIR5.1 channels at the basolateral 
membrane of DCT cells are hypothesized to function in 
basolateral K+ recycling, maintaining adequate Na+-K+-ATPase 
activity for Na+-Cl− absorption and other aspects of DCT 
function. Notably, the CaSR coassociates with KIR4.1 and 
KIR4.2 proteins and inhibits their activity, providing a 
mechanism for the dynamic modulation of Na+-Cl−, calcium, 
and magnesium transport by the DCT.305

Regulation of Na+-Cl− Transport in the Distal 
Convoluted Tubule

Our understanding of factors that regulate solute transport 
by the DCT has advanced rapidly, during the past 5 years. 
Studies performed in the 1990s showed that dietary NaCl 
deprivation activates thiazide-sensitive NaCl transport along 
the DCT.5 When distal salt delivery was increased further, by 
administering loop diuretics continuously and administering 
saline, as drinking solution, additional increases in transport 
capacity were observed, together with considerable hyper-
trophy of DCT cells. One contributor to this phenotype is 
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Furthermore, FHHt behaves like a gain-of-function in NCC 
and/or the DCT in that treatment with thiazides typically 
results in resolution of the entire syndrome332; however, simple 
transgenic overexpression of NCC in DCT cells does not 
replicate the phenotype in mice, indicating specific effects 
of the mutant WNK1 and WNK4 alleles.332,333

WNK kinases have pleiotropic effects, and initial experi-
ments involving WNK expression in heterologous systems 
have often produced results that now seem contradictory. 
Yet, a consensus view of the predominant effects of WNK 
kinases in regulating NCC has begun to emerge. According 
to a highly simplified scheme (Fig. 6.19), WNK kinases activate 
the downstream kinases SPAK and/or OSR1 by binding to 
them along their conserved carboxyl-terminal domains, and 
directly phosphorylating them. When so activated, and 
enhanced by interactions with MO25 (Cab39),250 these second-
ary kinases bind to and activate NCC by enhancing phos-
phorylation of key residues in the NCC amino terminal 
cytoplasmic domain.334

Mutations in both WNK1 and WNK4 can cause FHHt. 
Intronic mutations in WNK1 enhance the expression of a 
full-length kinase-active form of WNK1 along the DCT, where 
it is normally expressed only at low levels335; WNK4-point 
mutations cluster around an acid-rich conserved region of 

and did not express mineralocorticoid receptors; dietary Na+ 
restriction upregulated NCC to similar extent in both types 
of cell.331 By contrast, along the collecting duct ENaC expres-
sion and apical membrane localization were not detected 
on control diet nor in response to dietary Na+ restriction in 
knockout cells. Finally, studies in adult mice with inducible 
disruption of the MR target α-ENaC showed that a high Na+/
low K+ diet, which normalized plasma [K+], also normalized 
the reduced abundances of total and phosphorylated NCC 
seen on a normal diet.328 In summary, the preponderance 
of evidence suggests that the effects of plasma [K+] are 
dominant, and that aldosterone plays only a modifying role 
in regulating NCC; the effects of potassium on NCC and 
aldosterone on ENaC appear to comprise a potassium switch 
in the kidney (see later).

A central role in the regulation of DCT Na+ and Cl– trans-
port is played by WNK1 and WNK4, key regulatory kinases 
in the distal nephron that were initially identified as two of 
the causative genes for familial hyperkalemic hypertension 
(FHHt; also known as pseudohypoaldosteronism type II or 
Gordon syndrome). FHHt is in every respect the mirror image 
of Gitelman syndrome, encompassing hypertension, hyper-
kalemia, hyperchloremic metabolic acidosis, suppressed 
plasma renin activity and aldosterone, and hypercalciuria.332 
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complex that targets the WNKs for degradation.339,349,350 
Mutations in the CUL3 and KLHL3 genes also cause FHHt 
and account for the majority of cases. Disease-associated 
mutations in KLHL3 abrogate binding to WNK4 and vice 
versa.339 In turn, disease-associated mutations in CUL3 may 
deplete levels of KLHL3, preventing WNK degradation.351 
Physiologically, phosphorylation of KLHL3 by PKC, down-
stream of Ang II, also abrogates the interaction between 
KLHL3 and WNK4, leading to NCC activation.352 More 
information about the mechanisms of FHHt, and the roles 
of regulatory proteins can be found in Chapters 17 and 44.

The various mechanistic models for the regulation of NCC 
by upstream WNK1, WNK4, and the SPAK-OSR1 kinases have 
recently been reviewed; interactions between WNK4 and both 
WNK3 and SGK1 also contribute to the complexity, as do 
CUL3 and KLH3.339,349–356 Competing divergent mechanisms 
can be reconciled by the likelihood that the physiologic 
context determines whether WNK4 will have an activating 
or inhibitory effect on NCC. For example, the activation of 
NCC by the Ang II receptor type 1 appears to require the 
downstream activation of SPAK by WNK4.315,357 Changes in 
circulating and local levels of Ang II, aldosterone, vasopressin, 
and K+ are thus expected to have different and often opposing 
effects on the activity of NCC in the DCT (see also Fig. 6.19 
and the “Integrated Na+-Cl− and K+ Transport in the Distal 
Nephron” section).315,353,357–361

WNK kinases exhibit effects in expression systems that 
may seem anomalous, but which likely reflect their pleiotropic 
properties. In Xenopus oocytes, for example, WNK4 can inhibit 
NCC, through its carboxyl-terminal domain, which binds to 
protein phosphatase 1.362 It now appears that this effect results 
from WNK4 inhibiting endogenously expressed WNK kinases 
in the setting of high intracellular chloride concentrations.363 
WNK4 coexpression with NCC reduces transporter expression 
at the membrane of both Xenopus oocytes and mammalian 
cells, suggesting a prominent effect on membrane traffick-
ing.353,357 The WNK4 kinase activates lysosomal degradation 
of the transporter protein, rather than inducing dynamin- and 
clathrin-dependent endocytosis.364,365 This occurs through 
effects of WNK4 on the interaction of NCC with the lysosomal 
targeting receptor sortilin and AP-3 adaptor complex.364,365 
Dynamin-dependent endocytosis of NCC is induced by 
ERK1/2 phosphorylation via activation of H-Ras, Raf, and 
MEK1/2, resulting in ubiquitination of NCC and endocytosis 
of the transporter, suggesting a significant role in the down-
regulation of NCC by PTH.366–368 Ubiquitination of NCC is 
catalyzed by the ubiquitin-ligase NEDD4-2, causing down-
regulation of NCC.321 NCC is highly ubiquitinated at multiple 
specific sites, but it is unclear whether ubiquitination at all 
of these sites involves NEDD4-2.369 Ubiquitination at these 
different sites has different effects on NCC, either modulating 
its endocytosis or degradation. The full implications of these 
effects observed in cell culture systems regarding in vivo 
behavior awaits additional study.

CONNECTING TUBULES AND THE CORTICAL 
COLLECTING DUCT
Apical Na+ Transport

The apical membrane of CNT cells and principal cells 
contain prominent Na+ and K+ conductances, without a 
measurable apical conductance for Cl−.216,279,370,371 The entry 

the protein, or near the carboxyl-terminal domain.336 These 
mutations disrupt WNK binding to adaptor proteins that are 
essential for WNK degradation (see later).337–339 Thus both 
WNK mutant forms of FHHt result in increased abundance 
of WNKs along the DCT.

The WNK1 and WNK4 proteins are coexpressed within 
the distal nephron in DCT and CCD cells, where they both 
localize to the cytoplasm (diffusely, and also in punctate 
structures) and apical membrane.340,341 Although both WNK4 
and WNK1 can stimulate NCC activity in expression systems, 
only deletion of WNK4 has been shown to reduce NCC activity 
in mice.236,237 In mice in which an FHHt-like phenotype has 
been generated by mutation of the protein KLHL3 (see later), 
increased WNK1 abundance does not compensate for deletion 
of WNK4, suggesting a key role for WNK4.33 Generation of 
mice with WNK1 deletion specifically in the kidney may shed 
more light on its contribution to NCC regulation in vivo.

WNKs, especially WNK4, appear to be sensitive to inhibition 
by chloride,342,343 so that when intracellular chloride concentra-
tion is low, the stimulatory effect is maximal; when intracellular 
chloride concentration is higher, there is less stimulation.344 
For WNK1, chloride binds to the catalytic site of the kinase 
and inhibits autophosphorylation and activation of the 
kinase.342 This chloride binding has a major role in the 
potassium-sensing function of DCT cells. Reduction in potas-
sium intake and/or hypokalemia lead to reduced basolateral 
K+ concentration in the DCT; the subsequent hyperpolariza-
tion is dependent on basolateral KIR4.1-containing K+ 
channels.308,311,327 Hyperpolarization has been proposed to 
lead to chloride exit via basolateral CLC-K2 chloride channels 
and a reduction in intracellular chloride; the reduction in 
intracellular chloride activates the SPAK and OSR1-WNK 
cascade, resulting in phosphorylation of NCC and activation 
of the transporter.327 This model helps explain the activating 
effect of potassium depletion on NCC and the inhibitory 
effect of potassium loading on NCC, and they go a long way 
to explain the critical role of the DCT and NCC in potassium 
homeostasis.327

To develop in vivo models relevant to FHHt, two groups 
developed mice expressing WNK4 carrying a mutation that 
causes the disease. Lalioti and coworkers generated BAC-
transgenic mice that is an FHHt mutant of WNK4 (TgWnk-
4PHAII, bearing a Q562E mutation associated with the disease),345 
and Yang and colleagues developed a knock-in mouse 
expressing D568. Both models were hypertensive,345a with 
biochemical phenotypes similar to that of FHHt (i.e., hyper-
kalemia, acidosis, and hypercalciuria). TgWnk4PHAII mice also 
exhibit marked hyperplasia of the DCT. Of particular sig-
nificance, the DCT hyperplasia of TgWnk4PHAII mice was 
completely suppressed on an NCC-deficient background, 
generated by mating TgWnk4PHAII mice with NCC knockout 
mice.295,296 Therefore the DCT is the primary target for 
FHHt-associated mutations in WNK4. In addition, as suggested 
by prior studies, changes in Na+-Cl− entry via NCC can evidently 
modulate hyperplasia or regression of the DCT.275,295,296,345 
Vidal-Petiot and colleagues have also generated mice that 
lack the orthologous intron of WNK1 involved in patients 
with FHHt, recapitulating the phenotype.335 Treatment with 
the calcineurin inhibitor tacrolimus has a similar effect as 
in FHHt.348

WNK proteins are regulated by Cullin 3 (CUL3) and 
Kelch-like 3 (KLHL3), components of an E3 ubiquitin ligase 
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ENaC plays a critical role in renal Na+-Cl− reabsorption 
and maintenance of the extracellular fluid volume. In par-
ticular, recessive loss-of-function mutations in the three 
subunits of ENaC are a cause of pseudohypoaldosteronism 
type I.14,376 Patients with this syndrome typically present with 
severe neonatal salt wasting, hypotension, acidosis, and 
hyperkalemia; this dramatic phenotype underscores the critical 
roles of ENaC activity in renal Na+-Cl− reabsorption, K+ secre-
tion, and H+ secretion. Gain-of-function mutations in all three 
ENaC subunits have been reported to cause Liddle syndrome, 
an autosomal dominant hypertensive syndrome accompanied 
by suppressed aldosterone and variable hypokalemia.377 The 
majority of ENaC mutations associated with Liddle syndrome 
disrupt interactions between a PPxY motif in the carboxyl-
terminus of channel subunits with the NEDD4-2 ubiquitin-
ligase leading to increased surface expression of the channel. 
Mutations in the extracellular loops of α-ENaC and γ-ENaC 
have also been identified,378,379 with the α-ENaC mutation 
increasing intrinsic activity of the channel.379

The ENaC protein is detectable at the apical membrane 
of CNT cells and principal cells in the CCD, OMCD, and 
IMCD.281,286 Notably, however, several lines of evidence have 
supported the hypothesis that the CNT makes the dominant 
contribution to amiloride-sensitive Na+ reabsorption by the 
distal nephron:

1.	 Amiloride-sensitive Na+ currents in the CNT are twofold 
to fourfold higher than in the CCD; the maximal capacity 
of the CNT for Na+ reabsorption is estimated to be about 
10 times higher than that of the CCD.279

2.	 Targeted deletion of α-ENaC in the collecting duct 
abolishes amiloride-sensitive currents in CCD principal 

of Na+ occurs via the highly selective epithelial Na+ channel 
(ENaC), which is sensitive to micromolar concentrations of 
amiloride (Fig. 6.20).372 This selective absorption of positive 
charge generates a lumen-negative PD, the magnitude of 
which varies considerably as a function of mineralocorticoid 
status and other factors. This lumen-negative PD serves to 
drive the following critical processes: (1) K+ secretion via 
apical K+ channels; (2) paracellular Cl− transport through the 
adjacent tight junctions; and/or (3) electrogenic H+ secretion 
via adjacent type A intercalated cells.373

ENaC is a heteromeric channel complex formed by the 
assembly of separate, homologous subunits, denoted α-, β-, and 
γ-ENaC.14 These channel subunits share a common structure, 
with intracellular amino- and carboxyl-terminal domains, two 
transmembrane segments, and a large glycosylated extracel-
lular loop.14 Xenopus oocytes expressing α-ENaC alone have 
detectable Na+ channel activity (Fig. 6.20), which facilitated 
the initial identification of this subunit by expression cloning; 
functional complementation of this modest activity was 
then used to clone the other two subunits by expression 
cloning.14 Full channel activity requires the coexpression 
of all three subunits, which causes a dramatic increase in 
expression of the channel complex at the plasma membrane 
(Fig. 6.20).374 The subunit stoichiometry has been a source 
of considerable controversy, with some reports favoring a 
tetramer with ratios of two α-ENaC proteins to one each of 
β- and γ-ENaC (2α:1β:1γ) and others favoring a higher-order 
assembly with a stoichiometry of 3α:3β:3γ.375 Regardless, the 
single-channel characteristics of heterologously expressed 
ENaC are essentially identical to those of the amiloride-
sensitive channel detectable at the apical membrane of  
CCD cells.14,372

*

B α αβ αγ βγ αβγβ γ

1

0.75

0.5

0.25

0

fm
ol

 o
f M

2A
b*

 b
ou

nd
/o

oc
yt

e

A

1.2

1.0

0.8

0.6

0.4

0.2

0.0

A
m

ilo
rid

e-
se

ns
iti

ve
 c

ur
re

nt
(µ

A
 p

er
 o

oc
yt

e)

H2O Poly
(A)�

α β γ αγ βγ αβγαβ

Fig. 6.20  Maximal expression of the amiloride-sensitive epithelial Na+ channel (ENaC) at the plasma membrane requires the coexpression of 
all three subunits (α-, β-, and γ-ENaC). (A) Amiloride-sensitive current in Xenopus oocytes expressing the individual subunits and various combina-
tions thereof. (B) Surface expression is markedly enhanced in Xenopus oocytes that coexpress all three subunits. The individual complementary 
DNAs (cDNAs) were engineered with an external epitope tag; expression of the channel proteins at the cell surface is measured by binding of 
a monoclonal antibody (M2Ab*) to the tag. Poly A+, Polyadenylated messenger RNA (mRNA). (A from Canessa CM, Schild L, Buell G, et al. 
Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature. 1994;367:463–467; B from Firsov, D, Schild L, Gautschi 
I, et al. Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc Natl Acad Sci U 
S A. 1996;93:15370–15375.)



184	 Section I — Normal Structure and Function

scheme, this process requires the concerted function of type 
A and type B intercalated cells, achieving net electrogenic 
Cl− absorption without affecting HCO3

− or H+ excretion (see 
also Fig. 6.21).384 Chloride thus enters type B intercalated 
cells via apical Cl−-HCO3

− exchange, followed by exit from 
the cell via basolateral Cl− channels. Recycling of Cl− at the 
basolateral membrane of adjacent type A intercalated cells 
also results in HCO3

− absorption and extrusion of H+ at the 
apical membrane. The net effect of apical Cl−-HCO3

− exchange 
in type B intercalated cells, leading to apical secretion of 
HCO3

−, and recycling of Cl− at the basolateral membrane 
type A intercalated cells, leading to apical secretion of H+, 
is electrogenic Cl− absorption across type B intercalated cells 
(Fig. 6.21).

At the basolateral membrane, intercalated cells have a 
very robust Cl− conductance, with transport characteristics 
similar to those of CLC-K2/Barttin.216,392 CLC-K2 protein is 

cells, but does not affect Na+ or K+ homeostasis; the residual 
ENaC expression in the late DCT and CNT of these 
knockout mice easily compensates for the loss of the 
channel in CCD cells.380

3.	 Na+-K+-ATPase activity in the CCD is considerably less than 
that of the DCT (see also Fig. 6.4); this speaks to a greater 
capability for transepithelial Na+-Cl− absorption by the 
DCT and CNT.17

4.	 The apical recruitment of ENaC subunits in response to 
dietary Na+ restriction begins in the CNT, with progres-
sive recruitment of subunits in the downstream CCD at 
lower levels of dietary Na+; although the CNT plays a 
dominant role in ENaC-mediated sodium transport, it 
does so primarily in an aldosterone-independent mecha-
nism, with aldosterone-mediated sodium transport in the 
CCD involved in the finely tuned regulation of sodium 
transport.381,382

5.	 Patch-clamp analysis of knock-in mice homozygous for a 
Liddle syndrome ENaC mutant showed that the primary 
site of increased Na+ reabsorption is the DCT2/CNT rather 
than the CNT/CCD.383

Cl− Transport

There are two major pathways for Cl− absorption in the CNT 
and CCD – paracellular transport across the tight junction 
and transcellular transport across type B intercalated cells 
(Fig. 6.21).280,384 The CNT and CCD are “tight” epithelia, 
with comparatively low paracellular permeability that is not 
selective for Cl− over Na+; however, voltage-driven, paracellular 
Cl− transport in the CCD may play a considerable role in 
transepithelial Na+-Cl− absorption.385 The CNT, DCT, and 
collecting duct coexpress claudin-3, -4, and -8; claudin-8 in 
particular may function as a paracellular cation barrier that 
prevents backleak of Na+, K+, and H+ in this segment of the 
nephron.14,386 Several lines of evidence have indicated that 
claudin-4 and claudin-8 interact to form a paracellular pathway 
for Cl− in the collecting duct, thus mediating transcellular 
Cl− absorption via the paracellular pathway.387 CCD-specific 
knockout of claudin-4 in mice leads to NaCl wasting and 
hypotension,388 while CCD-specific disruption of claudin-8 
causes hypotension, hypokalemia, and metabolic alkalosis, 
which resembles Gitelman syndrome.389 Regulated changes 
in paracellular permeability may also contribute to Cl− absorp-
tion by the CNT and CCD. In particular, wild type WNK4 
appears to increase paracellular Cl− permeability in transfected 
MDCK II cell lines; a WNK4 FHHt mutant has a much larger 
effect, with no effect seen in cells expressing kinase-dead 
WNK4 constructs.390 Yamauchi and colleagues have also 
reported that FHHt-associated WNK4 increases paracellular 
permeability, due perhaps to an associated hyperphosphoryla-
tion of claudin proteins.391 The claudin-4-mediated chloride 
conductance is also negatively regulated by cleavage in its 
second extracellular loop by channel-activating protease 1 
(cap1).388 Similar to WNK4-mediated degradation by CUL 
3/KLHL3 (see the “Regulation of Na+-Cl− Transport in the 
Distal Convoluted Tubule” section), claudin-8 was shown to 
be a target of KLHL3-mediated degradation, with FHHt-
associated KLHL3 displaying impaired interaction.389

Transcellular Cl− absorption across intercalated cells is 
thought to play a quantitatively greater role in the CNT and 
CCD than that of paracellular transport.384 In the simplest 
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and partially sensitive to thiazide, respectively, such that the 
in vivo pharmacology of this electroneutral Na+-Cl− absorption 
is not completely explained. Immunolocalization of Slc4a8 
within the CCD has been problematic; hence, it is unknown 
whether SLC4A8 and SLC26A4 are coexpressed in type B 
intercalated cells. Regardless, the combined activity of SLC4A8 
and SLC26A4 appears to play a major role in Na+-Cl− transport 
within the CCD, with significant implications for Na+-Cl− and 
K+ homeostasis (see also the “Integrated Na+-Cl− and K+ 
Transport in the Distal Nephron” section).

The apical entry of Na+ via SLC4A8 requires a basolateral 
exit of Na+ in type B intercalated cells, evidently mediated 
by the basolateral Na+-HCO3

− transporter SLC4A9.2 Another 
puzzle was the energetics of transcellular Na+-Cl− transport 
in intercalated cells, which possess minimal, if any, detectable 
Na+-K+-ATPase activity. A series of elegant experiments have 
revealed that electroneutral Na+-Cl− transport in type B 
intercalated cells is energized by and thus dependent on the 
activity of the basolateral H+-ATPase.2 Type B intercalated 
cells are therefore unique among mammalian renal epithelial 
cells in that transcellular ion transport is driven by H+-ATPase 
rather than Na+-K+-ATPase activity.

REGULATION OF NA+-CL− TRANSPORT IN  
THE CONNECTING TUBULE AND CORTICAL 
COLLECTING DUCT
Aldosterone

The DCT, CNT, and collecting ducts collectively constitute 
the aldosterone-sensitive distal nephron, expressing the 
mineralocorticoid receptor and 11β-HSD2 enzyme that 
protects against illicit activation by glucocorticoids.275 Aldos
terone plays a dominant positive role in the regulation of 
distal nephron Na+-Cl− transport, with a plethora of mecha-
nisms and transcriptional targets.410 For example, aldosterone 
increases the expression of the Na+-K+-ATPase α1- and β1-
subunits in the CCD, in addition to inducing SLC26A4,  
the apical Cl−-HCO3

− exchanger of intercalated cells.396,411 
Aldosterone may also affect paracellular permeability of the 
distal nephron via posttranscriptional modification of claudins 
and other components of the tight junction.412 However, 
particularly impressive progress has been made in the 
understanding of the downstream effects of aldosterone on 
synthesis, trafficking, and membrane-associated activity of 
ENaC subunits. A detailed discussion of aldosterone’s actions 
may be found in Chapter 12; here we summarize the major 
findings of relevance to Na+-Cl− transport.

Aldosterone increases abundance of α-ENaC via a gluco-
corticoid response element in the promoter of the SCNN1A 
gene that encodes this subunit.413 Aldosterone also relieves 
a tonic inhibition of the SCNN1A gene by a complex that 
includes the Dot1a (disruptor of telomere silencing splicing 
variant a) and AF9 and AF17 transcription factors.414 An 
aldosterone-dependent reduction in promoter methylation 
is also involved.415 This transcriptional activation results in 
an increased abundance of α-ENaC protein in response to 
exogenous aldosterone or dietary Na+-Cl− restriction (Fig. 
6.22); the response to Na+-Cl− restriction is blunted by spi-
ronolactone, indicating involvement of the mineralocorticoid 
receptor.416–418 At baseline, α-ENaC transcripts in the kidney 
are less abundant than those encoding β- and γ-ENaC419 (Fig. 
6.22). All three subunits are required for efficient processing 

also detected at the basolateral membrane of type A interca-
lated cells, and CLC-K2 activity has been observed in type B 
cells.214,393 The basolateral Na+-K+-2Cl− cotransporter NKCC1 
in adjacent type A intercalated cells also plays an evident 
role in transepithelial Cl− absorption by the CCD.394 At the 
apical membrane, the SLC26A4 exchanger (also known 
as pendrin) has been conclusively identified as the elusive 
Cl−-HCO3

− exchanger of type B and non-A, non-B intercalated 
cells; this exchanger functions as the apical entry site during 
transepithelial Cl− transport by the distal nephron.280 Human 
SLC26A4 is mutated in Pendred syndrome, which encompasses 
sensorineural hearing loss and goiter; these patients do not 
have an appreciable renal phenotype.280 However, Slc26a4 
knockout mice are sensitive to restriction of dietary Na+-Cl−, 
developing hypotension during severe restriction.395 Slc26a4 
knockout mice are also resistant to mineralocorticoid-induced 
hypertension.396 Pendrin has indirect effects on ENaC abun-
dance and activity, apparently by modulating luminal ATP 
and HCO3

− concentrations; pendrin and ENaC are also both 
coactivated by Ang II397–400 and pendrin expression is also 
induced by aldosterone.401 The overexpression of pendrin 
in intercalated cells thus causes hypertension in transgenic 
mice, with an increase in ENaC activity and activity of 
electroneutral Na+-Cl− absorption (see later).402 Conversely, 
disruption of pendrin in mice decreased ENaC-mediated Na+ 
absorption by reducing channel open probability and channel 
density at the apical membrane.403 Finally, dietary Cl− restric-
tion with provision of Na+-HCO3

− results in Cl− wasting in 
Slc26a4 knockout mice and increased apical expression of 
SLC26A4 protein in the type B intercalated cells of normal 
littermate controls.404 Several groups have reported that 
SLC26A4 expression is exquisitely responsive to changes 
in distal chloride delivery.405 Therefore SLC26A4 plays a 
critical role in distal nephron Cl− absorption, underlining 
the particular importance of transcellular Cl− transport in 
this process. Of broader relevance, these studies have served 
to underline the important role for Cl− homeostasis in the 
maintenance of extracellular volume and pathogenesis of  
hypertension.405

Electroneutral Na+-Cl− Cotransport

Thiazide-sensitive Na+-Cl− cotransport is considered the exclu-
sive provenance of the DCT, which expresses the canonical 
thiazide-sensitive transporter NCC (see the “Mechanisms of 
Na+-Cl− Transport in the Distal Convoluted Tubule” section). 
However, Tomita and coworkers demonstrated many years 
ago that approximately 50% of Na+-Cl− transport in rat CCD is 
electroneutral, amiloride resistant, and thiazide sensitive.406,407 
Thiazide-sensitive electroneutral Na+-Cl− transport has also 
been demonstrated in mouse CCD.408 This transport activity 
is preserved in CCDs from mice with genetic disruption of 
NCC and ENaC, indicating independence from the dominant 
apical Na+ transport pathways in the distal nephron. This 
thiazide-sensitive, electroneutral Na+-Cl− transport appears to 
be mediated by the parallel activity of the Na+-driven SLC4A8 
Cl−-HCO3

− exchanger and SLC26A4 Cl−-HCO3
− exchanger 

(pendrin; see earlier discussion).408 Slc4a8 knockout mice 
display only a mild perturbation of Na+-Cl– and water 
balance due to compensation by NCC; combined SLC4A8 
and NCC disruption caused intravascular volume contrac-
tion and hypokalemia.409 Notably, however, heterologously 
expressed recombinant SLC4A8 and SLC26A4 are resistant 
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sion of NEDD4-2 with the wild type ENaC channel results 
in a marked inhibition of channel activity due to retrieval 
from the cell membrane, whereas channels bearing Liddle 
syndrome mutations are resistant; NEDD4-2 is thought to 
ubiquitinate ENaC subunits, resulting in the removal of 
channel subunits from the cell membrane and degradation 
in lysosomes and the proteosome.419 A PPxY domain in SGK1 
also binds to NEDD4-2, which is a phosphorylation substrate 
for the kinase; phosphorylation of NEDD4-2 by SGK1 abro-
gates its inhibitory effect on ENaC subunits.423,424 Aldosterone 
also stimulates NEDD4-2 phosphorylation in vivo.425 NEDD4-2 
phosphorylation in turn results in ubiquitin-mediated degrada-
tion of SGK1, suggesting that there is considerable feedback 
regulation in this system.426 Aldosterone also reduces NEDD4-2 
protein expression in cultured CCD cells, and acetylation of 
ENaC antagonizes ENaC ubiquitination, suggesting additional 
levels of in vivo regulation.427,428

The induction of SGK1 by aldosterone thus appears to 
stimulate the redistribution of ENaC subunits from the 
cytoplasm to the apical membrane of CNT and CCD cells. 
This phenomenon involves SGK1-dependent phosphorylation 
of the NEDD4-2 ubiquitin ligase, which is coexpressed with 
ENaC and SGK1 in the distal nephron.427 Of note, there is 
considerable axial heterogeneity in the recruitment and 
redistribution of ENaC to the plasma membrane, which begins 
in the CNT and only extends into the CCD and OMCD in 
Na+-Cl−–restricted or aldosterone-treated animals.275,418 The 
underlying causes of this progressive axial recruitment are 
not as yet clear.275 However, NEDD4-2 expression is inversely 

of heteromeric channels in the endoplasmic reticulum and 
trafficking to the plasma membrane (Fig. 6.20), such that 
the induction of α-ENaC is thought to relieve a major  
bottleneck in the processing and trafficking of active ENaC 
complexes.419

Aldosterone also plays an indirect role in the regulated 
trafficking of ENaC subunits to the plasma membrane via 
the regulation of accessory proteins that interact with preexist-
ing ENaC subunits. Aldosterone rapidly induces expression 
of a serine-threonine kinase denoted SGK1 (serum and 
glucocorticoid-induced kinase-1); coexpression of SGK1 with 
ENaC subunits in Xenopus oocytes results in a dramatic activa-
tion of the channel due to increased expression at the plasma 
membrane.418,420,421 Notably, an analogous redistribution of 
ENaC subunits occurs in the CNT and early CCD, from a 
largely cytoplasmic location during dietary Na+-Cl− excess to 
a purely apical distribution after aldosterone or Na+-Cl− restric-
tion (Fig. 6.22).381,416,418 Furthermore, there is a temporal 
correlation between the appearance of induced SGK1 protein 
in the CNT and the redistribution of ENaC protein to the 
plasma membrane.418

SGK1 modulates membrane expression of ENaC by interfer-
ing with regulated endocytosis of its channel subunits. Specifi-
cally, the kinase interferes with interactions between ENaC 
subunits and the ubiquitin ligase NEDD4-2.419 PPxY domains 
in the C termini of all three ENaC subunits bind to WW 
domains of NEDD4-2422; these PPxY domains are deleted, 
truncated, or mutated in patients with Liddle syndrome, 
leading to a gain of function in channel activity.374,377 Coexpres-
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Fig. 6.22  Immunofluorescence images of connecting tubule profiles in kidneys from adrenalectomized rats (ADX) and from ADX rats 2 and 4 
hours after aldosterone (aldo) injection. Antibodies against the α, β, and γ subunits of epithelial Na+ channel (ENaC) reveal absent expression 
of the former in ADX rats, with progressive induction by aldosterone. All three subunits traffic to the apical membrane in response to aldosterone. 
This coincides with rapid aldosterone induction of the SGK kinase in the same cells; SGK is known to increase the expression of ENaC at the 
plasma membrane (see text for details). Bar ≅ 15 µm. (From Loffing J, Zecevic M, Féraille E, et al. Aldosterone induces rapid apical translocation 
of ENaC in early portion of renal collecting system: possible role of SGK. Am J Physiol Renal Physiol. 2001;280:F675–F682.)
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Vasopressin and Other Factors

Although not typically considered an antinatriuretic hormone, 
vasopressin has well-characterized stimulatory effects on 
Na+-Cl− transport by the CCD.94,445 Vasopressin directly activates 
ENaC in murine CCD, increasing the open probability (Po) 
of the channel.446 In perfused rat CCD segments, vasopressin 
and aldosterone can have synergistic effects on Na+ transport, 
with a combined effect that exceeds that of the individual 
hormones.445 In addition, water and Na+ restriction synergisti-
cally increase the Po of ENaC in murine CCDs.446 Prostaglan-
dins inhibit this effect of vasopressin, particularly in the rabbit 
CCD; this inhibition occurs at least in part through reductions 
in vasopressin-generated cAMP.94,445 There are, however, 
considerable species-dependent differences in the interactions 
between vasopressin and negative modulators of Na+-Cl− 
transport in the CCD, which include prostaglandins, brady-
kinin, endothelin, and α2-adrenergic tone.94,445 Regardless, 
cAMP causes a rapid increase in the Na+ conductance of 
apical membranes in the CCD; this effect appears to be due 
to increases in the surface expression of ENaC subunits at 
the plasma membrane447 in addition to effects on open 
channel probability.446,448 Notably, cAMP inhibits retrieval of 
ENaC subunits from the plasma membrane via PKA-dependent 
phosphorylation of the phosphoacceptor sites in NEDD4-2 
that are targeted by SGK1; therefore both aldosterone and 
vasopressin converge on NEDD4-2 in the regulation of ENaC 
activity in the distal nephron.449 Analogous to the effect on 
trafficking of aquaporin-2 in principal cells, cAMP also seems 
to stimulate exocytosis of ENaC subunits to the plasma 
membrane.448 Finally, similar to the long-term effects of 
vasopressin on aquaporin-2 expression and NKCC2 expression, 
chronic treatment with DDAVP results in an increase in 
abundance of the β- and γ-ENaC subunits.233,450

The activation of ENaC by vasopressin appears to have 
additional direct effects on water homeostasis. Hypernatremic 
mice treated with the ENaC inhibitor benzamil thus exhibit 
further increases in tonicity due to a reduction in urinary 
osmolality.451 In adrenalectomized mice, which lack circulating 
aldosterone, vasopressin maintains ENaC activity in the distal 
nephron.452 This vasopressin-dependent activation of ENaC 
may, by extension, play a role in generating hyponatremia 
in the setting of primary adrenal failure. Systemic genera-
tion of circulating Ang II induces aldosterone release by 
the adrenal gland, with downstream activation of ENaC. 
However, Ang II also directly activates amiloride-sensitive 
Na+ transport in perfused CCDs; blockade by losartan or 
candesartan suggests that this activation is mediated by Ang 
II receptors type 1.453 Of particular significance, the effect of 
luminal Ang II (10−9 M) was greater than that of bath Ang 
II, suggesting that intratubular Ang II may regulate ENaC in 
the distal nephron. Ang II also activates chloride absorption 
across intercalated cells via a pendrin (SLC26A4) and an 
H+-ATPase-dependent mechanism.454 Stimulation of ENaC 
is seen when tubules are perfused with Ang I; this effect is 
blocked by ACE inhibition with captopril, suggesting that 
intraluminal conversion of Ang I to Ang II can occur in the 
CCD.455 Notably, CNT cells express considerable amounts of 
immunoreactive renin versus the vanishingly low expression 
of renin mRNA in the PT.456 Angiotensinogen secreted into 
the tubule by PT cells may thus be converted to Ang II in 
the CNT via locally generated renin and ACE and/or related  
proteases.456

related to the apical distribution of ENaC, with low expression 
in the CNT and increased expression levels in the CCD. In 
all likelihood, the relative balance among SGK1, ENaC, and 
NEDD4-2 figures prominently in the recruitment of the 
channel subunits to the apical membrane.427

NEDD4-2 and ENaC are part of a larger regulatory complex 
that includes the signaling protein Raf-1, stimulatory 
aldosterone-induced chaperone GILZ1 (glucocorticoid-
induced leucine zipper-1), and scaffolding protein CNK3.429,430 
The mTORC2 (mammalian target of rapamycin complex 2) 
kinase complex is another component, catalyzing upstream 
activation of SGK1 and thus inducing activation of ENaC.431,432

Although many studies have supported a central role for 
SGK1 in mediating the effects of aldosterone on ENaC, a 
recent study found that despite altered apical trafficking of 
ENaC in SGK1 knockout mice, ENaC activity is normal even 
after aldosterone administration. This suggests that other 
aldosterone-induced proteins play a role in ENaC activation 
via mineralocorticoid receptors.433,434 For example, another 
aldosterone-induced protein, Ankyrin G, a cytoskeletal protein 
involved in vesicular trafficking, increases ENaC activity in 
cultured CCD cells by promoting its plasma membrane 
insertion from recycling endosomes.435

Finally, aldosterone indirectly activates ENaC channels 
through the induction of channel-activating proteases, which 
increase open channel probability by cleavage of the extracel-
lular domains of α- and γ-ENaC. Western blotting of renal 
tissue from rats subjected to Na+-Cl− restriction or treatment 
with aldosterone has revealed α- and γ-ENaC subunits of 
lower molecular mass than those detected in control animals, 
indicating that aldosterone induces proteolytic cleavage.417,436 
Proteases that have been implicated in the processing of 
ENaC include furin, elastase, and three membrane-associated 
proteases denoted CAP1–3 (channel activating proteases-1, 
-2, and -3).437–439 Filtered proteases such as plasmin may also 
contribute to ENaC activation in nephrotic syndrome.439 CAP1 
was initially identified from Xenopus A6 cells as an ENaC-
activating protease; the mammalian ortholog is an aldosterone-
induced protein in principal cells.440,441 Urinary excretion of 
CAP1, also known as prostasin, is increased in hyperaldosteron-
ism, with a reduction after adrenalectomy.441 CAP1 is tethered 
to the plasma membrane by a GPI linkage, whereas CAP2 
and CAP3 are transmembrane proteases.438,440 All three of 
these proteases activate ENaC by increasing the Po of the 
channel, without increasing expression at the cell surface.438 
However, analysis of CAP2 knockout mice indicates that it 
does not play a role in ENaC regulation and sodium balance 
in vivo.442 Proteolytic cleavage of ENaC appears to activate 
the channel by removing the self-inhibitory effect of external 
Na+; in the case of furin-mediated proteolysis of α-ENaC, 
this appears to involve the removal of an inhibitory domain 
from within the extracellular loop.438,443 Extracellular Na+ 
appears to interact with a specific acidic cleft in the extracel-
lular loop of α-ENaC, causing inhibition of the channel.444 
The structures of the extracellular domains of ENaC and 
related channels resemble an outstretched hand holding a 
ball, with defined subdomains termed the “wrist,” “finger,” 
“thumb,” “palm,” “β-ball,” and “knuckle”; functionally relevant 
proteolytic events target the finger domains of ENaC sub-
units.439 Unprocessed channels at the plasma membrane are 
thought to function as a reserve pool, capable of rapid activa-
tion by membrane-associated luminal proteases.437
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to inducing SGK1; targeted deletion of SGK1 in knockout 
mice attenuates but does not abolish TZD-associated 
edema.463,466,467 Notably, however, other studies have failed 
to detect an effect of TZDs on ENaC activity, which may 
instead activate a nonspecific cation channel within the 
IMCD.468,469 Regardless, the beneficial effect of spironolactone 
in type II diabetics with TZD-associated volume expansion 
is consistent with in vivo activation of Na+-Cl− absorption in 
the aldosterone-responsive distal nephron.470 In addition, 
the risk of peripheral edema is increased considerably in 
patients treated with both TZDs and insulin therapy. Notably, 
insulin appears to activate ENaC via SGK1-dependent mecha-
nisms; PPARγ is required for the full activating effect of insulin 
on ENaC, such that this clinical observation may reflect 
synergistic activation of ENaC by insulin and TZDs.468,471,472

POTASSIUM TRANSPORT

Maintenance of K+ balance is important for a multitude of 
physiologic processes. Changes in intracellular K+ affect cell 
volume regulation, regulation of intracellular pH, enzymatic 
function, protein synthesis, DNA synthesis, and apoptosis.14 
Changes in the ratio of intracellular to extracellular K+ affect 
the resting membrane potential, leading to depolarization 
in hyperkalemia and hyperpolarization in hypokalemia. Thus, 
disorders of extracellular K+ have a dominant effect on 
excitable tissues, chiefly heart and muscle. In addition, a 
growing body of evidence has implicated hypokalemia and/
or reduced dietary K+ in the pathobiology of hypertension, 
heart failure, and stroke; these and other clinical consequences 
of K+ disorders are reviewed in Chapter 17.

Potassium is predominantly an intracellular cation, with 
only 2% of total body K+ residing in the extracellular fluid. 
Extracellular K+ is maintained within a very narrow range by 
three primary mechanisms. First, the distribution of K+ 
between the intracellular and extracellular space is determined 
by the activity of a number of transport pathways—namely, 
Na+-K+-ATPase, the Na+-K+-2Cl− cotransporter NKCC1, the 
four KCCs, and a plethora of K+ channels. In particular, 
skeletal muscle contains as much as 75% of total body potas-
sium and exerts considerable influence on extracellular K+. 
Short-term and long-term regulation of muscle Na+-K+-ATPase 
play a dominant role in determining the distribution of K+ 
between the intracellular and extracellular spaces; the various 
hormones and physiologic conditions that affect the uptake 
of K+ by skeletal muscle are reviewed in Chapter 17. Second, 
the colon has the ability to absorb and secrete K+, with 
considerable mechanistic and regulatory similarities to renal 
K+ secretion. K+ secretion in the distal colon is increased 
after dietary loading and in end-stage renal disease.14,473,474 
However, the colon has a relatively limited capacity for K+ 
excretion, such that changes in renal K+ excretion play the 
dominant role in responding to changes in K+ intake. In 
particular, regulated K+ secretion by the CNT and CCD plays 
a critical role in the response to hyperkalemia and K+ loading; 
increases in the reabsorption of K+ by intercalated cells of 
the CCD and OMCD function in the response to hypokalemia 
or K+ deprivation.

This section reviews the mechanisms and regulation of 
transepithelial K+ transport along the nephron. As in other 
sections of this chapter, the emphasis is on particularly recent 

Luminal perfusion with ATP or uridine triphosphate (UTP) 
inhibits amiloride-sensitive Na+ transport and reduces ENaC 
Po in the CCD via activation of luminal P2Y2 purinergic 
receptors.457,458 Targeted deletion of the murine P2Y2 receptor 
results in salt-resistant hypertension due in part to an upregula-
tion of NKCC2 activity in the TAL; resting ENaC activity is 
also increased, but suppressed aldosterone and downregula-
tion of the α-subunit of ENaC blunts the role of amiloride-
sensitive transport.458,459 Clamping mineralocorticoid activity 
at higher levels, via the administration of exogenous miner-
alocorticoid, reveals that P2Y2 receptor activation may be a 
major mechanism for the modulation of ENaC Po in response 
to changes in dietary Na+-Cl−.323 Increased dietary Na+-Cl− thus 
leads to increased urinary ATP and UTP excretion in mice458; 
endogenous ATP from principal cells inhibits ENaC, and 
ENaC activity is not responsive to increased dietary Na+-Cl− in 
P2Y2 receptor knockout mice.323,458 In addition, the activation 
of apical ionotropic purinergic receptors, likely P2X4 and/
or P2X4/P2X6, can inhibit or activate ENaC, depending on 
luminal Na+ concentration; these receptors may also partici-
pate in fine-tuning ENaC activity in response to dietary 
Na+-Cl−.460

As in other segments of the nephron, Na+-Cl− transport 
by the CNT and CCD is modulated by metabolites of ara-
chidonic acid generated by cytochrome P450 monooxygenases. 
In particular, arachidonic acid inhibits ENaC channel activity 
in the rat CCD via generation of the epoxygenase product 
11,12-EET by the CYP2C23 enzyme expressed in principal 
cells.461 Targeted deletion of the murine Cyp4a10 gene, 
encoding, another P450 monooxygenase, results in salt-
sensitive hypertension; urinary excretion of 11,12-EET is 
reduced in these knockout mice, with a blunted effect of 
arachidonic acid on ENaC channel activity in the CCD.462 
These mice also became normotensive after treatment with 
amiloride, indicative of in vivo activation of ENaC. It appears 
that deletion of Cyp4a10 reduces activity of the murine 
ortholog of rat CYPC23 (Cyp2c44 in mouse) and/or related 
epoxygenases via reduced generation of a ligand for PPARα 
(peroxisome proliferator–activated receptor α) that induces 
epoxygenase activity.462 The mechanism(s) whereby 11,12-EET 
inhibits ENaC are unknown as yet. However, renal 11,12-EET 
production is known to be salt-sensitive, suggesting that 
generation of this mediator may serve to reduce ENaC activity 
during high dietary Na+-Cl− intake.461

Finally, activation of PPARγ by thiazolidinediones (TZDs) 
results in amiloride-sensitive hypertension, suggesting in vivo 
activation of ENaC.463,464 TZDs (e.g., rosiglitazone, pioglitazone, 
troglitazone) are insulin-sensitizing drugs used for the treat-
ment of type II diabetes. Treatment with these agents is 
frequently associated with fluid retention, suggesting an effect 
on renal Na+-Cl− transport. Given robust expression of PPARγ 
in the collecting duct, activation of ENaC was an attractive 
hypothesis for this TZD-associated edema syndrome.463,464 
This appears to be the case, in that selective deletion of the 
murine PPARγ gene in principal cells abrogates the increase 
in amiloride-sensitive transport seen in response to TZDs.463,464 
Conversely, mice with disruption of α-ENaC specifically along 
CNT/CCD display blunted increases in total body water and 
extracellular fluid volume in response to rosiglitazone 
administration, providing direct evidence that the effects of 
PPARγ are mediated through ENaC.465 TZDs appear to induce 
transcription of the Sccn1g gene encoding γ-ENaC in addition 
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The combination of luminal K+ concentrations that are about 
10% higher than that of plasma, a lumen-positive PD of 
about 2 mV (Fig. 6.2), and high paracellular permeability 
leads to considerable paracellular absorption in the PT. This 
absorption is thought to primarily proceed via convective 
transport—solvent drag due to frictional interactions between 
water and K+—rather than diffusional transport.480 Notably, 
however, the primary pathway for water movement in the 
PT is conclusively transcellular via aquaporin-1 and aquaporin-7 
water channels in the apical and basolateral membrane.19,34,35 
Therefore the apparent convective transport of K+ would 
have to constitute so-called pseudosolvent drag, with hypotheti-
cal uncharacterized interactions between water traversing 
the transcellular route and diffusion of K+ along the paracel-
lular pathway.480

LOOP OF HENLE

Transport by the loop of Henle plays a critical role in 
medullary K+ recycling (Fig. 6.24). Several lines of evidence 
have indicated that a considerable fraction of K+ secreted 
by the CCD is reabsorbed by the medullary collecting ducts 
and then secreted into the late PT and/or descending thin 

developments in the molecular physiology of renal K+ 
transport. Of note, transport pathways for K+ play important 
roles in renal Na+-Cl− transport, particularly within the TAL. 
Furthermore, Na+ absorption via ENaC in the aldosterone-
sensitive distal nephron generates a lumen-negative PD that 
drives distal K+ excretion. These pathways are primarily 
discussed in the section on renal Na+-Cl− transport; related 
issues relevant to K+ homeostasis per se will be specifically 
addressed in this section.

PROXIMAL TUBULE

The PT reabsorbs some 50% to 70% of filtered K+ (Fig. 6.23). 
PTs generate minimal transepithelial K+ gradients, and 
fractional reabsorption of K+ is similar to that of Na+.282 K+ 
absorption follows that of fluid, Na+, and other solutes, such 
that this nephron segment does not play a direct role in 
regulated renal excretion.475,476 Notably, however, changes in 
Na+-Cl− reabsorption by the PT have considerable effects on 
distal tubular flow and distal tubular Na+ delivery, with 
attendant effects on the excretory capacity for K+ (see the 
section “Distal Nephron, K+ secretion” below).

The mechanisms involved in transepithelial K+ transport 
by the PT are not completely clear, although active transport 
does not appear to play a major role.476,477 Luminal barium 
has modest effects on transepithelial K+ transport by the PT, 
suggesting a component of transcellular transport via barium-
sensitive K+ channels.478 However, the bulk of K+ transport 
is thought to occur via the paracellular pathway, driven by 
the lumen-positive PD in the mid to late PT (Fig. 6.2).478,479 
The total K+ permeability of the PT is thus rather high, 
apparently due to features of the paracellular pathway.478,479 
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express ROMK, the apical K+ secretory channel.190,487 Generally, 
the CCD is considered the primary site for distal K+ secretion, 
partially due to the greater ease with which this segment is 
perfused and studied. However, as is the case for Na+-Cl− 
absorption (see the “Connecting Tubules and the Cortical 
Collecting Duct: Apical Na+ Transport” section), the bulk of 
distal K+ secretion appears to occur prior to the CCD, within 
the CNT.282,371

In principal cells, apical Na+ entry via ENaC generates a 
lumen-negative PD, which drives passive K+ exit through apical 
K+ channels. Distal K+ secretion is therefore dependent on 
delivery of adequate luminal Na+ to the CNT and CCD, 
essentially ceasing when luminal Na+ drops below 
8 mmol/L.488–490 Dietary Na+ intake also influences K+ excre-
tion, such that excretion is enhanced by excess Na+ intake 
and reduced by Na+ restriction.488,489 Secreted K+ enters 
principal cells via the basolateral Na+-K+-ATPase, which also 
generates the gradient that drives apical Na+ entry via ENaC 
(Fig. 6.23).

Two major subtypes of apical K+ channels function in secre-
tion by the CNT and CCD, with or without the DCT; a small-
conductance (SK), 30-pS channel and a large-conductance, 
Ca2+-activated, 150-pS (maxi-K or BK) channel.191,371,491 The 
density and high Po of the SK channel indicates that this 
pathway alone is sufficient to mediate the bulk of K+ secretion 
in the CCD under baseline conditions—hence, its designation 
as the secretory K+ channel.492 Notably, SK channel density is 
considerably higher in the CNT than in the CCD, consistent 
with the greater capacity for Na+ absorption and K+ secretion in 
the CNT.36 The characteristics of the SK channel are similar to 
those of the ROMK K+ channel, and ROMK protein has been 
localized at the apical membrane of principal cells.188,493 SK 
channel activity is absent from apical membranes of the CCD 
in homozygous knockout mice with a targeted deletion of the 
Kcnj1 gene that encodes ROMK, definitive proof that ROMK 
is the SK channel.191 The observation that these knockout 
mice are normokalemic, with an increased excretion of K+, 
illustrates the considerable redundancy in distal K+ secretory 
pathways; distal K+ secretion in these mice is mediated by 
apical BK channels (see later).191,494 However, dietary K+ 
loading induced hyperkalemia in ROMK1 knockout mice, 
consistent with a role in K+ secretion along the CCD.193 Of 
interest, loss-of-function mutations in human KCNJ1 genes 
are associated with Bartter syndrome; ROMK expression is 
critical for the 30- and 70-pS channels that generate the 
lumen-positive PD in the TAL (Fig. 6.14).191,192 These patients 
typically have slightly higher serum K+ levels than those with 
other genetic forms of Bartter syndrome, and affected patients 
with severe neonatal hyperkalemia have also been described; 
this neonatal hyperkalemia is presumably the result of a 
transient developmental deficit in apical BK channel activ-
ity.14,183 Note that Bartter syndrome due to KCNJ1 disruption 
may specifically reflect a defect in ROMK2 and/or ROMK3 
function since mice with disruption of ROMK1, consistent 
with its absence along the TAL, do not display a Bartter 
syndrome phenotype.193

The apical Ca2+-activated BK channel plays a critical role 
in flow-dependent K+ secretion by the CNT and CCD.491 BK 
channels have a heteromeric structure, with α-subunits that 
form the ion channel pore and modulatory β-subunits that 
affect the biophysical, regulatory, and pharmacologic char-
acteristics of the channel complex.491 BK α-subunit transcripts 

limbs of long-looped nephrons.481 In potassium-loaded rats, 
there is thus a doubling of luminal K+ in the terminal thin 
descending limbs, with a sharp drop after inhibition of 
CCD K+ secretion by amiloride.482 Enhancement of CCD 
K+ secretion by treatment with DDAVP also results in an 
increase in luminal K+ in the descending thin limbs.483 This 
recycling pathway (secretion in CCD, absorption in OMCD 
and IMCD, secretion in descending thin limb) is associated 
with a marked increase in medullary interstitial K+. Passive 
transepithelial K+ absorption by the thin ascending limb and 
active absorption by the TAL also contribute to this increase 
in interstitial K+ (Fig. 6.24).181 Specifically, the absorption of 
K+ by the ascending thin limb, TAL, and OMCD exceeds the 
secretion by the descending thin limbs, thus trapping K+ in 
the interstitium.

The physiologic significance of medullary K+ recycling is 
not completely clear. However, an increase in interstitial K+ 
concentration from 5 to 25 mmol/L dramatically inhibits 
Cl− (and to a lesser extent, Na+) transport by perfused TALs.181 
By inhibiting Na+-Cl− absorption by the TAL, increases in 
interstitial K+ contribute to the well-documented diuretic 
effects of a high-K+ diet,484 and would increase Na+ delivery 
to the CNT and CCD, thus enhancing the lumen-negative 
PD in these tubules and increasing K+ secretion.181 Alterna-
tively, the marked increase in medullary interstitial K+ after 
dietary K+ loading serves to limit the difference between 
luminal and peritubular K+ in the CCD, thus minimizing 
passive K+ loss from the collecting duct.

K+ is secreted into the descending thin limbs by passive 
diffusion, driven by the high medullary interstitial K+ con-
centration. Descending thin limbs thus have a very high-K+ 
permeability, without evidence for active transepithelial K+ 
transport.485 Transepithelial K+ transport by ascending thin 
limbs has not to our knowledge been measured; however, 
as is the case for Na+-Cl− transport (see the “Na+-Cl− Transport 
by the Thin Ascending Limb” section), the absorption of K+ 
by the thin ascending limbs is presumably passive. Active 
transepithelial K+ transport across the TAL includes a transcel-
lular component, via apical Na+-K+-2Cl− cotransport mediated 
by NKCC2, and a paracellular pathway (Fig. 6.14). Luminal 
K+ channels play a critical role in generating the lumen-positive 
PD in the TAL, as summarized earlier (see the “Na+-Cl− Trans-
port by the Thick Ascending Limb: Apical K+ Channels” 
section). Secretion of K+ through these may also play a role 
in the response to high dietary K+. Patch-clamp analysis of 
split-open TALs revealed that 70-pS ROMK exhibited a higher 
open probability (Po) in mice placed on a low-Na+/high-K+ 
diet.486 This may be dependent on NKCC2 activity, because 
micropuncture showed that furosemide increased K+ secretion 
in the early distal tubule in mice on a normal diet, but 
decreased it in mice on the low-Na+/high-K+ diet.

DISTAL NEPHRON

K+ SECRETION
Approximately 90% of filtered K+ is reabsorbed by the PT 
and loop of Henle (Fig. 6.23); the fine-tuning of renal K+ 
excretion occurs in the remaining distal nephron. The bulk 
of regulated secretion occurs in principal cells within the 
CNT and CCD, whereas K+ reabsorption primarily occurs in 
the OMCD (see later). A low rate of K+ secretion is initially 
detectable in the early DCT, in which NCC-positive cells 
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Intercalated cells thus function as so-called speed bumps 
that protrude into the lumen of distal tubules; flow-activated 
BK channels reduce the cell volume of intercalated cells 
after K+ loading, reducing tubular resistance, increasing 
tubular flow rates, and increasing distal K+ secretion.505

The physiologic rationale for the presence of two apical 
secretory K+ channels, ROMK/SK and BK channels, is not 
completely clear. However, the high density and higher Po 
of ROMK/SK channels are perhaps better suited for a role 
in basal K+ secretion, with additional recruitment of the higher 
capacity, flow-activated BK channels when additional K+ 
secretion is required.491 Evolving evidence has also indicated 
that BK channels function in partially Na+-independent K+ 
secretion by intercalated cells, with ROMK functioning  
in ENaC- and Na+-dependent K+ excretion by DCT, CNT, 
and CCD cells. Regardless, at the whole-organ level, the  
two K+ channels can substitute for one another, with BK-
dependent K+ secretion in ROMK knockout mice and an 
upregulation of ROMK in the distal nephron of α1-subunit 
BK knockouts.494,497

Other K+ channels reportedly expressed at the luminal 
membranes of the CNT and CCD include voltage-sensitive 
channels such as Kv1.3, the calcium-activated, small-
conductance SK3 channel, and double-pore K+ channels, 
such as TWIK-1 and KCNQ1.511–514 KCNQ1 mediates K+ 
secretion in the inner ear and is expressed at the apical 
membrane of principal cells in the CCD, whereas TWIK-1 
is expressed at the apical membrane of intercalated cells.514,515 
The roles of these channels in renal K+ secretion or absorption 
are not fully characterized. However, Kv1.3 may play a role 
in distal K+ secretion in that luminal margatoxin, a specific 
blocker of this channel, reduces K+ secretion in CCDs of rat 
kidneys from animals on a high-K+ diet.516 Other apical K+ 
channels in the distal nephron may subserve other physiologic 
functions. For example, the apical Kv1.1 channel is critically 
involved in Mg2+ transport by the DCT, likely by hyperpolar-
izing the apical membrane and increasing the driving force 
for Mg2+ influx via TRPM6 (transient receptor potential cation 
channel 6); missense mutations in KV1.1 are a cause of genetic 
hypomagnesemia.517

K+ channels present at the basolateral membrane of 
principal cells appear to set the resting potential of the 
basolateral membrane and function in K+ secretion and Na+ 
absorption at the apical membrane, the latter via K+ recycling 
at the basolateral membrane to maintain activity of the 
Na+-K+-ATPase. A variety of different K+ channels have been 
described in the electrophysiologic characterization of the 
basolateral membrane of principal cells, which has a number 
of technical barriers to overcome.518 However, a single pre-
dominant activity has been identified in principal cells from 
the rat CCD using whole-cell recording techniques under 
conditions in which ROMK is inhibited (low intracellular 
pH or presence of the ROMK inhibitor tertiapin-Q).518 This 
basolateral current is tetraethylammonium-insensitive, barium-
sensitive, and acid-sensitive (pKa ≅ 6.5), with a conductance 
of about 17 pS and weak inward rectification. These properties 
do not correspond exactly to specific characterized K+ chan-
nels or combinations thereof. However, candidate inward-
rectifying K+ channel subunits that have been localized at 
the basolateral membrane of the CCD include KIR4.1, KIR5.1, 
KIR7.1, and KIR2.3.518 KIR4.1 and KIR5.1 channels generate 
a predominant 40-pS basolateral K+ channel in murine 

are expressed in multiple nephron segments, and channel 
protein is detectable at the apical membrane of principal 
and intercalated cells in the CCD and CNT.491 The β-subunits 
are differentially expressed within the distal nephron. Thus 
β1-subunits are restricted to the CNT, with no expression in 
intercalated cells, whereas β4-subunits are detectable at the 
apical membranes of the TAL, DCT, and intercalated cells.491,495 
Increased distal flow has a well-established stimulatory effect 
on K+ secretion, due in part to enhanced delivery and absorp-
tion of Na+ and to increased removal of secreted K+.488,489 
The pharmacology of flow-dependent K+ secretion in the 
CCD is consistent with dominant involvement of BK channels, 
and flow-dependent K+ secretion is reduced in mice with 
targeted deletion of the α1- and β1-subunits.491,496–498 Both 
mice strains develop hyperaldosteronism that is exacerbated 
by a high-K+ diet, leading to hypertension in the α1-subunit 
knockout.498 Disruption of the β2 subunit also leads to 
hyperaldosteronism, but flow-induced K+ secretion is normal, 
suggesting compensation by other isoforms.499 Ca2+-depen-
dence of BK activation involves TRPV4.500–502 A high-K+ diet 
increases TRPV4 expression, and leads to its redistribution 
to the apical membrane in CCD. The importance of this 
process in BK activation was demonstrated in TRPV4 knockout 
mice, which display decreased BK activity in CCD, and 
hyperkalemia after dietary K+ loading.

One enigma has been the greater density of BK channels 
in intercalated cells in both the CCD and CNT.503,504 This has 
suggested a major role for intercalated cells in K+ secretion; 
however, the much lower density of Na+-K+-ATPase activity 
in intercalated cells has been considered inadequate to 
support K+ secretion across the apical membrane.505 More 
recent evidence has revealed a major role for the basolateral 
Na+-K+-2Cl− cotransporter NKCC1 in K+ secretion mediated by 
apical BK channels. NKCC1 is expressed almost exclusively 
at the basolateral membrane of intercalated cells, providing 
an alternative entry pathway for basolateral K+ secreted at 
the apical membrane.506,507 This still begs the question of 
how basolateral Na+ recycles across the basolateral mem-
brane in the absence of significant Na+-K+-ATPase activity; 
one possibility is an alternative basolateral Na+ pump, the 
ouabain-insensitive furosemide-sensitive Na+-ATPase, a trans-
port activity that has been detected in cell culture models of 
intercalated cells.506 At the apical membrane, BK-mediated 
K+ secretion is only partially dependent on luminal Na+; K+ 
secretion would eventually hyperpolarize the membrane in 
the absence of apical Na+ entry, which is mediated by ENaC 
in principal cells.508 An intriguing possibility is that apical 
Cl− channels allow for the parallel secretion of K+ and Cl− in  
intercalated cells.509

BK channels also play a critical role in cell volume regula-
tion by intercalated cells, with indirect, flow-mediated influ-
ences on distal K+ secretion. MDCK-C11 cells have an 
intercalated cell phenotype and express BK α- and β4-subunits, 
as do intercalated cells; shear stress activates BK channels in 
these cells, leading to loss of K+ and cell shrinkage.495,510 Mice 
with a targeted deletion of the β4-subunit exhibit normal K+ 
excretion on a normal diet.505 However, when fed a high-K+ 
diet, which increases urinary and tubular flow rates and 
tubular shear stress, the β4-knockout mice develop hyperka-
lemia with a blunted increase in K+ excretion and urinary 
flow rates. Intercalated cells from β4-knockouts fail to sig-
nificantly decrease cell volume in response to high-K+ diet. 
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H+/K+-ATPase appears to exit intercalated cells via a K+ 
channel, thus achieving the transepithelial transport of K+.529

H+-K+-ATPase holoenzymes are members of the P-type family 
of ion transport ATPases, which also includes subunits of 
the basolateral Na+-K+-ATPase.530 HKα1 and HKα2 are also 
referred to as the gastric and colonic subunits, respectively; 
humans also have an HKα4-subunit.530,531 A specific HKβ 
subunit interacts with the HKα subunits to ensure delivery 
to the cell surface and complete expression of H+-K+-ATPase 
activity; HKα2 and HKα4 subunits are also capable of interac-
tion with Na+-K+-ATPase β-subunits.14,532 The pharmacology 
of H+-K+-ATPase holoenzymes differs considerably, such 
that the gastric HKα1 subunit is typically sensitive to the 
H+-K+-ATPase inhibitors SCH-28080 and omeprazole and 
resistant to ouabain; the colonic HKα2 subunit is usually 
sensitive to ouabain and resistant to SCH-28080.532 Within 
the kidney, the HKα1 subunit is expressed at the apical 
membrane of at least a subset of type A intercalated cells 
in the distal nephron.531 HKα2-subunit distribution in the 
distal nephron is more diffuse, with robust expression at 
the apical membrane of types A and B intercalated cells and 
connecting segment cells and lesser expression in principal 
cells.533–535 The human HKα4 subunit is reportedly expressed in  
intercalated cells.531

HKα1 and HKα2 subunits are both constitutively expressed 
in the distal nephron. However, tubule perfusion of K+-replete 
animals suggests a functional dominance of omeprazole/
SCH-28080-sensitive, ouabain-resistant H+-K+-ATPase activity, 
consistent with holoenzymes containing the HKα1 subunit.536 
K+ deprivation increases the overall activity of H+-K+-ATPase in 
the collecting duct, with the emergence of ouabain-sensitive 
H+-K+-ATPase activity; this is consistent with a relative domi-
nance of the HKα2 subunit during K+-restricted conditions.14 
K+ restriction also induces a dramatic upregulation of the 
HKα2-subunit transcript and protein in the outer and inner 
medulla during K+ depletion; HKα1-subunit expression is 
unaffected.14 Mice with targeted deletion of the HKα2 subunit 
exhibit lower plasma and muscle K+ than wild type littermates 
when maintained on a K+-deficient diet. However, this appears 
to be due to marked loss of K+ in the colon rather than 
in the kidney, because renal K+ excretion is appropriately 
reduced in the K+-depleted knockout mice.285 Presumably 
the lack of an obvious renal phenotype in HKα1- or HKα2-
subunit knockout mice reflects the marked redundancy in 
the expression of HKα subunits in the distal nephron.285,537 
Indeed, collecting ducts from the HKα1-subunit knockout 
mice have significant residual ouabain-resistant and SCH-
28080-sensitive H+-K+-ATPase activities, consistent with the 
expression of other HKα-subunits that confer characteristics 
similar to the “gastric” H+-K+-ATPase.538 However, data from 
HKα1- and HKα2-subunit knockout mice have suggested that 
compensatory mechanisms in these mice are not accounted 
for by ATPase-type mechanisms.539

The importance of K+ reabsorption mediated by the 
collecting duct is dramatically illustrated by the phenotype 
of transgenic mice with generalized overexpression of 
a gain-of-function mutation in H+-K+-ATPase, effectively 
bypassing the redundancy and complexity of this reabsorptive 
pathway. This transgene expresses a mutant form of the HKβ-
subunit, in which a tyrosine-to-alanine mutation within the 
carboxyl-terminal tail abrogates regulated endocytosis from the 
plasma membrane; these mice have higher plasma K+ than their 

principal cells,519 with both KIR4.1 and KIR5.1 participating 
in generating the membrane potential that permits Na+ entry 
through ENaC.227,520 Notably, basolateral K+ channel activity 
increases on a high-K+ diet, suggesting a role in transepithelial 
K+ secretion.518 Disruption of KIR5.1 in rats reveals it plays 
a critical role in mediating collecting duct function, particu-
larly with respect to maintenance of K+ homeostasis.520 Activa-
tion of KIR4.1/5.1 by insulin and insulin-like growth factor-1 
(IGF-1) may also facilitate Na+ reabsorption along the CCD 
by hyperpolarizing the basolateral membrane.521

In addition to apical K+ channels, considerable evidence 
has implicated apical K+-Cl− cotransport (or functionally 
equivalent pathways) in distal K+ secretion.67,488,522,523 Thus, 
in rat distal tubules, a reduction in luminal Cl− markedly 
increases K+ secretion; the replacement of luminal Cl− with 
SO4

− or gluconate has an equivalent stimulatory effect on K+ 
secretion.524 This anion-dependent component of K+ secretion 
is not influenced by luminal Ba2+, suggesting that it does not 
involve apical K+ channel activity.524 Perfused surface distal 
tubules are a mixture of the DCT, connecting segment, and 
initial collecting duct; however, Cl−-coupled K+ secretion is 
detectable in the DCT and in early CNT.525 In addition, similar 
pathways are detectable in rabbit CCD, where a decrease in 
luminal Cl− concentration from 112 to 5 mmol/L increases 
K+ secretion by 48%.526 A reduction in basolateral Cl− also 
decreases K+ secretion without an effect on transepithelial 
voltage or Na+ transport, and the direction of K+ flux can be 
reversed by a lumen to bath Cl− gradient, resulting in K+ 
absorption.526 In perfused CCDs from rats treated with 
mineralocorticoid, vasopressin increases K+ secretion; because 
this increase in K+ secretion is resistant to luminal Ba2+ 
(2 mmol/L), vasopressin may stimulate Cl−-dependent K+ 
secretion.14,527 Pharmacologic study results of perfused tubules 
are consistent with K+-Cl− cotransport mediated by the KCCs; 
however, of the three renal KCCs, only KCC1 is apically 
expressed along the nephron.67,523 Other functional possibili-
ties for Cl−-dependent K+ secretion include parallel operation 
of apical H+-K+-exchange and Cl−-HCO3

− exchange in type 
B intercalated cells.522

A provocative study by Frindt and Palmer serves to under-
line the importance of ENaC-independent K+ excretion, 
whether it is mediated by apical K+-Cl− cotransport and/or 
by other mechanisms (see also the “Integrated Na+-Cl− and 
K+ Transport in the Distal Nephron” section).528 Rats were 
infused with amiloride via osmotic minipumps, generating 
urinary concentrations considered sufficient to inhibit more 
than 98% of ENaC activity. Whereas amiloride almost abol-
ished K+ excretion in rats on a normal K+ intake, acute and 
long-term high-K+ diets led to an increasing fraction of K+ 
excretion that was independent of ENaC activity (≈50% after 
7–9 days on a high-K+ diet).

K+ REABSORPTION BY THE COLLECTING DUCT

In addition to K+ secretion, the distal nephron is capable of 
considerable reabsorption, primarily during restriction of 
dietary K+.282–284 This reabsorption is accomplished largely 
by intercalated cells in the OMCD via the activity of apical 
H+/K+-ATPase pumps. Under K+-replete conditions, apical 
H+/K+-ATPase activity recycles K+ with an apical K+ channel, 
without an effect on transepithelial K+ absorption. Under 
K+-restricted basolateral conditions, K+ absorbed via apical 
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hyperkalemia and/or a high-K+ diet, suggesting an impor-
tant feedback effect of aldosterone on K+ homeostasis.549 
Aldosterone also has clinically relevant effects on K+ 
homeostasis, with a clear relationship at all levels of serum 
K+ between circulating levels of the hormone and the ability to  
excrete K+.

Aldosterone has no effect on the density of apical ROMK 
channels in the CCD; it does, however, induce a marked 
increase in the density of apical Na+ channels in the CNT 
and CCD.550 This hormone activates ENaC via interrelated 
effects on the synthesis, trafficking, and membrane-associated 
activity of the subunits encoding the channel (see the “Regula-
tion of Na+-Cl− Transport in the Connecting Tubule and 
Cortical Collecting Duct” section). Aldosterone is thus induced 
by a high-K+ diet and strongly stimulates apical ENaC activity, 
which provides the lumen-negative PD that stimulates K+ 
secretion by principal cells.

The important relationships between K+ and aldosterone 
notwithstanding, it is increasingly clear that much of the 
adaptation to a high-K+ intake is aldosterone independent. 
For example, a high-K+ diet in adrenalectomized animals 
increases apical Na+ reabsorption and K+ secretion in the 
CCD.551 At the tubular level, when basolateral K+ is increased, 
there is significant activation of Na+-K+-ATPase, accompanied 
by a secondary activation of apical Na+ and K+ channels.552 
Increased dietary K+ also markedly increases the density of 
ROMK channels in the CCD, along with a modest increase 
in Na+ channel (ENaC) density; this is associated with changes 
in the subcellular distribution of the ROMK protein, with 
an increase in apical expression.550,553 Notably, this increase 
in ENaC and ROMK density in the CCD occurs within hours 
of consuming a high-K+ diet, with a minimal associated 
increase in circulating aldosterone (Table 6.1).554 By contrast, 
a week of low Na+-Cl− intake, with almost a 1000-fold increase 
in aldosterone, has no effect on ROMK channel density, nor 
for that matter does 2 days of aldosterone infusion, despite 
the development of hypokalemia (Table 6.1).554 Unlike the 
marked increase seen in the CCD, the density of ROMK 
channels in the CNT is not increased by high dietary K+,371,550,554 
but this may reflect difficulties in estimating channel densities 
in small membrane patches. Measurement of whole cell 
currents using the ROMK inhibitor tertiapin-Q indicates an 
upregulation of ROMK activity in the CNT by a high-K+ diet.555

BK channels in the CNT and CCD play an important role 
in the flow-activated component of distal K+ excretion; these 
channels are also activated by dietary K+ loading.491 Flow-
stimulated K+ secretion by the CCD of mice and rats is thus 
enhanced on a high-K+ diet, with an absence of flow-dependent 
K+ secretion in rats on a low-K+ diet.494,556 This is accompanied 
by the appropriate changes in transcript levels for α and β2–4 
subunits of the BK channel proteins in microdissected CCDs 
(β1 subunits are restricted to the CNT).491 Trafficking of BK 
subunits is also affected by dietary K+, with a largely intracel-
lular distribution of α subunits in K+-restricted rodents and 
prominent apical expression in K+-loaded rodents.500,556 
Aldosterone does not contribute to the regulation of BK 
channel activity or expression in response to a high-K+ diet.557

The changes in trafficking and/or activity of the ROMK 
channel that are induced by dietary K+ appear in large part 
to involve tyrosine phosphorylation and dephosphorylation 
of the ROMK protein (see later). However, a series of reports 
have linked changes in expression of WNK1 kinase subunits 

wild type littermates, with approximately half the fractional  
excretion of K+.540

The H+,K+-ATPase may also serve to recycle K+, facilitating 
downregulation of ENaC by the purinergic signaling system 
during high dietary Na+ intake. ENaC activity in HKα1 
knockout mice is uncoupled from dietary Na+ intake, and 
urinary [ATP] is not increased by a high-Na+ diet, as in wild 
type mice.541

REGULATION OF DISTAL K+ TRANSPORT

MODULATION OF RENAL OUTER MEDULLARY 
POTASSIUM CHANNEL ACTIVITY
ROMK and other Kir channels are inward-rectifying—that 
is, K+ flows inward more readily than outward (Kir, inward 
rectifying renal K+ channel). Even though outward conduc-
tance is usually less than inward conductance, K+ efflux 
through the ROMK predominates in the CNT and CCD 
because the membrane potential is more positive than the 
equilibrium potential for K+. Intracellular magnesium (Mg2+) 
and polyamines play key roles in inward rectification, binding, 
and blocking the pore of the channel from the cytoplasmic 
side.542–544 A single transmembrane residue, asparagine-171 
in ROMK1, controls the affinity and blocking effect of Mg2+ 
and polyamines.542,543 Intracellular Mg2+ in the TAL, DCT, 
CNT, and principal cells is thought to have a significant 
effect on ROMK activity because it inhibits outward ROMK-
dependent currents in principal cells.545 The blocking affinity 
of Mg2+ is enhanced at lower extracellular K+ concentrations, 
which should aid in reducing K+ secretion during hypokalemia 
and K+ deficiency.545 A reduction of this intracellular Mg2+ 
block may also explain the hypokalemia associated with 
hypomagnesemia, wherein distal K+ secretion is enhanced.544,545

In addition to inward rectification, the endogenous ROMK 
channels in the TAL and principal cells exhibit a very high 
channel Po. The high Po of ROMK is maintained by the 
combined effects of binding of PIP2 to the channel protein, 
direct channel phosphorylation by PKA, ATP binding to the 
ROMK–CFTR complex, and cytoplasmic pH. PIP2 binding 
to ROMK is thus required to maintain the channel in an 
open state, whereas cytoplasmic acidification inhibits the 
channel.546 PKA phosphorylates ROMK protein at one amino-
terminal serines and two carboxyl-terminal serines—S25, 
S200, and S294 in the ROMK2 isoform.256 Phosphorylation 
of all three sites is required for full channel function. Phos-
phorylation of the amino-terminal site overrides the effect 
of a carboxy-terminal endoplasmic reticulum retention signal, 
thus increasing expression of the channel protein at the cell 
membrane.547 Phosphorylation of S200 and S294 maintains 
the channel in a high Po state, in part by modulating the 
effects of PIP2, ATP, and pH.195,258,259

Because ROMK channels exhibit such a high Po, physiologic 
regulation of the channel is primarily achieved by regulated 
changes in the number of active channels on the plasma 
membrane. The associated mechanisms are discussed in the 
context of the adaptation to K+ loading and hyperkalemia 
and K+ deprivation and hypokalemia.

ALDOSTERONE AND K+ LOADING
Aldosterone has a potent kaliuretic effect, with important 
interrelationships between circulating K+ and aldosterone.548 
Aldosterone release by the adrenal is thus induced by 
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restriction (greater endocytosis of ROMK) and increased by 
K+ loading (reduced endocytosis of ROMK), suggesting that 
this ratio between WNK1-S and WNK1-L functions as a type 
of switch to regulate distal K+ secretion.563,564,568 The inhibitory 
effect of WNK1-S tracks to the first 253 amino acids of the 
protein, encompassing the initial 30 amino acids unique to 
this isoform and an adjacent autoinhibitory domain.569 
Transgenic mice that overexpress this inhibitory domain of 
WNK1-S have lower serum K+ concentrations, higher fractional 
excretion of K+, and increased expression of ROMK protein 
at the apical membrane of CNT and CCD cells—all consistent 
with an important inhibitory effect of WNK1-S.569

The BK channel is also regulated by the WNK kinases. 
WNK4 thus inhibits BK channel activity and protein expres-
sion, whereas FHHt-associated mutations in WNK4 also 
enhance the inhibitory effect via ubiquitination.570–572 A high-K+ 
diet increases WNK1-L expression selectively in intercalated 
cells,573 and activates BK by reducing ERK1/2 signaling–
mediated lysosomal degradation of the channel protein.229

K+ DEPRIVATION
A reduction in dietary K+ leads within 24 hours to a dramatic 
drop in urinary K+ excretion.568,574 This drop in excretion is 
due to both an induction of reabsorption by intercalated 
cells in the OMCD and to a reduction in SK channel activity 
in principal cells.14,283,284 The mechanisms involved in K+ 
reabsorption by intercalated cells are discussed earlier; notably, 
H+/K+-ATPase activity in the collecting duct does not appear 
to be regulated by aldosterone.575

Considerable progress has been made in defining the 
signaling pathways that regulate the activity of the SK channel 
(ROMK) in response to changes in dietary K+. Dietary K+ 
intake modulates trafficking of the ROMK channel protein 
to the plasma membrane of principal cells, with a marked 
increase in the relative proportion of intracellular channel 
protein in K+-depleted animals and clearly defined expression 
at the plasma membrane of CCD cells from animals on a 
high-K+ diet.553,576 The membrane insertion and activity of 
ROMK are modulated by tyrosine phosphorylation of the 
channel protein, such that phosphorylation of tyrosine residue 
337 stimulates endocytosis and dephosphorylation induces 
exocytosis; this tyrosine phosphorylation appears to play a 
key role in the regulation of ROMK by dietary K+.577–579 
Whereas the levels of protein tyrosine phosphatase-1D do 
not vary with K+ intake, intrarenal activity of the cytoplasmic 

in the response to a high-K+ diet. WNK1 and WNK4 were 
initially identified as causative genes for FHHt (see also the 
“Regulation of Na+-Cl− Transport in the Distal Convoluted 
Tubule” section). ROMK expression at the membrane of 
Xenopus oocytes is dramatically reduced by coexpression of 
WNK4; FHHt-associated mutations dramatically increase 
this effect, suggesting a direct inhibition of SK channels in 
FHHt.558 This is further supported by a recent patch-clamp 
study that showed DCT2/CNT isolated from transgenic mice 
expressing FHHt-causing mutant WNK4 has lower ENaC 
and ROMK activity, suggesting direct, NCC-independent 
effects of the mutant.559 The aldosterone-induced SGK1 
is activated by the upstream kinase mTORC2. Disruption 
of mTORC2 in renal epithelia in mice causes profound 
hyperkalemia when they are placed on a high-K+ diet. 
Patch-clamp analysis showed that in CNT/CCD, while ENaC 
activity was unaltered, Ba2+-sensitive K+ currents were almost 
absent. SGK1 phosphorylation was ablated, suggesting that 
hyperkalemia may result from unchecked WNK4-mediated  
ROMK endocytosis.560

The study of WNK1 is further complicated by the tran-
scriptional complexity of its gene, which has at least three 
separate promoters and a number of alternative splice forms. 
In particular, the predominant intrarenal WNK1 isoform is 
generated by a distal nephron transcriptional site that bypasses 
the amino-terminal exons that encode the kinase domain, 
yielding a kinase-deficient short form of the protein (WNK1-S, 
also known as kidney-specific [KS]-WNK1).561 Full-length 
WNK1 (WNK1-L) inhibits ROMK activity by inducing endo-
cytosis of the channel protein; kinase activity and/or the 
amino-terminal kinase domain of WNK1 appear to be required 
for this effect, although Cope and colleagues have reported 
that a kinase-dead mutant of WNK1 is unimpaired.562–564 WNK1 
and WNK4 induce endocytosis of ROMK via interaction with 
intersectin, a multimodular endocytic scaffold protein.565 
Additional binding of ROMK to the clathrin adaptor protein 
termed “autosomal recessive hypercholesterolemia” (ARH) 
is required for basal and WNK1-stimulated endocytosis of 
the channel protein.566 Ubiquitination of ROMK protein is 
also involved in clathrin-dependent endocytosis, requiring 
interaction between the channel and the U3 ubiquitin ligase 
POSH (plenty of SH domains).567

The shorter WNK1-S isoform, which lacks the kinase 
domain, appears to inhibit the effect of WNK1-L.563,564 The 
ratio of WNK1-S to WNK1-L transcripts is reduced by K+ 

Table 6.1  Effect of High-K+ Diet, Aldosterone, and/or Na+-Cl− Restriction on SK Channel Density in the Rat 
Cortical Collecting Duct

Parameter K+ Channel Density (µm2) Plasma Aldosterone (ng/dL) Plasma K (mmol/L)

Control 0.41 15 3.68
High-K+ diet, 6 hours 1.51 36 NM
High-K+ diet, 48 hours 2.13 98 4.37
Low-Na+ diet, 7 days 0.48 1260 NM
Aldosterone infusion, 48 hours 0.44 550 2.44
Aldosterone + high-K+ diet 0.32 521 3.80

NM, Not measured.
Modified from Palmer LG, Frindt G. Regulation of apical K channels in rat cortical collecting tubule during changes in dietary K intake. 

Am J Physiol. 1999;277:F805–F812.
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for full activity in Xenopus oocytes (see the “Regulation of 
Na+-Cl− Transport by the Thick Ascending Limb: Activating 
Influences” section). Finally, the stimulation of luminal V1 
receptors also stimulates K+ secretion in the CCD, apparently 
via activation of BK channels.591

TISSUE KALLIKREIN
The serine protease TK is involved in the generation of kinins, 
ultimately stimulating the formation of bradykinin.592 Within 
the kidney, TK is synthesized in CNT cells and released into 
the tubular lumen and peritubular interstitium. Although 
TK-induced bradykinin has a number of effects on distal 
tubular physiology, more recent data have revealed a provoca-
tive role in postprandial kaliuresis.592 Thus oral K+-Cl− loading 
leads to a spike in urinary K+ and TK excretion in rats, mice, 
and humans.592 The increase in urinary TK after K+ loading 
is not accompanied by changes in urinary aldosterone and 
can be detected in aldosterone synthase knockout mice.593 
Mice deficient in TK demonstrate postprandial hyperkalemia, 
indicating a role for the protease in postprandial kaliuresis. 
This transient hyperkalemia is accompanied by a marked 
increase in K+ reabsorption by perfused CCDs due to an 
upregulation of H+/K+-ATPase activity and an increase in 
HKα2-subunit transcript. The addition of luminal but not 
basolateral TK inhibits the activated CCD H+/K+-ATPase 
activity in the TK knockout mice, consistent with direct 
proteolytic activation. There is also a marked increase in Na+ 
reabsorption by perfused CCDs from TK knockout mice, 
without development of a lumen-negative PD; this is consistent 
with an increased activity of the electroneutral Na+-Cl− cotrans-
port mediated by the Na+-driven SLC4A8 Cl−-HCO3

− exchanger 
and the SLC26A4 Cl−-HCO3

− exchanger (see later discussion 
as well).408 This electroneutral transport pathway had previ-
ously been shown to be inhibited by bradykinin; hence the 
activation by TK deletion presumably reflected loss of tonic 
inhibition by TK-generated bradykinin.406 Previous data had 
indicated that TK mediates proteolytic cleavage of the γ 
subunit of ENaC, with reduced ENaC activity in TK-deficient 
mice; net Na+ balance is thus neutral in these mice.594

In summary, TK secretion from CNT cells is induced by 
oral K+-Cl− loading, causing proteolytic activation of ENaC 
and thus an increase in ENaC-driven K+ secretion, bradykinin-
dependent inhibition of electroneutral Na+-Cl− cotransport 
in the CCD.406,408,594 There is consequently a further augmenta-
tion of electrogenic Na+ transport (favoring K+ secretion), 
and direct luminal inhibition of H+/K+-ATPase activity and 
thus a decrease or tonic inhibition of K+ reabsorption. TK 
may very well be the postprandial factor that functions in 
feed-forward control of plasma K+.586,587

INTEGRATED NA+-CL− AND K+ TRANSPORT IN 
THE DISTAL NEPHRON

Segmentation of the renal epithelia into distinct sections 
does not mean that different segments function indepen-
dently. Increasing evidence from in vivo studies in mice with 
multiple genes disrupted, or from studies in which knockout 
mice are subjected to drug treatment or dietary manipulation, 
shows that effects in one segment exert compensatory effects 
to maintain homeostasis. For example, Slc26a4 knockout mice 
with combined genetic ablation of NCC595 or administration 
of hydrochlorothiazide596 display salt wasting and volume 

tyrosine kinases c-src and c-yes are inversely related to dietary 
K+ intake, with a decrease under high-K+ conditions and a 
marked increase after several days of K+ restriction.14,580 
Localization studies have indicated coexpression of c-src with 
ROMK in the TAL and principal cells of the CCD.553 Moreover, 
inhibition of protein tyrosine phosphatase activity, leading 
to a dominance of tyrosine phosphorylation, dramatically 
increases the proportion of intracellular ROMK in the CCD 
of animals on a high-K+ diet.553

The neurohumoral factors that induce the K+-dependent 
trafficking and expression of apical ROMK and BK channels 
have only come into focus rather recently.553,556,576 Several 
studies have implicated the intrarenal generation of super-
oxide anions in the activation of cytoplasmic tyrosine 
kinases.581–583 Potential candidates for the upstream kaliuretic 
factor include Ang II and growth factors such as IGF-1.581 
Ang II inhibits ROMK activity in K+-restricted rats, but not 
rats on a normal K+ diet.584 This inhibition involves down-
stream activation of superoxide production and c-src activity, 
such that the well-known induction of Ang II by a low-K+ 
diet appears to play a major role in reducing distal tubular 
K+ secretion.585

Reports of transient postprandial kaliuresis in sheep, 
independent of changes in plasma K+ or aldosterone, have 
suggested that an enteric or hepatoportal K+ sensor controls 
kaliuresis via a sympathetic reflex; tissue kallikrein (TK) has 
recently emerged as a candidate mediator for this postprandial 
kaliuresis (see later).586 Regardless of the signaling involved, 
changes in dietary K+ absorption have a direct anticipatory 
effect on K+ homeostasis in the absence of changes in plasma 
K+. Such a feed-forward control has the theoretical advantage 
of greater stability because it operates prior to changes in 
plasma K+.587 Notably, changes in ROMK phosphorylation 
status and insulin-sensitive muscle uptake can be seen in 
K+-deficient animals in the absence of a change in plasma 
K+, suggesting that upstream activation of the major mecha-
nisms that serve to reduce K+ excretion (reduced K+ secretion 
in the CNT and CCD, decreased peripheral uptake, and 
increased K+ reabsorption in the OMCD) does not require 
changes in plasma K+.588 Consistent with this hypothesis, 
moderate K+ restriction, without an associated drop in plasma 
K+, is sufficient to induce Ang II–dependent superoxide 
generation and c-src activation, leading to inhibition of ROMK 
channel activity.585

VASOPRESSIN
Vasopressin has a well-characterized stimulatory effect on K+ 
secretion by the distal nephron.483,589 From an evolutionary 
viewpoint, this vasopressin-dependent activation serves to 
preserve K+ secretion during dehydration and extracellular 
volume depletion, when circulating levels of vasopressin are 
high and tubular delivery of Na+ and fluid is reduced. The 
stimulation of basolateral V2Rs results in an activation of 
ENaC, which increases the driving force for K+ secretion by 
principal cells; the relevant mechanisms have been discussed 
earlier in this chapter (see the “Regulation of Na+-Cl− Trans-
port in the Connecting Tubule and Cortical Collecting Duct: 
Vasopressin and Other Factors” section). In addition, vasopres-
sin activates SK channels directly in the CCD, as does 
cAMP.492,590 The ROMK is directly phosphorylated by PKA 
on three serine residues (S25, S200, and S294 in the ROMK2 
isoform), with phosphorylation of all three sites required 
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ENaC-independent, amiloride-resistant K+ excretion to about 
50%. Again, this presumptively electroneutral, aldosterone-
independent pathway for K+ excretion serves to uncouple 
distal tubular Na+ and K+ excretion.528

WNK-dependent signaling constitutes a major pathway for 
integrating Na+-Cl− and K+ transport within the distal nephron, 
and is regulated by the differential influence of K+ intake 
on circulating Ang II, ROMK activity (i.e., K+ secretory capac-
ity), ratio of WNK1 isoforms, and activity of NCC in the DCT. 
Thus Ang II activates NCC via the WNK4-SPAK pathway, 
reducing delivery of Na+ to the CNT and limiting K+ secre-
tion.312,315,601 By contrast, Ang II inhibits ROMK activity via 
several mechanisms, including downstream activation of c-src 
tyrosine kinases.583–585 Whereas K+ restriction induces renin 
and circulating Ang II, increases in dietary K+ are suppres-
sive.585,602 A decrease in circulating and local Ang II partially 
explains why NCC phosphorylation and activity are down-
regulated by a high-K+ diet; teleologically, this serves to 
increase delivery of Na+ to the CNT, thus increasing K+ 
secretion.361

The DCT also clearly functions as a potassium sensor, 
directly responding to changes in circulating potassium (Fig. 
6.19). Evidence that a key role of the DCT is to act as a 
plasma [K+] sensor, rather than to maintain plasma [Na+], 
is demonstrated by the observation that acute K+ loading 
dephosphorylates NCC even in Na+-restricted mice.603 Reduc-
tion in potassium intake and/or hypokalemia thus lead to 
reduced basolateral [K+] in the DCT; the subsequent hyper-
polarization of DCT cells is dependent on basolateral KIR4.1-
containing K+ channels.308,327 Hyperpolarization leads to 
chloride exit via basolateral CLC-K2 chloride channels; the 
resulting decrease in intracellular chloride disinhibits WNK 
kinases, resulting in phosphorylation of NCC and activation 
of the transporter by SPAK/OSR1.327 Ex vivo studies (micro-
perfusion and kidney slices) have provided evidence that 
increased phosphorylation of NCC resulting in response to 
lower extracellular [K+] is dependent on increased intracel-
lular chloride.604 Along the DCT, WNK4 appears to be the 
major WNK activating NCC,236 and WNK4 is also more sensitive 
to changes in intracellular chloride than WNK1 or WNK3.343 
The essential role of this pathway in mediating responses to 
dietary K+ restriction is clearly demonstrated by the develop-
ment of severe hypokalemia in mice lacking KIR4.1,311 
WNK4,605 SPAK/OSR1,606 and NCC (D.H. Ellison, unpublished 
observations; see Fig. 6.19 for summary of model). An alterna-
tive mechanism has been proposed in which KLHL3, part 
of the ubiquitin ligase complex that degrades WNK4, is 
phosphorylated in response to K+ depletion. This prevents 
WNK4 binding to the complex, decreasing WNK4 degradation, 
which promotes NCC activation.607

NCC undergoes rapid dephosphorylation in response to 
K+ loading,604,608 a process that appears to be largely inde-
pendent of increased intracellular chloride, which would 
inhibit WNKs.604 This suggests a role for protein phosphatases; 
one study suggested that PP3 (calcineurin) is responsible 
for NCC dephosphorylation,608 while another found no role 
for PP1, PP2A, or PP3.604 Glucocorticoid-induced leucine 
zipper protein (GILZ) may also play a role in the response 
to high dietary K+ by inhibiting SPAK activity and hence 
NCC. Compared with wild type mice, Gilz knockout mice 
are more sensitive to NCC inhibition by thiazides and have 
greater abundance of phosphorylated NCC. Gilz knockout 

contraction. Similarly, ENaC blockade with amiloride leads 
to enhanced natriuresis in NCC knockout mice.597 In mice 
with disruption of MR specifically in renal epithelia, while 
activities of both ENaC and NCC are diminished, the effect 
on NCC is secondary to the hyperkalemia induced by lower 
ENaC activity.329,330 These mice are hypotensive, but normaliza-
tion of plasma [K+] by dietary K+ restriction stimulates NCC 
activity resulting in normalization of blood pressure. Grimm 
and colleagues performed microarray studies on SPAK 
knockout mice, which display lower NCC activity, and pro-
posed that α-ketoglutarate may serve as a downstream signaling 
molecule that mediates compensatory responses.598 These 
interactions between segments are likely to be similar to 
those seen with diuretic treatment and may contribute to 
diuretic resistance (see Chapter 50). In the following sections, 
other examples of this intersegment crosstalk are described 
in more depth.

In the classic model of renal K+ secretion, the lumen-
negative PD generated by Na+ entry via ENaC induces the 
exit of K+ via apical K+-selective channels. This general scheme 
explains much of the known physiology and pathophysiology 
of renal K+ secretion, yet has several key consequences that 
bear emphasis. First, enhanced Na+-Cl− reabsorption upstream 
of the CNT and CCD will reduce the delivery of luminal Na+ 
to the CNT and CCD, decrease the lumen-negative PD, and 
thus decrease K+ secretion; K+ secretion by the CCD essentially 
stops when luminal Na+ drops below 8 mmol/L.488–490 In this 
respect, the increasingly refined phenotypic understanding 
of FHHt, caused by kinase-induced gain of function of the 
DCT, has served to underscore that variation in NCC-
dependent Na+-Cl− absorption, just upstream of the CNT, 
has truly profound effects on the ability to excrete dietary 
K+ (Fig. 6.19).345 Second, aldosterone is a kaliuretic hormone, 
induced by hyperkalemia. However, under certain circum-
stances associated with marked induction of aldosterone, 
such as dietary sodium restriction, sodium balance is main-
tained without effects on K+ homeostasis. This so-called 
aldosterone paradox—how the kidney independently regulates 
Na+-Cl− and K+ handling by the aldosterone-sensitive distal 
nephron—is only recently beginning to yield to investigative 
efforts. The major factors in the integrated control of Na+-
Cl− and K+ transport appear to include electroneutral 
thiazide-sensitive Na+-Cl− transport within the CCD, ENaC-
independent K+ excretion within the distal nephron, and 
the differential regulation of various signaling pathways by 
aldosterone, Ang II, and dietary K+.406–408,528,599,600

Thiazide-sensitive electroneutral Na+-Cl− transport within 
the CCD is evidently mediated by the parallel activity of the 
Na+-driven SLC4A8 Cl−-HCO3

− exchanger and the SLC26A4 
Cl−-HCO3

−exchanger.408 The molecular identity of this 
transport mechanism has only emerged rather recently, so 
regulatory influences are not fully characterized.408 However, 
electroneutral Na+-Cl− transport within the CCD is evidently 
induced by volume depletion and mineralocorticoid 
treatment.406–408 This mechanism appears to mediate about 
50% of Na+ reabsorption in the CCD under these conditions, 
all without affecting the luminal PD and thus without direct 
effect on K+ excretion. Therefore electroneutral, thiazide-
sensitive Na+-Cl− transport affords the ability to increase the 
reabsorption of Na+ within the CCD without affecting K+ 
excretion. The converse occurs after several days of accom-
modation to a high-K+ diet, which increases the fraction of 
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mice display elevated plasma [K+] at baseline, with dietary 
Na+ restriction increasing it further. When plasma [K+] 
increases, GILZ-mediated inhibition of NCC may serve to 
maintain distal Na+ delivery to ENaC to drive kaliuresis.609 
Most studies have used diets completely almost deficient in 
K+, or with very high levels, for example, 5% KCl, to examine 
NCC activation status. Relatively small changes in plasma 
[K+] also alter the degree of NCC phosphorylation in vivo, 
suggesting that the role of NCC to maintain plasma [K+] is 
homeostatically important under dietary K+ levels that do 
not show extreme deviation from normal.343

A mouse model in which NCC activity was increased specifi-
cally along DCT1, by expressing a constitutively active SPAK 
mutant only in this segment, suggests that altering NCC 
activity may affect distal K+ secretion by inducing remodeling 
of the CNT, and not just by altering Na+ delivery to ENaC.610 
These mice displayed hyperkalemia, which was associated 
with lower volume of the CNT and lower ROMK abundance, 
which may limit K+ secretion. Chronic blockade of NCC led 
to increased CNT volume and ROMK abundance, and normal-
ized plasma K+, suggesting that altered Na+ delivery to the 
CNT may induce remodeling.

Finally, within principal cells, increases in aldosterone 
induce the SGK1 kinase, which phosphorylates WNK4 and 
attenuates the effect of WNK4 on ROMK, while activating 
ENaC via NEDD4-2-dependent effects.611 However, when 
dietary K+ intake is reduced, c-src tyrosine kinase activity 
increases under the influence of increased Ang II, causing 
direction inhibition of ROMK activity via tyrosine phosphoryla-
tion of the channel.577,579,612 The increase in c-src tyrosine 
kinase activity also abrogates the effect of SGK1 on WNK4.600,613 
While NEDD4-2 can regulate NCC during K+ restriction,321 
ENaC regulation may be more important. In NEDD4-2 
knockout mice, chronic K+ restriction led to hypokalemia 
and urinary K+ wasting that was reversed with the ENaC 
blocker benzamil.340 Higher phosphorylation of NCC and 
lower ROMK abundance were observed, but not sufficient 
to compensate for the effect on ENaC activation. While both 
insulin and IGF-1 activate ENaC, insulin promotes kaliuresis 
whereas IGF-1 exerts an antikaliuretic response. Patch-clamp 
analysis of isolated mouse CCD cells showed that this dif-
ferential effect on K+ secretion may be due to differential 
effects on CLC-K2 (which is expressed in intercalated cells).392 
IGF-1 stimulates ClC-K2, which may promote net Na+-Cl– 
reabsorption, thus reducing the driving force for K+ secretion 
by the CCD. By contrast, insulin inhibits ClC-K2, which would 
enhance the generation of the electrogenic drive for K+ 
secretion.
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BOARD REVIEW QUESTIONS

1.	 Despite being electrically “leaky,” the proximal tubule 
establishes a large transepithelial gradient for which of 
the following ions,
	a.	 Sodium
	b.	 Calcium
	c.	 Bicarbonate
	d.	 Magnesium
Answer: c
Rationale: The proximal tubule actively reabsorbs bicarbon-

ate through the concerted actions of an apical Na-H exchanger 
and basolateral Na-bicarbonate cotransporter, and this occurs 
in excess of osmotic water reabsorption so that, by the mid-PT, 
there is a transepithelial gradient with a higher bicarbonate 
concentration basolaterally than apically.

2.	 Glomerulotubular balance is a term that describes the
	a.	 Decrease in glomerular filtration rate when distal NaCl 

delivery is high
	b.	 Correspondence between glucose filtration and 

excretion
	c.	 Increased proximal fluid reabsorption when GFR 

increases
	d.	 Correspondence between glomerular size and tubule 

length
Answer: c
Rationale: Glomerulotubular balance refers to the phe-

nomenon wherein changes in the glomerular filtration rate 
(GFR) are offset by changes in tubular reabsorption, thus 
maintaining a constant fractional reabsorption of fluid and 
Na+-Cl−. Glomerulotubular balance is independent of direct 
neuronal and systemic hormonal control and is thought to 
be mediated by the additive effects of luminal and peritubular 
factors.

3.	 The thick ascending limb has a transepithelial voltage 
oriented in the lumen-positive direction primarily because 
of the combined actions of
	a.	 Primary active transport of chloride out of the lumen
	b.	 Luminal chloride channels and basolateral potassium 

channels
	c.	 Apical Na-K-Cl cotransport and basolateral Na/K ATPase
	d.	 The charge carried by the apical Na-K-Cl cotransporter
	e.	 Luminal potassium channels and basolateral chloride 

channels
Answer: e
Rationale: The lumen-positive transepithelial potential 

difference in the thick ascending limb of Henle is generated 

by the combination of apical K+ channels and basolateral 
Cl− channels. Luminal recycling of K+ via Na+-K+-2Cl− cotrans-
port and apical K+ channels, along with basolateral depolariza-
tion due to Cl− exit through Cl− channels, results in the 
lumen-positive transepithelial voltage.

4.	 Which of the following is now known to play a dominant 
role in modulating the activity of the thiazide-sensitive 
NaCl cotransporter in the distal convoluted tubule?
	a.	 Serum potassium concentration
	b.	 Serum sodium concentration
	c.	 Serum chloride concentration
	d.	 Serum bicarbonate concentration
Answer: a
Rationale: Recent evidence shows that DCT cells, and 

NCC, are exquisitely sensitive to plasma [K+]. WNKs, especially 
WNK4, appear to be sensitive to inhibition by intracellular 
chloride, and this plays a major role in the potassium-sensing 
function of DCT cells. Hypokalemia leads to reduced baso-
lateral K+ concentration in the DCT, and subsequent 
hyperpolarization that is dependent on basolateral KIR4.1-
containing K+ channels. This hyperpolarization has been 
proposed to lead to chloride exit via basolateral CLC-K2 
chloride channels and a reduction in intracellular chloride; 
the reduction in intracellular chloride activates the SPAK 
and OSR1-WNK cascade, resulting in phosphorylation of 
NCC and activation of the transporter.

5.	 Combined genetic deletion of the thiazide-sensitive NaCl 
cotransporter and pendrin in mice causes which striking 
phenotype?
	a.	 Profound hyperkalemic acidosis
	b.	 Hypercalciuria with nephrocalcinosis
	c.	 Nephrogenic diabetes insipidus
	d.	 Profound salt wasting
Answer: d
Rationale: There is increasing evidence that effects on 

salt transport in one tubule segment induce compensatory 
effects in other segments to maintain homeostasis. Whereas 
single deletion of pendrin or the thiazide-sensitive NaCl 
cotransporter in mice does not cause salt wasting or excessive 
diuresis, double knockout mice with combined genetic abla-
tion of pendrin and the thiazide-sensitive NaCl cotransporter 
display severe salt wasting, increased urine output, volume 
depletion and renal failure.
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CALCIUM TRANSPORT IN THE KIDNEY

THE ROLE OF CALCIUM IN CELLULAR PROCESSES

Calcium is an abundant cation in the body (Table 7.1). Several 
biochemical and physiologic processes, including nerve 
conduction and function, coagulation, enzyme activity, exo-
cytosis, and bone mineralization, are critically dependent on 
normal calcium concentrations in extracellular fluid.1–3 Not 
unexpectedly, significant decreases or increases in serum 
calcium concentrations are associated with marked symptoms 
and signs. Intricate mechanisms exist to maintain extracellular 

fluid calcium concentrations within a narrow range and to 
maintain calcium balance. Decreases in serum calcium con-
centrations are associated with numbness and tingling of the 
extremities and peri-oral region, cramping, Chvostek and 
Trousseau signs, tetany, and when profound, generalized 
seizures.4–6 A negative calcium balance that is present when 
calcium absorption in the intestine is reduced is associated 
with secondary hyperparathyroidism, hypophosphatemia, and 
rickets or osteomalacia.5,6 Hypercalcemia, especially when 
severe, is associated with lethargy, confusion, irritability, depres-
sion, hallucinations, and in extreme cases, stupor and coma, 
anorexia, nausea, vomiting and constipation, cardiac ectopy, 

KEY POINTS

•	 1α,25(OH)2D3, parathyroid hormone (PTH), and the phosphatonin, FGF-23, regulate renal 
tubule function to maintain homeostasis of serum calcium and phosphate concentrations, 
whereas magnesium handling is regulated largely by dietary magnesium load.

•	 The hypocalciuric effect of PTH is mediated by increased paracellular Ca2
+ reabsorption in 

the thick ascending limb of Henle, via inhibition of claudin-14 and by changes in the 
expression of apical channels in the distal tubule.

•	 Sclerostin is an osteocyte-derived glycoprotein that has calciuric effects and appears to serve 
as a counterbalance to PTH and 1α,25(OH)2 in calcium homeostasis.

•	 Claudin-10b is a tight junction protein that mediates paracellular Na+ reabsorption in the 
medullary thick ascending limb, thereby limiting Ca2

+ reabsorption further downstream in the 
cortical thick ascending limb.

•	 Mutations in claudin-10b cause hypermagnesemia and hypokalemic alkalosis, together with 
various extrarenal manifestations.

•	 PTH and FGF-23 converge on a common signaling pathway in the proximal tubule, 
involving phosphorylation of NHERF-1 and dissociation and internalization of the NaPi-IIa 
cotransporter, to cause phosphaturia.

•	 1α,25(OH)2D stimulates the synthesis of FGF-23, which in turn inhibits 25-hydroxyvitamin D 
1α-hydroxylase, serving as a negative feedback loop to limit vitamin D effects on phosphate 
turnover.
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an increase in free calcium. A 1-g/dL change in serum albumin 
is associated with a 0.8-mg/dL change in total serum calcium, 
and a 1-g/dL change in globulins is associated with a 0.16-mg/
dL change in total serum calcium. An equation defining the 
amount of calcium (mmol/L) bound to albumin and globulins 
(g/L) as a function of pH is as follows14:

[ ] . [ ] [( . )([ ] . )( . )]
. [

CaProt Alb Alb pH
Glo

= − −
+
0 019 0 42 47 3 7 42

0 004 bb Glob pH] [( . )([ ] . )( . )]− −0 42 25 0 7 42

If one assumes that all calcium is bound to albumin, the 
following equation applies:

[ ] . [ ] [( . )([ ] . )( . )]CaProt Alb Alb pH= − −0 0211 0 42 47 3 7 42 ,  
where Alb is albumin, CaProt is protein-bound calcium, 
and Glob is globulins.

A nomogram describing this relationship is shown in  
Fig. 7.3.

Table 7.1  Composition of the Whole Body as Determined by Chemical Analysis (Values per Kilogram Fat-
Free Tissue Unless Otherwise Indicated)

Body Weight
(kg)

Watera

(g)
Fata

(g)
Water
(g)

N
(g)

Na
(mEq)

K
(mEq)

Cl
(mEq)

Mg
(g)

Ca
(g)

P
(g)

Fe 
(mg)

Cu
(mg)

Zn 
(mg)

B
(mg)

Co
(mg)

70 605 160 720 34 80 69 50 0.47 22.4 12.0 74 1.7 28 0.37 0.02

aPer kilogram whole body weight.

Bone
800 mg

Extracellular fluid
1000 mg

Absorbed
calcium
400 mg

Secreted
“endogenous
fecal calcium”

150 mg

Duodenum,
small intestine

Fecal
calcium
750 mg

Dietary calcium
1000 mg

Kidney
Filtered 9000 mg/day

Reabsorbed 8750 mg/day

Urine
250 mg/day

Fig. 7.1  Calcium homeostasis in normal humans showing the amounts 
of calcium absorbed in the intestine and reabsorbed by the kidney. 
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Fig. 7.2  Components of serum total calcium assessed by ultrafiltra-
tion data in normal human patients. CaR, Diffuse of both calcium 
complexes; Ca2+, ionized calcium, CaProt, protein-bound calcium.  
Redrawn from Moore, EW. Ionized calcium in normal serum, ultrafiltrates, 
and whole blood determined by ion-exchange electrodes. J Clin Invest. 
1970;49:318–334, with permission of the publisher.

and polyuria and renal colic from the passage of renal stones.7 
The attendant hypercalciuria is associated with a reduced 
capacity to concentrate urine,8–11 volume depletion, and 
nephrocalcinosis and renal stones.12,13 Hypercalcemia occurs 
as a result of parathyroid hormone(PTH)-dependent or PTH-
independent processes, and changes in laboratory values 
depend on the etiology of hypercalcemia.7 Thus, in PTH-
dependent hypercalcemia, elevated serum PTH concentrations 
are present and are the cause of hypercalcemia, whereas in 
PTH-independent hypercalcemia, PTH concentrations are 
suppressed, sometimes in association with increases in various 
vitamin D metabolites.7 As shown in Fig. 7.1, the intestine and 
kidney are important in the absorption and the reabsorption 
and excretion of calcium. Following the absorption in the 
intestine, calcium in the extracellular fluid space is deposited 
in bone (the major repository of calcium in the body) and is 
filtered in the kidney. The concentration of calcium in serum 
varies with age and gender, with higher values present in 
children and adolescent subjects than in adults.

CALCIUM IS PRESENT IN SERUM IN BOUND  
AND FREE FORMS

Calcium is present in plasma in filterable (60% of total calcium) 
and bound (40% of total calcium) forms. Filterable calcium is 
composed of calcium complexed to anions, such as citrate, 
sulfate, and phosphate (~10% of total calcium) and ionized 
calcium (~50% of total calcium) (Fig. 7.2).14 The percentage of 
calcium bound to proteins (predominantly albumin, and to a 
lesser extent, globulins), and the amount of filterable calcium, 
is dependent on plasma pH.14 Alkalemia is associated with a 
reduction in free calcium, whereas acidemia is associated with 
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vitamin D3.31 Although vitamin D2 is less active in birds than 
mammals, when compared with vitamin D3, the metabolic 
transformations of vitamin D2 and vitamin D3 are similar.32 
Vitamin D3, bound to vitamin D–binding protein, to which it 
preferentially binds relative to its precursor, pre-vitamin D3,29 
exits the skin, enters the circulation, and is metabolized in 
the liver microsomes and mitochondria to 25-hydroxyvitamin 
D3 (25(OH)D3) by the vitamin D3-25-hydroxylase.16,33–43 The 
CYP2R1 is the cytochrome P450 of the microsomal vitamin 
D3-25 hydroxylase.41 Other vitamin D3-25-hydroxylases play a 
role in the transformation of vitamin D3 to 25(OH)D3 because 
deletion of the Cyp2r1 gene in mice results in reduced (>50% 
reduction) but detectable serum 25(OH)D3 concentrations.43

The subsequent metabolism of 25(OH)D3 is dependent on 
the calcium and phosphorus requirements of the individual. 
In states of calcium demand, 25(OH)D3 is metabolized by 
the 25-hydroxyvitamin D3-1α-hydroxylase to the biologically 
active vitamin D metabolite, 1α,25-dihydroxyvitamin D3 
(1α,25(OH)2D3), in mitochondria of kidney proximal and 
distal tubule cells by PTH-dependent processes (see Fig. 
7.4B).18,26,44–56 In response to reductions in calcium intake and 
subsequent decreases in serum calcium, PTH release from 
the parathyroid glands is increased. The change in serum 
calcium concentrations is detected by the parathyroid gland 
calcium-sensing receptor, a G-protein–coupled receptor, which 
alters PTH release from the parathyroid cell.57–60 PTH enhances 
calcium transport in the distal tubule of the kidney directly,61–63 
and indirectly through changes in sclerostin expression,55,56,64,65 
and increases the activity of the renal 25-hydroxyvitamin D 
1α-hydroxylase, and attendant increases in the synthesis of 
1α,25(OH)2D3.52 1α,25(OH)2D3 increases calcium transport 
in the intestine49,50,66 and kidney.67–71 At the same time, both 
PTH72–74 and 1α,25(OH)2D75,76 increase bone calcium mobiliza-
tion and help to maintain serum calcium concentrations. The 
converse series of events occurs in hypercalcemic circumstances. 
In states of calcium sufficiency, the synthesis of 1α,25(OH)2D3 
is reduced, and the synthesis of 24R,25-dihydroxyvitamin 
D3 (24R,25(OH)2D3), a vitamin D metabolite with reduced 
bioactivity, is increased.77–79 The synthesis of 24R,25(OH)2D3 is 
mediated by a 1α,25(OH)2D3-inducible enzyme, the 25(OH)
D3-24-hydroxylase, that is present in several target tissues of 
1α,25(OH)2D3 including the intestine and the kidney.77,80–84

1α,25(OH)2D3, PTH, and the phosphatonin, fibroblast 
growth factor-23 (FGF-23), regulate and maintain normal 
phosphorus concentrations.85–87 Serum phosphate concentra-
tions also regulate the synthesis of 1α,25(OH)2D3 by PTH 
independent mechanisms.88 In states of phosphorus demand, 
25(OH)D3 is metabolized to 1α,25(OH)2D3 and the synthesis 
of 24R,25(OH)2D3 is reduced.16,46,89–92 The enhanced synthesis 
of 1α,25(OH)2D3 in hypophosphatemic states is induced 
directly by reductions in serum phosphate,88,93–95 an increase 
in the expression of IGF-1,96,97 and by inhibition of FGF-23.98 
The converse occurs in hyperphosphatemic states. A decrease 
in serum phosphate concentrations is associated with an 
increase in ionized calcium, a decrease in PTH secretion, 
and a subsequent decrease in renal phosphate excretion. An 
increase in renal 25-hydroxyvitamin D-1α-hydroxylase activity, 
increased 1α,25(OH)2D3 synthesis, and increased phosphorus 
absorption in the intestine and reabsorption in the kidney 
occur.88,92,94,99–105 In the intestine and kidney, 1α,25(OH)2D3 
increases the expression of the sodium–phosphate cotrans-
porters IIb, and IIa and IIc, respectively, thereby regulating 

REGULATION OF CALCIUM HOMEOSTASIS BY 
THE PARATHYROID HORMONE–VITAMIN D 
ENDOCRINE SYSTEM

In states of neutral calcium balance, the amount of calcium 
absorbed by the intestine is equivalent to the amount 
excreted by the kidney. The central role of the vitamin 
D–PTH endocrine system in the regulation of calcium 
homeostasis is well recognized.15–17 The major physiologic 
role of vitamin D through the activity of its active metabolite 
1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) is the mainte-
nance of normal calcium and phosphorus balance.18–21 In 
Fig. 7.4 the metabolism of vitamin D and the adaptations that 
occur in response to changes in serum calcium are illustrated.  
Fig. 7.4A summarizes the salient biochemical transformations 
that occur endogenously during the formation and metabo-
lism of vitamin D3. Vitamin D3 (cholecalciferol) is formed in 
the skin by the ultraviolet light–mediated photolysis of the 
B-ring of the sterol precursor, 7-dehydrocholesterol, which 
gives rise to pre-vitamin D3 that rapidly undergoes thermal 
equilibration to vitamin D3.22–30 Vitamin D2, or ergocalciferol, 
derived by photolysis of the plant sterol, ergosterol, is ingested 
orally, after which it is metabolized in a similar manner to 
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anephric animals and patients,53,75,114 whereas 1α,25(OH)2D3 
readily increases intestinal calcium transport49,50 and mobilizes 
calcium from bone75 when given in physiologic amounts.  
The actions of 1α,25(OH)2D3 require the presence of the 
vitamin D receptor (VDR), a steroid hormone receptor, that 
binds 1α,25(OH)2D3 with high affinity.115–118 Following binding 
of 1α,25(OH)2D3 to the ligand binding domain of the VDR, 
a conformational change in the receptor occurs and is associ-
ated with the recruitment of RXRα and coactivator (or 
corepressor) proteins to DNA binding elements within the 
transcription start site or other areas of genes regulated by  

the efficiency of Pi absorption in enterocytes and proximal 
tubule (PT) cells.87,106–108 In hyperphosphatemic states, renal 
25-hydroxyvitamin D-1α-hydroxylase activity and 1α,25(OH)2D3 
synthesis are diminished, and 25-hydroxyvitamin D-24-hy-
droxylase activity is increased in association with elevations 
in FGF-23.7,98 Numerous other factors other than calcium and 
phosphorus alter the activity of the 25(OH)D-1α-hydroxylase 
and the reader is referred to reviews on this matter.47,109–113

The bioactivity of vitamin D3 depends on the formation of 
1α,25(OH)2D3 as pharmacologic amounts of vitamin D3 or 
25(OH)D3 are required to elicit a biological response in 
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A large percentage (~70%) of filtered calcium (Ca2+) is 
reabsorbed in the PT mainly by paracellular processes 
that are linked with sodium (Na+) reabsorption.165,167–170 In 
this nephron segment, the reabsorption of Na+ and Ca2+ is 
proportional under a variety of conditions169,171 and is not 
dissociated following the administration of several factors that 
are known to alter renal Ca2+ reabsorption, such as PTH, cyclic 
AMP, chlorothiazide, furosemide, acetazolamide, or changes 
in the hydrogen ion content.168,169,172,173 The precise cellular 
and molecular machinery responsible for the movement of 
Ca2+ from the lumen of the PT into the interstitial space is 
not clearly defined. A majority of Ca2+ is believed to move 
in between cells (paracellular movement) with a smaller, 
but significant, transcellular component (Fig. 7.6). The 
components of the paracellular pathway likely include the 
tight junction protein, claudin-2, which functions as a paracel-
lular cation channel. Ca2+ permeates through claudin-2174 and 
simultaneously competitively inhibits Na+ conductance.175 A 
transcellular component of Ca2+ reabsorption may also be 
present in the PT. Undefined Ca2+ channels and intracellular 
Ca2+-binding proteins influence the movement of Ca2+ into 
and across the cell. The Na-K-ATPase has been implicated 
in transcellular Ca2+ transport in the PT,176 and both the 
Na+-Ca2+ exchanger177 and isoforms 1 and 4 of the plasma 
membrane Ca2+ pump178,179 are expressed in the PT, and could 
be important in the movement of Ca2+ out of the PT cell. 
Although the PT reabsorbs large amounts of Ca2+, primarily 
by paracellular processes, the rate of Ca2+ reabsorption is not 
influenced by factors or hormones that regulate calcium 
balance.168,169,172 Extracellular volume status is the major factor 
that influences Ca2+ reabsorption in the PT, via its effects on 
Na+ reabsorption (see later).

1α,25(OH)2D3.20,119–139 The efficiency of calcium absorption 
increases or decreases inversely with the amount of dietary 
calcium, and adaptations to changes in calcium intake are 
dependent on 1α,25(OH)2D3.140,141 Calcium is absorbed by 
the intestine by passive paracellular and active transcellular 
mechanisms.141–143 Active calcium absorption initially involves 
the movement of calcium across the apical border of the 
intestinal cell into the cell down a concentration and electrical 
gradient and does not require the expenditure of energy.17,144 
The extrusion of calcium out of the intestinal cell at the 
basolateral membrane is against an electrical and concentration 
gradient and requires the energy expenditure.17,144 Essential 
to the process of active calcium transport are several vitamin 
D–dependent proteins, including the TRPV 5/6 (transient 
receptor potential vanilloid 5/6) epithelial calcium channels, 
calbindin D9K and D28K, and the plasma membrane calcium 
pump.87 In the duodenal enterocyte, apically situated TRPV 
5/6 cation channels mediate the increase in Ca uptake from 
the lumen into the cell145; intracellular Ca binding proteins 
such as calbindin D9K and D28K facilitate the movement of Ca 
across the cell17,143; and the basolateral plasma membrane Ca 
pump (PMCA)2,146,147 and the Na-Ca exchanger (NCX)148 assist 
in the extrusion of Ca from within the cell into the extracellular 
fluid (ECF). The Na gradient for the activity of the NCX is 
maintained by the Na-K-ATPase. Intestinal transcellular Ca 
transport is regulated by 1α,25(OH)2D3, which increases the 
expression of TRPV 6 channels,149 the intracellular concentra-
tions of calbindin D9K and D28K,17,150–152 and the expression of 
the plasma membrane pump, isoform 1.153,154 The requirement 
of various intestinal Ca transporter proteins in transcellular 
Ca transport in vivo has been examined in knockout mice. 
Deletions of TrpV6 and calbindin D9K genes are not associated 
with alterations in intestinal Ca transport in vivo in the basal 
state and following the administration of 1α,25(OH)2D3,155,156 
although one report suggests that basal Ca transport on an 
adequate Ca diet is normal in TrpV6 knockout mice but 
adaptations to a low-Ca diet are impaired.157 We recently 
showed that deletion of the Pmca1 in the intestine is associated 
with reduced growth and bone mineralization and a failure 
to upregulate calcium absorption in response to 1α,25(OH)2D3, 
thereby establishing the essential role of the pump in transcel-
lular intestinal Ca transport.158

REABSORPTION OF CALCIUM ALONG  
THE TUBULE

The kidney reabsorbs filtered calcium in amounts that are 
subject to regulation by calciotropic hormones, PTH and 
1α,25(OH)2D.16,145,159–164 Between 9000 and 10,000 mg of 
complexed and ionized calcium are filtered by the glomerulus 
in a 24-hour period. The amount of calcium appearing in 
the urine is approximately 250 mg/day, and it is therefore 
evident that a large percentage of filtered calcium is reab-
sorbed. As a result of reabsorption processes that occur in 
both the proximal and distal tubule, only 1%–2% of calcium 
filtered at the glomerulus appears in the urine.145,161,164 Fig. 
7.5 shows the percentages of calcium reabsorbed along 
different segments of the nephron.

CA2+ REABSORPTION IN THE PROXIMAL TUBULE
As noted earlier, about 60%–70% of total plasma calcium is 
free (not protein bound) and is filtered at the glomerulus.165,166 
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Fig. 7.5  Percentages of filtered calcium reabsorbed along the tubule. 
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Fig. 7.7  Mechanisms and regulation of calcium transport in the 
thick ascending limb of Henle (TALH). In the TALH, calcium is 
reabsorbed via paracellular mechanisms through a pore composed 
in part by claudin-16 and claudin-19. The activity of the latter proteins 
is suppressed by claudin-14, whose expression is controlled by 
parathyroid hormone (PTH) and Ca2+. PTH binds to its receptor and 
inhibits the expression of claudin-14, whereas extracellular fluid Ca2+ 
activates the calcium-sensing receptor (CaSR) and increases claudin-14 
expression. The reabsorption of Ca2+ in the TALH is the result of 
opposing activities of PTH and Ca2+ through their receptors. CLDN 
16/19, Claudin-16 and -19; PTH, parathyroid hormone; PTH R, 
parathyroid receptor. 

CA2+ REABSORPTION IN THE LOOP OF HENLE
The thin descending and thin ascending limbs of the loop 
of Henle do not transport significant amounts of Ca.2+ 197,198 
Between 20%–25% of filtered Ca2+ is reabsorbed in the thick 
ascending loop of Henle, primarily by the paracellular route 
involving claudin-16 and -19.165,180–191 Thick ascending limb 
cells express the furosemide-sensitive Na-K-Cl cotransporter, 
NKCC2,192–195 which mediates the reabsorption of Na+ and 
thereby contributes to the driving force for paracellular Ca2+ 
transport. A lumen-positive transepithelial potential is gener-
ated in the thick ascending limb of the loop of Henle (TALH) 
through the activity of the NKCC2 (Na-K-2Cl cotransporter)196 
by two mechanisms: secondary apical recycling of K+ via 
ROMK, and a NaCl diffusion potential generated by reab-
sorbed NaCl establishing a concentration gradient across the 
Na-selective paracellular pathway. This transepithelial voltage 
provides the driving force for passive Ca2+ reabsorption 
through the paracellular pathway.

Claudins, located in the tight junction between cells of the 
TALH play a role in the paracellular movement of Ca2+ (and 
Mg2+ reabsorption, as discussed in the next section)197,198  
(Fig. 7.7). Claudin-16 (also known as paracellin), together 
with claudin-19, forms a paracellular pore. A heteromeric 
claudin-16 and claudin-19 interaction is required to assemble 
and traffic to the tight junction and to generate cation-selective 
paracellular channels.199,200 It has been postulated that these 
channels are themselves responsible for permeating divalent 
cations, Ca2+ and Mg2+, via the paracellular route.197,198 An 
alternative hypothesis is that claudin-16 and -19 form Na+ 
channels and act primarily to establish the transepithelial NaCl 
diffusion potential, thus contributing to the driving force for 
divalent cation reabsorption.199–202 Regardless of the mechanism, 
loss-of-function mutations in the genes encoding claudin-16 
and -19 result in familial hypomagnesemia with hypercalciuria 
and nephrocalcinosis (FHHNC), which is characterized by 
renal Ca2+ and Mg2+ wasting due to defective thick ascending 
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Fig. 7.6  Mechanisms by which calcium is transported in the 
proximal tubule. The majority of calcium is reabsorbed by paracellular 
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limb divalent cation reabsorption. Hou et al. generated 
claudin-16 and claudin-19 knockdown mouse models using 
transgenic siRNAs and demonstrated that these mice have 
significantly reduced plasma Mg2+ concentrations and excessive 
urinary excretion of Mg2+ and Ca.2+ 380 Calcium deposits were 
observed in the basement membranes of the medullary tubules 
and the interstitium in the kidney of claudin-16 knockdown 
mice. Thus, the phenotypes of Cldn16 and Cldn19 knockdown 
mice recapitulate the phenotype of human FHHNC patients. 
Similarly, mutations of NKCC2 are associated with the common 
form of Bartter syndrome and can be associated with hyper-
calciuria203 (see also Chapters 18 and 44).

Calcium-regulating hormones can regulate reabsorption 
of Ca2+ by the thick ascending limb, but there is considerable 
species heterogeneity. In the mouse, PTH and calcitonin 
(CT) stimulate Ca2+ transport in the cortical thick ascending 
limb,184,186,204,205 whereas in the rabbit CT stimulates calcium 
reabsorption in the medullary thick ascending limb but not 
in the cortical thick ascending limb.189 Extracellular fluid 
calcium also regulates calcium reabsorption in this segment 
through the Ca2+-sensing receptor (see later).

CA2+ REABSORPTION IN THE DISTAL TUBULE
In the distal convoluted tubule (primarily DCT2) and con-
necting tubule (together abbreviated as DT), 5%–10% of 
filtered Ca2+ is reabsorbed206–208 by active transport processes 
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of tubular cells by inhibiting endocytosis of caveolae in which 
the channels are located.221 1α,25(OH)2D3 enhances the 
expression of TRPV5 and TRPV6 channels present in the 
distal and connecting tubule and cortical collecting duct by 
increasing respective mRNA concentrations through increased 
binding of the VDR to response elements in the gene promot-
ers.70,213 1α,25(OH)2D3 increases the expression of calbindin 
D9K and D28K and the PMCA pump in the kidney and cultured 
renal cells.70,179,222–231 The effect of PTH and 1α,25(OH)2D3 
is to increase the expression of Ca2+ channels, binding 
proteins, pumps and exchangers, thereby increasing the 
retention of calcium by the kidney.

PTH has also been well described to increase renal tubule 
Ca2+ reabsorption by increasing its passive permeability in 
the TALH, predominantly in the cortical segment.232,233 The 
mechanism has now been elucidated. PTH, acting through 
the PTH/PTHrP receptor, has been shown to inhibit the 
transcription and subcellular trafficking of claudin 14, thereby 
increasing paracellular Ca2+ reabsorption in the TALH234 (see 
Fig. 7.7). Claudin-14 binds to claudin-16 and functions to 
inhibit the paracellular pore comprised of claudins 16 and 
19. Tissue-specific knockout of the renal tubule PTH/PTHrP 
receptor in mice caused hypercalciuria and hypocalcemia, 
which was completely rescued by claudin-14 deletion, suggest-
ing that the effect of PTH on paracellular Ca2+ transport in the 
TALH may be more important than previously appreciated.

EXTRACELLULAR CALCIUM AND DIET
The level of extracellular calcium regulates renal Ca2+ 
reabsorption by signaling though the Ca-sensing receptor 
(CaSR). In the kidney, the CaSR is primarily expressed on 
the basolateral membrane of the TALH. Activation of CaSR 
reduces renal tubular Ca2+ reabsorption and induces calciuresis 

against both an electrical and concentration gradient. Ca2+ 
reabsorption in the DT occurs via a transcellular pathway. 
The apically situated, transient receptor potential cation 
channels, subfamily V, type 5 and 6 channels (TRPV5, TRPV6) 
mediate the increase in Ca2+ uptake from the lumen into 
the cell.164,209–214 Micropuncture studies in knockout mice 
indicate that TRPV5 is the gatekeeper of Ca2+ reabsorption 
in the accessible DT in mice (Fig. 7.8A).211 The intracellular 
Ca2+-binding proteins, calbindin D9K and D28K, facilitate the 
movement of Ca2+ across the cell.160,215 The basolateral plasma 
membrane calcium ATPase (PMCA) pump,159,160,162 Na+-Ca2+ 
exchanger (NaCX),216–219 and the Na+-Ca2+-K+ exchanger 
(NaCKX)220 mediate the active extrusion of Ca2+ across the 
basolateral membrane (see Fig. 7.8B and 7.8C). The Na+ 
gradient for the activity of the NaCX and the NaCKX is 
provided by the Na-K ATPase situated at the basolateral cell 
membrane (not shown). Ca2+ reabsorption in the DT is 
increased by PTH,61–63 CT,204,205 and 1α,25(OH)2D3.67–71

REGULATION OF CA2+ TRANSPORT IN  
THE KIDNEY

CALCIUM-REGULATING HORMONES
The calcium-regulating hormones, PTH and 1α,25(OH)2D3, 
regulate the expression or activity of calcium channels, 
calcium-binding proteins, calcium pumps, and exchangers 
in the kidney to increase tubule retention of filtered calcium 
via the transcellular pathway. PTH increases the activity of 
TRPV5 channels in the DT by activating cAMP-PKA signaling, 
and phosphorylating a threonine residue within the channel, 
resulting in an increase in the open probability of the 
channel.220 PTH also activates the PKC pathway, thereby 
increasing the numbers of TRPV5 channels on the surface 

*P < .05 vs

A B C

+

Fig. 7.8  Mechanisms of calcium transport in the distal convoluted tubule. A. Role of TRPV5 investigated by micropuncture of kidneys 
from TRPV5 knockout mice. The figure shows fractional Ca2+ delivery to micropuncture sites in the late proximal tubule (LPT) to sites located 
along the distal convolution (DC) from early to late DC (as localized using tubule K+ concentrations) and to the urine. Deletion of TRPV5 in mice 
prevents Ca2+ reabsorption along the DT and there is even evidence for Ca2+ leaking back into the lumen, possibly by paracellular routes; 
TRPV6 may partially compensate in the collecting duct. B. Distribution of 1α,25(OH)2D or parathyroid hormone–sensitive channels and transporters 
along the distal convoluted tubule (DCT1 and DCT2), connecting tubule (CNT), and cortical and medullary collecting ducts (CCD and MCD). 
C. Ca transport in the DT occurs by transcellular mechanisms. Transcellular Ca transport is mediated by several channels, pumps, and 
exchangers located at the apical and basolateral portions of the cell. Modified from Kumar R, Vallon V. Reduced renal calcium excretion in the 
absence of sclerostin expression: evidence for a novel calcium-regulating bone kidney axis. J Am Soc Nephrol. 2014;25:2159–2168, with permission 
of the publisher.
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ESTROGENS

Estrogens influence calcium transport in the kidney as 
postmenopausal women have higher urinary Ca2+ excretion 
than premenopausal women.252 In the early postmenopausal 
period the administration of estrogen is associated with a 
decrease in urine Ca2+ excretion and an increase in serum 
PTH and 1α,25(OH)2D.253,254 Estradiol increases the expression 
of the TRPV5 channel in the kidney in a manner independent 
of 1α,25(OH)2D3.255 These observations are supported by 
reduced duodenal TRPV5 channel expression in mice lacking 
the estrogen receptor α.256

EXTRACELLULAR FLUID VOLUME
In conditions such as volume depletion, where PT Na+ 
reabsorption is increased, one also observes enhanced Ca2+ 
reabsorption that can contribute to the hypercalcemia that 
is sometimes seen in such situations. Conversely, the salutary 
effects of isotonic saline administration in hypercalcemic 
patients are attributable to a reduction in Ca2+ reabsorption 
as a result of reduced Na+ reabsorption.

METABOLIC ACIDOSIS AND ALKALOSIS
Metabolic acidosis is associated with hypercalciuria, and when 
prolonged, often results in bone loss and osteoporosis.257 
Metabolic acidosis and metabolic alkalosis decrease or increase 
the reabsorption of Ca2+ in the distal tubule,172,258–261 the 
expression TrpV5 in the distal tubule,262 and the activity of 
TrpV5 channels.263–265

REGULATION OF RENAL CALCIUM TRANSPORT 
BY NOVEL PROTEINS

KLOTHO
Klotho is a coreceptor for the phosphaturic peptide, FGF 
23, with β-glucuronidase activity.266–269 It is a kidney- and 
parathyroid gland–specific protein, which influences epithelial 
Ca2+ transport by deglycosylating TRPV5, thereby trapping 
the channel in the plasma membrane and sustaining the 

in response to a Ca load.235,236 One mechanism is by inhibition 
of NKCC2 expression236 or activity. More recently, it has been 
suggested that CaSR acts primarily by regulating paracellular 
permeability. Loupy et al. showed that a CaSR antagonist 
increased Ca2+ permeability in isolated perfused TALH with 
no change in transepithelial voltage or Na flux.237 This appears 
to be mediated by regulation of the expression of claudin-14. 
Activation of the CaSR causes robust upregulation of 
claudin-14,238,239 which through physical interaction, inhibits 
paracellular cation channels formed by claudin-16 and 
claudin-19238 (see Fig. 7.7). The signaling mechanism seems 
to involve CaSR inhibiting calcineurin, a phosphatase that 
normally activates NFAT to increase transcription of two 
micro-RNAs miR-9 and miR-374, thereby downregulating 
claudin-14 expression.240,241 The central role of claudin-14 is 
further supported by the finding that claudin-14 knockout 
mice are unable to increase their fractional excretion of 
calcium in response to a high Ca2+ diet,238 and exhibit 
complete loss of regulation of urinary Ca2+ excretion in 
response to either a CaSR agonist or antagonist.240,242 Of 
note, claudin-14 expression is also decreased in kidney of 
mice fed a low-calcium diet compared with those fed a high-
calcium diet,234 providing a mechanism by which calcium 
excretion is matched to dietary intake.

DIURETICS
Loop diuretics such as furosemide increase urinary calcium 
losses. The mechanism by which furosemide causes hyper-
calciuria is linked to its ability to bind to and inhibit the 
furosemide-sensitive Na-K-Cl cotransporter, NKCC2,192–195 
present in the TALH. NaCl absorption is diminished, as is 
potassium recycling, resulting in a reduction in lumen positiv-
ity that drives Ca2+ reabsorption. Subjects with the common 
form of Bartter syndrome have inactivating mutations of the 
NKCC2 and associated with calciuria.203 Compensatory 
increases occur in the expression of distal tubule transport 
channels and proteins such as the TRPV5 and TRPV6 channels 
and calbindin D28K following the administration of furosemide, 
but fail to compensate for the increase in excretion that 
occurs in the TALH.242 Thiazide diuretics, on the other hand, 
cause hypocalciuria213,243–245 and the effect appears to be 
independent of PTH in humans and rodents. Thiazides bind 
to and inhibit the Na-Cl cotransporter in the distal tubule.192,246 
Chronic thiazide use is associated with a reduction in extracel-
lular fluid volume, which secondarily enhances Na+ and Ca2+ 
reabsorption in the PT of in the kidney.173 Distal tubule Ca2+ 
transport is clearly unaffected by “chronic” thiazide use,173 
in contrast to older reports that thiazide “acutely” increases 
Ca2+ reabsorption in isolated perfused DCT.247 The develop-
ment of hypocalciuria parallels a compensatory increase in 
Na+ reabsorption secondary to an initial natriuresis following 
thiazide administration. These observations are supported 
by the upregulation of the Na+/H+ exchanger, responsible 
for the majority of Na+ and associated Ca2+ reabsorption in 
the PT, whereas the expression of proteins involved in active 
Ca2+ transport in the distal tubule was unaltered. Indeed, 
thiazide administration was associated with hypocalciuria in 
Trpv5-knockout mice. Humans with Gitelman syndrome and 
inactivating mutations of the thiazide-sensitive Na-Cl trans-
porter have hypocalciuria, hypomagnesemia, and volume 
depletion,208,248–250 findings that are recapitulated in the Na-Cl 
cotransporter knockout mouse.251

Clinical Relevance
Hypomagnesemia With Epidermal Growth Factor (EGF) 
Receptor Inhibitors
Because EGF activates TRPM6 in the distal convoluted 
tubules, EGF receptor inhibitors, which are widely used 
as chemotherapeutic agents, cause hypomagnesemia. 
Monoclonal antibodies targeting the EGF receptor, such 
as cetuximab and panitumumab, are frequently associ-
ated with this complication, whereas the incidence with 
small-molecule tyrosine kinase inhibitors such as erlotinib 
seems to be less.

Diuretics in Calcium Disorders
Because of their hypercalciuric effect, loop diuretics 
are used for the acute treatment of hyperkalemia. 
Conversely, in patients with idiopathic hypercalciuria, 
thiazide diuretics are effective at lowering urine calcium 
concentration and thereby reducing the risk of kidney 
stone formation.
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magnesium.286–290 Additionally, magnesium regulates channel 
activity.286

Given its role in such diverse biological processes, it is not 
surprising that a deficiency or increase in serum magnesium 
concentrations is associated with important clinical symp-
toms.291 For example, low magnesium concentrations are 
associated with muscular weakness, fasciculations, Chvostek 
and Trousseau signs, and sometimes frank tetany.291 The tetany 
of hypomagnesemia is independent of changes in serum 
calcium. On occasion, personality changes, anxiety, delirium 
and psychoses may manifest. Hypocalcemia,292–298 reduced 
PTH secretion,299–304 and hypokalemia305–308 are sometimes 
present in hypomagnesemic subjects. Cardiac arrhythmias 
and prolongation of the corrected QT interval309,310 are 
sometimes observed. Conversely, hypermagnesemia seen in 
association with the administration of excessive amounts of 
magnesium in diseases such as eclampsia and in patients with 
renal failure is manifest as weakness of the voluntary muscles.

MAGNESIUM IS PRESENT IN SERUM IN BOUND 
AND FREE FORMS

Most magnesium within the body is present in bone or within 
the cells (Table 7.2).286 Approximately 60% of magnesium is 
stored in bone. Serum magnesium concentrations vary slightly 
with age and in adults are 1.6–2.3 mg/dL (0.66–0.94 mmol/L). 
Within plasma, about 70% of Mg is ultrafiltrable, 55% is free, 
and about 14% of Mg is in the form of soluble complexes 
with citrate and phosphate.311 Because Mg is present largely 
within cells and bone, there is some interest as to whether 
serum Mg concentrations reflect tissue stores, especially when 
Mg is depleted or deficient. When rats312–314 and humans291,315 
are fed Mg-deficient diets, serum Mg decreases within 1 day 
in rats and in 5–6 days in humans. Bone Mg and blood 
mononuclear cell Mg concentrations correlate well with total 
body Mg and serum Mg.315–318 The correlations between total 
body Mg stores and muscle or cardiac Mg, however, are not 
precise.315

REGULATION OF MG HOMEOSTASIS

The intestine and the kidney regulate magnesium balance 
(Fig. 7.9).286 A diet adequate in magnesium normally contains 
200–300 mg of magnesium.319  Between 75 and 150 mg of 
ingested dietary magnesium is absorbed in the jejunum and 
ileum, primarily by paracellular passive processes.320–325 The 
TRPM6 protein (a mutant form of this protein is present 
in patients with familial hypomagnesemia) is localized to 

activity of the channel.270 Further evaluation of serum Klotho 
concentrations and their association with changes in renal 
calcium excretion is required to establish a role of this factor 
in regulation of renal calcium transport.

SCLEROSTIN
Sclerostin is an osteocyte-derived glycoprotein that influences 
bone mass.271 Patients with sclerosteosis and its milder variant, 
van Buchem disease,272–274 have exceptionally dense bones 
and skeletal overgrowth that often constricts cranial nerve 
foramina and the foramen magnum, resulting in premature 
death. Sclerosteosis is due to inactivating mutations of the 
sclerostin (SOST) gene, and the milder van Buchem disease 
is due to a 52-kb deletion of a downstream enhancer element 
of the sclerostin gene.275 Mouse models of sclerosteosis have 
increases in skeletal mass similar to those found in patients 
with the disease.55,276–278 By using a Sost gene knockout model 
generated in our laboratory55 we have demonstrated that 
sclerostin, either directly or indirectly, through an alteration 
in the synthesis of 1α,25-dihydroxyvitamin D (1α,25(OH)2D), 
influences renal calcium reabsorption in the kidney. Urinary 
calcium excretion and renal fractional excretion of calcium 
are decreased in Sost-/- mice.55 Serum 1α,25(OH)2D concentra-
tions are increased without attendant hypercalcemia; renal 
25(OH)D-1α hydroxylase (Cyp27b1) mRNA and protein 
expression are also increased in Sost-/- mice, strongly suggesting 
that the increase in serum 1α,25(OH)2D concentrations was 
due to increased 1α,25(OH)2D synthesis. When recombinant 
sclerostin is added to cultures of proximal tubular cells the 
expression of the messenger RNA for Cyp27b1, the 
1α-hydroxylase cytochrome P450, is diminished. Serum 24, 
25(OH)2D concentrations were diminished in Sost-/- mice, 
and PTH concentrations were similar in knockout and wild-
type mice. The lack of change in PTH is consistent with 
previous studies in humans.279 The data suggest that in 
addition to the hormones traditionally thought to alter 
calcium reabsorption in the kidney (PTH and 1α,25(OH)2D), 
sclerostin plays a significant role in altering renal calcium 
excretion. Wheras PTH and 1α,25(OH)2D decrease fractional 
excretion of calcium by increasing the efficiency of calcium 
reabsorption in the DT, sclerostin increases fractional excre-
tion of calcium (the absence of sclerostin expression being 
associated with a reduced fractional excretion of calcium).55 
Thus, the adaptation to a reduction in calcium intake and 
resultant downstream alterations in hormones may need to 
be amended to include changes in sclerostin expression (see 
Fig. 7.4B and Fig.7.8C).

MAGNESIUM TRANSPORT IN THE KIDNEY

THE ROLE OF MAGNESIUM IN  
CELLULAR PROCESSES

Magnesium is an abundant cation in the human body (Table 
7.1).280–285 Magnesium is required for a variety of biochemical 
functions.286 The activities of magnesium-dependent enzymes 
are modulated by the metal as a result of binding to the 
substrate or as a result of direct binding to the enzyme.286–289 
Enzymes of the glycolytic and citric acid pathways, exonuclease,  
topoisomerase, RNA and DNA polymerases, and adenyl-
ate cyclase are among the many enzymes regulated by 

Table 7.2  Distribution and Concentrations of 
Magnesium in a Healthy Adult

Site
% total-body 
Mg Concentration/content

Bone 53 0.5% of bone ash
Muscle 27 9 mmol/kg wet weight
Soft tissue 19 9 mmol/kg wet weight
Adipose tissue 0.012 0.8 mmol/kg wet weight
Erythrocytes 0.5 1.65–2.73 mmol/L
Serum 0.3 0.69–0.94 mmol/L
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resulting from reabsorption of Na+ and water. However, 
magnesium permeability in this segment is likely to be quite 
low, as the tubular fluid-to-ultrafiltrate magnesium ratio can 
rise to 1.65 in the late PT.353

MG2+ REABSORPTION IN THE THICK ASCENDING LIMB
The bulk of the filtered magnesium is reabsorbed in the 
TALH, again by a paracellular mechanism of which claudin-16 
is a critical component.199,201,354–361 As discussed earlier for 
Ca2+ transport, claudin-16 and claudin-19 form cation-selective 
paracellular channels199,200 that either directly mediate paracel-
lular Mg2+ reabsorption or facilitate the generation of an 
NaCl diffusion potential that provides the driving force for 
paracellular Mg2+ reabsorption. Mutations of the CLDN16 
and CLDN19 genes, and the SLC12A1, KCNJ1, and CLCNKB 
genes that encode proteins required for normal thick ascend-
ing limb function, result in excessive magnesium losses in 
the urine and hypomagnesemia. Claudin-10 is also highly 
expressed in the TALH. The predominant isoform, claudin-
10b, acts as a paracellular Na+ channel and is spatially distinct 
from claudin-16/19, being expressed mainly in the medullary 
TALH.362 Deletion of the Cldn10 gene in mice is associated 
with decreased paracellular sodium reabsorption, hyperma-
gnesemia, and nephrocalcinosis.363 In isolated perfused TAL 
tubules of claudin-10–deficient mice, paracellular permeability 
of sodium is decreased and the relative permeability of calcium 
and magnesium is increased. This suggests that claudin-10b 
uses the lumen-positive voltage in the early TALH to drive 
paracellular Na+ reabsorption and thereby reduces the 
electrical potential available for divalent cation reabsorption 
later on in the cortical TALH. Mutations in claudin-10, or 
specifically in claudin-10b, have recently been described in 

the apical membrane of intestinal and renal epithelial cells 
and mediates transcellular magnesium absorption.145,326 A 
homolog of TRPM6, TRPM7 is ubiquitously expressed and 
plays a role in whole-body magnesium homeostasis and many 
cellular functions, ranging from control of cell proliferation 
and cellular magnesium homeostasis to cell adhesion and 
cell migration.327–335 It forms a heteromeric complex with 
TRPM6 and is necessary for TRPM6 activity and epithelial 
magnesium absorption.336,337 About 30 mg of magnesium is 
secreted into the intestine via pancreatic and intestinal secre-
tions, giving a net magnesium absorption of approximately 
130 mg/24 h. Magnesium that is not absorbed in the intestine 
and is secreted into the intestinal lumen eventually appears 
in the feces (125–150 mg). Absorbed magnesium enters the 
extracellular fluid pool and moves in and out of bone and soft 
tissues. Approximately 130 mg of magnesium (equivalent to 
the net and amount absorbed in the intestine) is excreted in  
the urine.

In experimental animals and humans, feeding a diet low 
in magnesium results in a rapid decrease in urinary and fecal 
magnesium and the occurrence of a negative magnesium 
balance.338–347 Conversely, the administration of magnesium 
is associated with an increase in the renal excretion of 
magnesium.348–350 Unlike the cases of calcium and phosphorus, 
however, no hormones or molecules have been identified 
that alter magnesium transport in the intestine or that alter 
the renal excretion of magnesium in response to changes 
in magnesium balance.286,351,352

REABSORPTION OF MAGNESIUM ALONG  
THE TUBULE

Approximately 10% of total body magnesium is filtered daily 
by the glomeruli (approximately 3000 mg/24 hr). About 
75% of total plasma magnesium is filterable. Because urinary 
magnesium excretion is about 150 mg/24 hr, a substantial 
fraction of filtered magnesium is reabsorbed along the tubule 
(approximately 95%).

MG2+ REABSORPTION IN THE PROXIMAL TUBULE
Between 15% and 20% of filtered magnesium is reabsorbed 
in the PT (Fig. 7.10). The cellular and molecular mechanisms 
by which magnesium is reabsorbed in the proximal nephron 
are unknown. However, it is speculated that reabsorption of 
magnesium in the proximal nephron occurs by paracellular 
mechanisms, likely driven by the concentration gradient 
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Fig. 7.9  Magnesium homeostasis in normal humans showing the 
amounts of magnesium absorbed in the intestine and reabsorbed by 
the kidney. 
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CNNM2 is suspected to play a role because it encodes a 
transmembrane protein localized at the basolateral mem-
brane that is regulated by Mg2+ deficiency and when 
mutated causes renal Mg2+ wasting.371 It has been proposed 
to function as an Mg2+ channel or Mg2+-sensitive Na+ 
channel,372,373 but others have not found evidence that it 
transports Mg2+.374

Another intriguing possibility is SLC41A1, a homolog 
of bacterial MgtE Mg2+ transporters375 that functions as an 
Na+-Mg2+ exchanger when expressed in mammalian cells.376 
Interestingly, mutations in SLC41A1 have recently been found 
to cause a form of nephronopthisis.377 Because basolateral 
extrusion of Mg2+ in the DT must involve energetically active 
transport, it is likely that the Na-K-ATPase plays a role, albeit 
indirectly. FXYD2 likely participates in this because it is the 
gamma subunit of the Na-K-ATPase and, when mutated, 
causes dominant isolated hypomagnesemia. Likewise, the 
transcription cofactors, hepatocyte nuclear factor 1B (HNF1B) 
and pterin-4 alpha-carbinolamine dehydratase (PCBD1) 
costimulate the promoter of FXYD2, and so mutations in 
either of them are associated with hypomagnesemia.378,379 
Finally, mutations in the basolateral potassium channel in the 
DT, Kir4.1, cause a syndrome called SeSAME or EAST that 
is associated with hypomagnesemia.380,381 Kir4.1 is thought to 
facilitate Mg2+ reabsorption in the DT by recycling K+ across 
the basolateral membrane, thus enabling the Na-K-ATPase 
to transport Na+. Fig. 7.12 shows the cellular localization 
of these proteins in the distal convoluted tubule into the  
cell.
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Fig. 7.11  Mechanism by which magnesium is transported in cells 
of the thick ascending limb of the loop of Henle (TALH). The majority 
of magnesium is reabsorbed by paracellular mechanisms. Claudin-16 
and claudin-19 are depicted as directly transporting Ca2+ and Mg2+, 
but it has also been hypothesized that their primary role is to allow 
backleak of reabsorbed Na+ and thus establish an NaCl diffusion 
potential, thereby indirectly facilitating divalent cation reabsorption. 
CaSR, Calcium-sensing receptor; NKCC2, Na-K-Cl cotransporter; 
ROMK, renal outer medullary potassium channel. 

several families with variable degrees of hypermagnesemia, 
hypocalciuria, and hypokalemic metabolic alkalosis, together 
with several unusual extrarenal manifestations, including 
anhidrosis, alacrima, xerostomia, and ichthyosis.364–366 Fig. 
7.11 shows the mechanism by which magnesium is transported 
in the TALH.

Magnesium reabsorption in the TALH is inhibited by 
hypermagnesemia, presumably because it reduces the con-
centration gradient for paracellular diffusion.367 Conversely, 
hypomagnesemia and magnesium depletion stimulate 
magnesium reabsorption in the TALH.368 These are also the 
main physiological regulators of renal magnesium excretion.

MG2+ REABSORPTION IN THE DISTAL TUBULE
Between 5% and 10% of filtered magnesium is reabsorbed 
transcellularly in the distal convoluted tubule. The rate-
limiting step is thought to be apical entry of Mg2+ through 
an Mg2+ channel that is formed by a complex of TRPM6 and 
TRPM7.326,336,337 Epidermal growth factor (EGF) promotes 
TRPM6 trafficking to the plasma membrane.369 The driving 
force for apical Mg2+ entry is the lumen-negative electri-
cal membrane potential, the set point of which is likely 
determined by the conductance of an apical voltage-gated 
potassium channel, Kv1.1.370 These explain why mutations 
in TRPM6, pro-EGF, and Kv1.1 are all genetic causes of 
hypomagnesemia (see Chapter 44 for a detailed discussion 
of inherited hypomagnesemia).

It is unclear as to the mode of basolateral exit of 
magnesium from the cell into the interstitial space. 
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Fig. 7.12  Mechanism by which magnesium is transported in distal 
tubule cells. The majority of magnesium is reabsorbed by transcellular 
mechanisms. Mg2+ enters apically via the TRPM6/7 heteromeric channel, 
driven by the membrane voltage set by the K+ channel, Kv1.1. Its exit 
pathway is unknown but may be via CNNM2 or SLC41A1, perhaps 
acting as a basolateral Na–Mg exchanger. Active extrusion is likely 
driven by the Na+ gradient generated by the Na-K-ATPase alpha subunit 
and accessory subunit, FXYD2. The basolateral K+ channel Kir 4.1 
recycles K+ that enters via the Na-K-ATPase. See text for role of other 
regulators. EGF, Epidermal growth factor; EGFR, epidermal growth 
factor receptor. 
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Fig. 7.13  Phosphorus homeostasis in humans. The major organs 
involved in the absorption, excretion, and reabsorption of phosphate 
are the intestine and the kidney. 

signaling proteins, phosphorylated enzymes, and cellular 
membranes.411–414 Prolonged deficiency of phosphorus and 
inorganic phosphate results in serious biological problems, 
including impaired bone mineralization, resulting in 
osteomalacia or rickets, abnormal erythrocyte, leukocyte 
and platelet function, impaired cell membrane integrity 
that can result in rhabdomyolysis, and impaired cardiac 
function.415–417 Phosphate balance is maintained through a 
series of complex hormonally and locally regulated metabolic 
adjustments. In states of neutral phosphate balance, net 
intake equals net output. The major organs involved in the 
absorption, excretion, and reabsorption of phosphate are the 
intestine and the kidney (Fig. 7.13). A normal diet adequate 
in phosphorus normally contains ~1500 mg of phosphorus. 
Approximately 1100 mg of ingested dietary phosphate is 
absorbed in the proximal intestine predominantly in the 
jejunum. About 200 mg of phosphorus is secreted into the 
intestine via pancreatic and intestinal secretions, giving a 
net phosphorus absorption of approximately 900 mg/24 hr. 
Phosphorus that is not absorbed in the intestine or is secreted 
into the intestinal lumen eventually appears in the feces. 
Absorbed phosphorus enters the extracellular fluid pool and 
moves in and out of bone (and to a smaller extent in and out 
of soft tissues) as needed (~200 mg). Approximately 900 mg 
of phosphorus (equivalent to the amount absorbed in the 
intestine) is excreted in the urine.

PHOSPHORUS IS PRESENT IN BLOOD IN 
MULTIPLE FORMS

About 85% of phosphorus in the body is present in bones, 
14% exists in cells from soft tissues, and 1% is present in 
extracellular fluids. In mammals, bone contains a substantial 
amount of phosphorus (approximately 10 g/100 g dry fat free 
tissue); in comparison, muscle contains 0.2 g/100 g fat free 
tissue, and the brain 0.33 g/100 g fresh tissue.418 Phosphorus 
is present in virtually every bodily fluid. In human plasma 

REGULATION OF MAGNESIUM TRANSPORT  
IN THE KIDNEY

A variety of factors alter magnesium reabsorption in the kidney 
(Table 7.3)*. With the exception of magnesium excess and 
depletion, it is unclear whether any of these are physiologically 
important regulators. Thus, although effects on magnesium 
excretion in the urine are noted following the infusion of various 
substances or following blockade of their activity, it is not clear 
that such changes occur with physiologic changes in concentra-
tions of these factors in vivo. Furthermore, the concentrations 
of the effector substances do not change in the physiologically 
appropriate manner following changes in serum concentrations 
of magnesium. Thus, hormonal homeostasis, in which concentra-
tions of a hormone (PTH, glucagon, arginine vasopressin, and 
so on) change following changes in the concentration of 
magnesium, and in turn, alter the retention or concentrations 
of magnesium, is difficult to demonstrate.

PHOSPHORUS TRANSPORT IN  
THE KIDNEY

THE ROLE OF PHOSPHORUS IN  
CELLULAR PROCESSES

Phosphorus is a key component of hydroxyapatite, the 
major component of bone mineral, nucleic acids, bioactive 

*References 205, 261, 338–341, 343, 348–350, and 382–410.

Table 7.3  Factors Altering the Reabsorption of 
Magnesium in the Kidney

Substance Effect

Peptide hormones
Parathyroid hormone205,383–387 Increase
Calcitonin387–395 Increase
Glucagon396,397 Increase
Arginine vasopressin398 Increase
Insulin399 Increase

β-Adrenergic agonists
Isoproterenol382 Increase

Prostaglandins PGE2
400 Decrease

Mineralocorticoids
Aldosterone Increase

1, 25-dihydroxyvitamin D3
401 Decrease

Magnesium
Restriction338–341,343 Increase
Increase348–350 Decrease

Metabolic alkalosis261,402,403 Increase
Metabolic acidosis261,402,403 Decrease
Hypercalcemia404 Decrease
Phosphate depletion405,406 Decrease
Diuretics

Furosemide Decrease
Amiloride408,409 Increase
Chlorothiazide407,410 Increase

PGE2, Prostaglandin E2.
From Dai LJ, Ritchie G, Kerstan D, et al. Magnesium transport in 

the renal distal convoluted tubule. Physiol Rev. 2001;81:51–84.
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important in regulating phosphorus homeostasis via feed-
forward mechanisms, whereas the longer-term changes occur 
as a result of alterations in circulating concentrations of PTH, 
1α,25(OH)2D3, and the phosphatonins such as fibroblast 
growth factor 23.86,420–423 Intestinal signals have been shown 
in rodents to rapidly alter renal Pi excretion in response to 
changes in duodenal Pi concentrations.421

PTH, 1α,25(OH)2D3, and the phosphatonin FGF-23 control 
phosphorus homeostasis on longer-term basis (hours to 
days).85,86 Concentrations of these hormones and factors are 
regulated by phosphorus in a manner that is conducive to 
the maintenance of normal phosphorus concentrations. Fig. 
7.15 shows the physiologic changes known to occur with low 
or high dietary intakes of phosphate. A decrease in serum 
phosphate concentrations, as would occur with a reduced 
intake of phosphorus, results in increased ionized calcium 
concentrations, decreased PTH secretion, and a subsequent 
decrease in renal phosphate excretion. At the same time, 
by PTH-independent mechanisms, there is an increase in 
renal 25-hydroxyvitamin D 1α-hydroxylase activity, increased 
1α,25(OH)2D3 synthesis, and increased phosphorus absorption 
in the intestine and reabsorption in the kidney.88,92,94,99–105 Con-
versely, with elevated phosphate intake, there are decreased 
calcium concentrations and increased PTH release from the 
parathyroid gland. PTH actually has two opposing effects: 
it increases urinary phosphate excretion but also increases 
the synthesis of 1α,25(OH)2D3 by stimulating the activity 
of the renal 25-hydroxyvitamin D 1α-hydroxylase; the net 
effect is to increase renal phosphate excretion. Increased 
serum phosphate concentrations simultaneously inhibit 
renal 25-hydroxyvitamin D 1α-hydroxylase and decrease 
1α,25(OH)2D3 synthesis. Reduced 1α,25(OH)2D3 concentra-
tions decrease intestinal phosphorus absorption as well as renal 

or serum, phosphorus exists in the form of inorganic phos-
phorus or phosphate (Pi), lipid phosphorus, and phosphoric 
ester phosphorus. Total serum phosphorus concentrations 
range between 8.9 and 14.9 mg/dL (2.87–4.81 mmol/L), 
inorganic phosphorus (phosphate, Pi) concentrations 
between 2.56 and 4.16 mg/dL (0.83–1.34 mmol/L) (this 
is what is usually measured clinically and referred to as 
the serum phosphorus, and the normal range changes 
with age),419 phosphoric ester phosphorus concentrations 
between 2.5 and 4.5 mg/dL (0.81–1.45 mmol/L), and 
lipid phosphorus concentration between 6.9 and 9.7 mg/
dL (2.23–3.13 mmol/L) (Table 7.4).418

REGULATION OF PHOSPHATE HOMEOSTASIS—AN 
INTEGRATED VIEW

Intestinal feed-forward and hormonal feedback systems 
(PTH–vitamin D endocrine system and the phosphatonins) 
are likely to be responsible for the control of phosphorus 
homeostasis (Fig. 7.14). The short-term responses that occur 
within minutes to hours of feeding of a high-Pi meal are 

Table 7.4  Distribution of and Concentrations of 
Phosphorus (mmol/L) in Adult Human 
Blood

Phosphorus Compounds Erythrocytes Plasma

Phosphate ester 12.3–19.0 0.86–1.45
Phospholipids 4.13–4.81 2.23–3.13
Inorganic phosphate 0.03–0.13 0.71–1.36
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Fig. 7.15  Changes in growth factors (fibroblast growth factor 23 [FGF 23], sFRP-4 (secreted frizzled related protein 4) insulin-like growth factor 
(IGF), parathyroid hormone (PTH), and 1α,25-dihydroxyvitamin D, and the subsequent physiologic changes in intestinal phosphate absorption 
or renal phosphate reabsorption following perturbations in serum phosphate. 

levels significantly decrease in animals fed a low-phosphate 
diet, and increase in animals fed a high-phosphate diet within 
24 hours of altering dietary phosphate intake but do not  
correlate with serum phosphate in the animals fed a high-
phosphate diet.98

REABSORPTION OF PHOSPHATE ALONG  
THE NEPHRON

Virtually all serum phosphate is filtered at the glomerulus.447 
Under conditions of normal dietary phosphate intake, and 
in the presence of intact parathyroid glands, approximately 
20% of the filtered phosphate load is excreted. The other 
80% of the filtered load of phosphate is reabsorbed by the 
renal tubules. The PTs are the major sites of phosphate 
reabsorption along the nephron (Fig. 7.16).447 Little phosphate 
reabsorption occurs between the late PT and the early distal 
tubule in animals with intact parathyroid glands.448–456 In the 
absence of PTH, however, phosphate is avidly reabsorbed 
between the late PT and early distal tubule, reflecting 
phosphate reabsorption by the proximal straight tubule.451 
Phosphate transport rates are approximately three times 
higher in the proximal convoluted than in the proximal 
straight tubules.457 Renal phosphate handling is characterized 
by intranephronal heterogeneity, reflecting segmental differ-
ences in phosphate handling within an individual nephron 
as well as internephronal heterogeneity.448,452,457,458

phosphate reabsorption. All of these factors tend to bring 
serum phosphate concentrations back into the normal range.

The phosphatonins FGF-23 and sFRP-4 inhibit renal phos-
phate reabsorption.98,424–432 They also decrease,424,430,433–438 and 
IGF-1 increases96 the activity of the 25-hydroxyvitamin D 
1α-hydroxylase (“growth factors” in Fig. 7.15). FGF-23 induces 
renal phosphate wasting in patients with tumor-induced 
osteomalacia (TIO),427,439–441 autosomal dominant hypophos-
phatemic rickets (ADHR), X-linked hypophosphatemic rickets 
(XLH), and autosomal recessive hypophosphatemic rickets 
(ARHR).425,430,432,442 From a physiologic perspective, it would 
be appropriate for FGF-23 and sFRP-4 concentrations to be 
regulated by the intake of dietary phosphorus and by serum 
phosphate concentrations. In humans, in the short-term the 
feeding of meals containing increased amounts of phosphate 
does not increase serum FGF-23 concentrations despite the 
induction of a robust and dose-dependent phosphaturia.422,443 
Other human studies conducted over a period of days or weeks, 
however, have shown changes in serum FGF-23 concentrations 
following alterations in the content of phosphate in the 
diet.444,445 In mice, Perwad et al. have shown that a high-
phosphate diet increased and a low-phosphate diet decreased 
serum FGF-23 levels in these animals within 5 days of a changing 
dietary phosphate intake.446 The changes in serum FGF-23 
correlated with changes in serum phosphate concentrations. 
Studies from our laboratory performed in rats fed a low-, 
normal, or high-phosphate diet demonstrate that serum FGF-23 
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The uptake of phosphate is mediated by Na–phosphate 
cotransporters located at the apical border of PT cells (NaPi–
IIa/Slc34A1 and NaPi IIc/Slc34a3).459–482 The structure and 
physiology of these phosphate transport molecules have been 
extensively reviewed, and the reader is directed to other 
publications in this regard.459–482 The Na–phosphate cotrans-
porters are highly homologous and are predicted to have 
similar structures. Mice with ablation of the NaPi-IIa/Slc34a1 
gene exhibit renal phosphate wasting and reduced PT brush 
border membrane vesicle phosphate uptake (Fig. 7.17).483 In 
humans, SLC34A1 mutations are associated with hypophos-
phatemia and urinary phosphate losses with urolithiasis or 
bone demineralization.484 It is estimated that the NaPi-IIa 
transporter is responsible for approximately 85% of proximal 
tubular phosphate transport and contributes to the adaptive 
increases in tubular phosphate transport in animals fed a 
low-phosphate diet.483,485 Mice with constitutive or renal-specific 
deletions of the NaPi-IIc/Slc34a3 gene do not display abnormali-
ties in phosphate excretion or phosphate serum concentra-
tions.486,487 This is in contrast to humans, in whom SLC34A3 
mutations are associated with hypophosphatemic rickets with 
hypercalciuria.488,489 The extrusion of phosphate at the baso-
lateral membrane of the proximal tubular cell may be mediated 
by the xenotropic and polytropic retroviral receptor (Xpr1).490 
Mice with conditional deletions of Xpr1 exhibited tubular 
dysfunction with glycosuria, amino-aciduria, hypercalciuria, 
and phosphaturia and developed hypophosphatemic rickets. 
In primary cultures of proximal tubular cells, Xpr1 deficiency 
significantly reduced phosphate uptake and decreased the 
expression of NaPi-IIa and NaPi-IIc cotransporters.

Interactions between the NaPi-IIa/Slc34A1 and the intracel-
lular protein, the sodium-hydrogen exchanger regulatory 
factor-1 (NHERF-1), modulate the amount of NaPi-IIa/Slc34A1 
and NaPi IIc/Slc34a3 present on the surface of the proximal 
tubular cell.491–510 By binding to the NaPi-IIa/Slc34A1 protein, 
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NHERF-1 functions to retain the NaPi-IIa/Slc34A1 protein on 
the surface of the proximal tubular cell; phosphate uptake 
diminishes as a consequence of endocytosis of the NaPi-IIa/
Slc34A1 when it dissociates from NHERF-1, a process that is 
activated by the hormonal induction of protein kinase C and 
the phosphorylation of specific serine and threonine residues 
on the PDZ domain of NHERF-1.495,500,506,511–514 Ezrin, a protein 
that facilitates the association of NHERF-1 to the actin cyto-
skeleton, also plays a role in the regulation of proximal tubular 
phosphate transport and the expression of NaPi-IIa/Slc34A1 
in proximal tubular cells.515,516 Ezrin knockdown mice exhibit 
hypophosphatemia and osteomalacia and a reduction in NaPi-
IIa/Slc34A1 and NHERF-1 expression at the apical membrane 
of PTs. Cellular events associated with uptake of Pi into the cell 
and extrusion of Pi out of the cell are shown in Fig. 7.18.

REGULATION OF PHOSPHATE TRANSPORT  
IN THE KIDNEY

DIETARY PHOSPHATE
The influence of dietary phosphate intake on the urinary excretion 
of phosphate has been known for many years.448,517–532 The reabsorp-
tion of phosphate is decreased in animals fed a high-phosphate 
diet, whereas animals with a low intake of phosphate reabsorb 
almost 100% of the filtered load of phosphate.* These changes 
in phosphate reabsorption are associated with parallel changes 
in the abundance of NaPi-IIa and IIc.535,536 In infants and children, 
phosphate reabsorption is high so as to maintain a positive phos-
phate balance required for growth.537,538 Conversely, decreased 
phosphate reabsorption has been demonstrated in the elderly.539

*References 182, 219–228, 234, 240, 241, 354, 533, and 534.
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 Na-K-ATPase

Fig. 7.18  Mechanisms by which phosphate is transported across 
the proximal tubular cell. Apical uptake is mediated by the sodium-
phosphate cotransporters IIa and IIc. The Na-K ATPase located at 
the basolateral aspect of the cell provides a sodium gradient within 
the cell that permits these sodium-phosphate cotransporters to take 
up sodium and phosphate. By binding to the NaPi-IIa protein, NHERF-1 
retains the NaPi-IIa protein on the surface of the proximal tubular cell 
thereby enhancing phosphate uptake; phosphate uptake diminishes 
as a consequence of endocytosis of the NaPi-IIa when it dissociates 
from NHERF-1, a process that is activated by the hormonal induction 
of protein kinase C and the phosphorylation of specific serine and 
threonine residues on the PDZ domain of NHERF-1. Ezrin, a protein 
that facilitates the association of NHERF-1 to the actin cytoskeleton 
also regulates proximal tubular phosphate transport. Ezrin knock down 
mice exhibit hypophosphatemia and osteomalacia and a reduction in 
NaPi-IIa/Slc34A1 and NHERF-1 expression at the apical membrane 
of proximal tubules. The xenotropic and polytropic retroviral receptor 
(Xpr1) plays a role in the extrusion of phosphate at the basolateral 
cell surface. PT, Proximal tubule. 

extracts contain a phosphaturic substance that is likely to be 
a protein. The processes or pathways by which changes in 
luminal phosphate concentrations within the bowel are 
detected have not been defined, although the presence of 
a “phosphate sensor” has been postulated.544 A recent study, 
though, suggests that such an intestinal phosphate-sensing 
mechanism may be absent in humans.545

Studies using cultured renal proximal tubular cells provide 
evidence of an intrinsic ability of these cultured cells to 
increase phosphate transport when exposed to a low phos-
phate concentration in the medium.540–543 The mechanism 
of upregulation of Na/Pi cotransport in OK cells by low-Pi 
media involves two regulatory mechanisms: an immediate 
(early) increase (after 2 hours) in the expression of Na/Pi 
cotransporter, independent of mRNA synthesis or stability, 
and a delayed (late) effect (after 4–6 hours), resulting in an 
increase in NaPi-4 mRNA abundance.542,546 The enhanced Pi 
reabsorption of short-term Pi deprivation has been linked to 
decreased intrarenal synthesis of dopamine and/or stimula-
tion of beta adrenoreceptors, because infusion of dopamine 
or propranolol restores the phosphaturic response to PTH in 
short-term (less than 3 days) Pi deprivation.547–549 Conversely, 
dopamine may also mediate the acute phosphaturic effect 
of a high-Pi diet.499 The NaPi-IIa transporter is expressed 
in the brain and is regulated by dietary Pi, suggesting that 
dietary Pi could regulate neural outputs and regulate renal Pi 
excretion.550 Increasing cerebrospinal fluid Pi concentrations 
in the presence of low plasma Pi concentrations reversed 
the adaptations to feeding a low-Pi diet, suggesting that the 
Pi concentration in the brain regulates not only central but 
also renal expression of NaPi-IIa transporters. It should be 
remembered that alterations in serum Pi concentrations 
also alter 1α,25(OH)2D3 synthesis and serum concentra-
tions.88,92,94,99–105 Infusions of 1α,25(OH)2D3 increase the 
renal reabsorption Pi, predominantly in the proximal 
nephron.68,551–557

PARATHYROID HORMONE
Parathyroidectomy decreases renal Pi excretion and, con-
versely, injection of PTH increases urinary Pi excretion558–562 by 
altering Pi reabsorption along the PT (see Fig. 7.16).450–454,563 
The proximal straight tubule is an important site of PTH 
action with respect to Pi transport and may be critical in the 
final regulation of Pi excretion.449,455,458,564 PTH maintains Pi 
homeostasis by regulating NaPi cotransporters in the kidney. 
This is mediated by PTH/PTHrP receptors on the apical 
membrane that signal through protein kinase C (PKC), 
and on the basolateral membrane that signal through both 
cAMP/PKA and PKC. This leads to endocytosis of NaPi-IIa 
and -IIc cotransporters, which are degraded within the lyso-
somes.469,474,565,566 The transporters are reduced in number 
along the apical borders of proximal tubular cells following 
the administration of PTH 1-34 but not by the administration 
of PTH 3-34.479,480 Disruption of the NaPi-IIa (Slc34a1) gene in 
mice resulted in increased Pi excretion compared with wild-
type mice and a resistance to the phosphaturic effect of PTH 
(see Fig. 7.17), although the cyclic adenosine monophosphate 
(cAMP) response is normal.567 It has been proposed that 
the primary mechanism for PTH action is PKC-mediated 
phosphorylation of a PDZ domain on NHERF-1. This leads to 
dissociation of NaPi-IIa/NHERF-1 complexes, freeing NaPi-IIa 
from the apical surface for internalization.500,506

Although dietary phosphate deprivation and excess results 
in marked changes in the plasma concentrations of several 
hormones (see Fig. 7.15) that contribute to the increase or 
decrease in renal phosphate reabsorption, acute changes in 
tubular reabsorption can also be demonstrated independent 
of changes in these hormones.421,540–543 When a bolus of 
phosphate is instilled into the duodenum of intact rats, renal 
phosphate excretion increases within 10 minutes without 
changes in serum Pi concentrations.421 The change in Pi 
reabsorption in response to a high-Pi meal is independent 
of plasma Pi concentrations and filtered Pi load. Such changes 
are not elicited upon the administration of NaCl into the 
duodenum. The increase in renal phosphate excretion is 
independent of PTH as thyro-parathyroidectomy does not 
alter the process. Serum concentrations of PTH do not 
change, and serum concentrations of other phosphaturic 
peptides, such as FGF-23 and sFRP-4, are unchanged following 
the infusion of intraduodenal phosphate. Aqueous duodenal 
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a result of decreased NaPi-IIa expression.581 Growth hormone 
administration increases Pi uptake by brush border mem-
brane vesicles.582 Because growth hormone increases renal 
insulin-like growth factor-1 (IGF-1 synthesis),583 the effects 
of growth hormone on Pi reabsorption may also be due 
to IGF-1.577,583–588

RENAL NERVES, CATECHOLAMINES, DOPAMINE, 
AND SEROTONIN
Numerous studies have demonstrated that acute renal 
denervation or the administration of catecholamines alters 
Pi reabsorption regardless of PTH.547,589–601 The increase in 
urinary Pi excretion after acute renal denervation could be 
due to both increased production of dopamine and decreased 
α- or β-adrenoreceptor activity, because acute renal denerva-
tion has been shown to initially increase renal dopamine 
excretion and almost completely abolish renal norepineph-
rine and epinephrine levels.602,603 Epinephrine decreases 
plasma Pi, presumably by shifting Pi from the extracellular 
into the intracellular space. The hypophosphatemic response 
to isoproterenol infusion is blocked by propranolol, sug-
gesting involvement of the beta adrenoreceptors. Infusion 
of isoproterenol markedly enhances renal Pi reabsorption 
in normal rats and in hypophosphatemic mice.600,604 The 
enhanced Pi reabsorption and attenuated phosphaturic 
response to PTH observed in acute respiratory alkalosis and 
Pi deprivation is blocked by infusion of propranolol, sug-
gesting a possible role for stimulation of β-adrenoreceptors 
in these conditions. Stimulation of α-adrenoreceptors by 
the addition of epinephrine to OK cells blunts the PTH-
induced increase in cAMP levels and the inhibition of Pi 
transport.605 Stimulation of α2-adrenoreceptors in vivo has 
also been demonstrated to attenuate the phosphaturic 
response to PTH.548 Dopamine infusion and the infusion of 
l-dopa or gludopa, or dopamine precursors, increase Pi 
excretion in the absence of PTH.606–608 Dopamine administra-
tion decreases Pi transport in OK cells and rabbit proximal 
straight tubules.599,609–614 Increasing dietary Pi intake increases 
urinary dopamine excretion and Pi excretion.615 Inhibition 
of endogenous dopamine synthesis by the administration 
of carbidopa to rats results in decreased dopamine and Pi 
excretion, suggesting a role for endogenous dopamine in 
Pi regulation.595,603 A paracrine role for dopamine in Pi 
regulation is strengthened by studies in OK cells showing 
that the addition of dopamine or l-dopa selectively decreases 
Pi uptake. Furthermore, Pi-replete OK cells produce more 
dopamine from l-dopa than Pi-deprived cells.611 Dopamine 
inhibits Pi transport by multiple mechanisms, including 
activation of DA1 and DA2 receptors.610,613,614 Dopamine 
induces the internalization of NaPi-IIa cotransporter mol-
ecules by activation of luminal DA1 receptors.609 Renal PTs 
also synthesize serotonin from 5-hydroxytryptophan using 
the same enzyme that converts l-dopa to dopamine. Incuba-
tion of OK cells with either serotonin or 5-hydroxytryptophan 
enhances Pi transport and raises the possibility that serotonin 
may also be involved in the physiologic regulation of renal 
Pi transport.606,612,616,617

PHOSPHATOMINS (FGF-23, sFRP-4)
The term “phosphatonin” was introduced to describe a factor 
or factors responsible for the inhibition of renal phosphate 
reabsorption and altered 25(OH)D 1α- hydroxylase regulation 

Under certain conditions, the phosphaturic effect of PTH 
is blunted or absent. These include short-term Pi depriva-
tion or acute respiratory alkalosis. In these situations, the 
inhibitory effect of PTH on Pi reabsorption by the proximal 
convoluted tubule remains intact. However, the increased 
delivery of Pi leads to enhanced downstream reabsorption 
by the proximal straight tubule.455,458,564 These studies suggest 
that the regulation of Pi reabsorption by PTH in the proximal 
convoluted and proximal straight tubules may be mediated 
by different mechanisms. It should be noted that PTH has 
two opposing effects: PTH increases urinary Pi excretion but 
also increases the synthesis of 1α,25(OH)2D3 by stimulating 
the activity of the 25(OH)D3 1α-hydroxylase enzyme in the  
kidney.88,92,94,99–105

VITAMIN D AND VITAMIN D METABOLITES
Dietary Pi deprivation or hypophosphatemia induces 
25-hydroxyvitamin D3 1α-hydroxylase.88,92,94,99–105 Mice or rats, 
but not pigs, fed a low-Pi diet show a decrease in the activity 
of the 25-hydroxyvitamin D3 24-hydroxylase (a renal enzyme 
involved in the catabolism of 1,25(OH)2D3) compared with 
rats fed a normal Pi diet within 24 hours of Pi restric-
tion.83,568,569 1,25(OH)2D3 decreases renal Pi excretion,62,68,551–554 
but the mechanism remains unknown. VDR-mutant mice 
exhibit decreased serum Pi; however, Pi transport or by renal 
cortical brush border membranes, Pi excretion, or NaPi-IIa 
or NaPi IIc mRNA levels were not different between VDR-null 
or wild-type mice, whereas NaPi-IIa protein expression and 
NaPi-IIa cotransporter immunoreactive signals were slightly 
but significantly decreased in the VDR mice compared with 
the wild-type mice.536 When VDR knockout mice were fed 
a low-Pi diet, serum Pi concentrations were more markedly 
decreased in the VDR knockout mice than in the wild-type 
mice. Other studies performed in VDR and 25(OH)D 
1α-hydroxylase–null mutant mice show that both these 
knockout mice adapt to Pi deprivation with increased NaPi-IIa 
protein in a manner similar to that found in wild-type mice.570 
However, when these mice were fed a high-Pi diet, Pi excre-
tion was less in the VDR and 25-hydroxyvitamin D 
1α-hydroxylase–null mutant mice compared with the wild-type 
mice. In vitamin D–deprived rats, NaPi-IIa transporter protein 
and mRNA were reported to be decreased in juxtamedullary 
but not superficial renal cortical tubules compared with 
normal rats.571

INSULIN, GROWTH HORMONE, AND INSULIN-LIKE 
GROWTH FACTOR
Insulin decreases plasma Pi and Pi excretion in human 
and animal models.572–575 This enhanced renal Pi reabsorp-
tion can be demonstrated in the absence of changes in 
blood glucose, PTH, and Pi levels or urinary Na excretion. 
Micropuncture studies573 demonstrate enhanced Pi reabsorp-
tion in hyperinsulinemic dogs and somatostatin infusion, 
which decreases plasma insulin levels and increases Pi 
excretion.576 Growth hormone decreases Pi excretion and 
has been postulated to contribute to increased Pi reabsorp-
tion and positive Pi balance demonstrated in growing 
animals.577,578 Administration of a growth hormone antago-
nist for 4 days to immature rats is associated with increased 
Pi excretion and a decreased transport capacity for Pi 
reabsorption.579,580 In juvenile rats suppression of growth 
hormone is associated with an increase in Pi excretion as 
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Recombinant sFRP-4 is phosphaturic in rats and prevents 
the upregulation of the 25-hydroxyvitamin D 1α-hydroxylase 
enzyme seen in the presence of hypophosphatemia.424 sFRP-4 
decreases Na+-Pi cotransporter abundance in the brush border 
membrane of the PT, and reduces the surface expression of 
the Na+-Pi-IIa cotransporter in PTs of the kidney, as well as 
on the surface of OK cells.438 sFRP-4 expression is increased 
in bone samples and serum from X-linked hypophosphatemic 
mice in mice with a global knockout of the phex gene but 
not in mice in which the phex gene has been knocked out 
in bone alone.633 sFRP-4 protein concentrations are increased 
in the kidneys of rats fed a high-phosphate diet for 2 weeks 
but not in animals fed a low-phosphate diet, suggesting a 
possible role for sFRP-4 during increases in phosphate 
intake.634 This suggests in turn that sFRP-4 concentrations 
are altered in the kidney of animals fed a high-phosphate 
diet and could play a role in the long-term adaptations to 
high-phosphate intake.

MEPE is abundantly overexpressed in tumors associated 
with renal phosphate wasting and osteomalacia.635 Recom-
binant MEPE is phosphaturic and reduces serum phosphate 
concentrations when administered to mice in vivo.636 The 
protein has been shown to inhibit phosphate reabsorption 
in the proximal convoluted tubule,637 to inhibit Na-dependent 
phosphate uptake in opossum kidney cells, and to reduce 
PT expression of NaPi-IIa protein.638 The protein has also 
been demonstrated to reduce intestinal Pi absorption 
directly.638 MEPE also inhibits bone mineralization in vitro, 
and MEPE-null mice have increased bone mineralization.639 
Thus, it is possible that MEPE is important in the pathogenesis 
of hypophosphatemia in renal phosphate wasting observed 
in patients with TIO. However, MEPE infusion does not 
recapitulate the defect in vitamin D metabolism seen in 
patients with TIO.636 Infusion of MEPE reduces serum 
phosphate concentrations, and serum 1α,25(OH)2D con-
centrations increase following MEPE as would be expected 
in the face of hypophosphatemia. Thus, in patients with TIO, 
it is likely that MEPE contributes to the hypophosphatemia, 
but other products such as FGF-23 and sFRP-4 inhibit 
1α,25(OH)2D concentrations by inhibiting the activity of the 
25-hydroxyvitamin D 1α-hydroxylase. MEPE may play a role 
in the pathogenesis of X-linked hypophosphatemic rickets, 
in which there is phosphate wasting, and evidence for a 
mineralization defect that is independent of low phosphate 
concentrations in the extracellular fluid.633 MEPE expression 
is increased in mice with the Hyp mutation, and mice with 
a global knockout of the phex gene but not in mice with a 
bone specific knockout of the phex gene. It is not known 
whether MEPE is regulated by phosphate concentrations 
although Jain et al. have demonstrated that it is correlated 
with serum Pi concentration in normal humans.640 Another 
growth factor, FGF-7, also known as keratinocyte growth  
factor, is overexpressed in tumors associated with phosphate 
wasting and osteomalacia.488 FGF-7 inhibits Na-dependent 
phosphate transport in OK cells, and we have demonstrated 
that FGF-7 inhibits renal phosphate reabsorption in vivo. 
FGF-7 is present in normal plasma and is significantly 
increased in patients with renal failure (personal observa-
tions). Whether or not FGF-7 is regulated by phosphate 
concentrations is unknown.

  Complete reference list available at ExpertConsult.com.

observed in patients with tumor-induced osteomalacia.440 Cai 
et al.439 described a patient with TIO in whom the biochemi-
cal characteristics of hypophosphatemia, renal phosphate 
wasting, and reduced serum 1α,25(OH)2D disappeared 
following removal of the tumor. Several factors have been 
identified that are associated with phosphate wasting, includ-
ing FGF-23 sFRP-4, fibroblast growth factor 7 (FGF-7), and 
matrix extracellular phosphoglycoprotein (MEPE).

The most extensively studied phosphatonin is FGF-23, a 
251–amino acid–secreted protein.419,425,431,618 Recombinant 
FGF-23 administered intraperitoneally to mice or rats 
induces phosphaturia and inhibits 25-hydroxyvitamin D 
1α-hydroxylase activity.419,425,431,618 The minimal sequence 
needed for phosphaturic activity resides between amino acids 
176 and 210.431 Transgenic animals overexpressing FGF-23 are 
hypophosphatemic, phosphaturic, and show the presence of 
rickets and reduced serum 1α,25(OH)2D concentrations or 
25-hydroxyvitamin D 1α-hydroxylase activity.433,434,619 Conversely, 
mice in which the FGF-23 gene has been ablated demon-
strate hyperphosphatemia, reduced phosphate excretion, 
markedly elevated serum 1α,25(OH)2D concentrations and 
renal 25-hydroxyvitamin D 1α-hydroxylase mRNA expression, 
vascular calcification, and early mortality.434,620 The ablation 
of the VDR in FGF-23–null mice has been reported to rescue 
this phenotype, supporting an important role for vitamin 
D in the pathogenesis of the abnormal phenotype seen in 
FGF-23–null mice.621

FGF-23 binds and signals through FGF receptors 1c, 3c, 
and FGFR4269; the role of Fgfr3 and Fgfr4 has not been 
established in mice in vivo.622 Han et al. recently demonstrated 
that mice with deletion of Fgfr1 in the PT had an increase 
in sodium-dependent phosphate cotransporter expression, 
hyperphosphatemia and refractoriness to the phosphaturic 
action of FGF-23, suggesting that FGFR1c plays a key role in 
its effects in the PT.623 Deletion of the Fgfr1 in the distal tubule 
resulted in hypercalciuria and secondary hyperparathyroid-
ism. A coreceptor, klotho, is necessary for FGF-23 to exhibit 
bioactivity.269,624 The role of klotho in FGF-23 signaling is 
supported by the observation that klotho knockout mice 
have a phenotype identical to that of FGF-23 knockout 
mice,625 whereas a human mutation that increases klotho 
levels phenocopies TIO and X-linked hypophosphatemic  
rickets.626

The mechanism for FGF-23 action is thought to involve 
downstream signaling through ERK1/2 and serum and 
glucocorticoid kinase-1 (SGK1).627 SGK1 in turn phosphory-
lates NHERF1, leading to the dissociation of NaPi-IIa 
transporters that become internalized and degraded, analo-
gous to its regulation by PTH.628 This model is supported by 
the observation that FGF-23 is no longer phosphaturic when 
given to NHERF1-null mice.629 Recent evidence suggests that 
Jak3 may also be involved because Jak3-null mice have renal 
phosphate wasting and elevated FGF-23 levels.630

FGF-23 synthesis is regulated by 1α,25(OH)2D. Increasing 
doses of 1α,25(OH)2D increase FGF-23 concentrations in 
the serum within 24 hours, but statistically significant changes 
are observed 4 hours after 1α,25(OH)2D treatment.631,632 In 
the physiologic sense, it is possible that FGF-23 is a negative 
feedback regulator of the 25-hydroxyvitamin D 1α-hydroxylase 
enzyme.

The Wnt antagonist, sFRP-4, is highly expressed in tumors 
associated with renal phosphate wasting and osteomalacia.429 
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BOARD REVIEW QUESTIONS

1.	 A 35-year-old woman with intermittent diarrhea of  
6 months’ duration is referred to you for evaluation of 
bone pain. Previous evaluation has shown the presence 
of celiac disease. The following tests are available for 
evaluation of her symptoms.
Hemoglobin 10.5 g/dL, mean corpuscular volume 105 

fL, leukocyte count 6.5 × 109/L, platelet count 165 × 109/L, 
serum folate 2.5 μg/L, serum sodium 135 mEq/L, potassium 
3.7 mEq/L, chloride 105 mEq/L, bicarbonate 22 mEq/L, 
creatinine 0.9 mg/dL, blood urea nitrogen 12 mg/dL, 
total serum calcium 8.5 mg/dL, ionized calcium 4.0 mg/
dL, phosphorus 2.5 mg/dL, alkaline phosphatase 200 U/L, 
parathyroid hormone 80 pg/mL, 25-hydroxyvitamin D 10 ng/
mL, and 1,25-dihydroxyvitamin D 30 pg/mL. Urinalysis is 
normal. Urine microscopy is normal. Bone densitometry 
shows osteopenia.

A 24-hour urine sample is collected for measurement of 
calcium, phosphorus, and creatinine. In regard to her urinary 
analytes, one will anticipate that (select all correct answers):

	a.	 24-hour urine calcium will be low.
	b.	 24-hour urine calcium will be high.
	c.	 24-hour urine phosphorus will be low.
	d.	 24-hour urine phosphorus will be high.
	e.	 None of the above
Answers: a and d
	a.	 Fractional excretion of calcium will be low.
	b.	 Fractional excretion of calcium will be high.
	c.	 Fractional excretion of phosphorus will be low.
	d.	 Fractional excretion of phosphorus will be high.
Answers: a and d
Rationale: The patient has secondary hyperparathyroidism 

due to intestinal malabsorption of calcium. One would 
anticipate low urinary calcium excretion and a low fractional 
excretion of calcium as a result of elevated parathyroid 
hormone concentrations One would expect urinary phos-
phorus to be elevated and fractional excretion of phosphorus 
to be high on account of secondary hyperparathyroidism.

2.	 The major effect of parathyroid hormone (PTH) on urinary 
calcium reabsorption occurs in the
	a.	 Proximal tubule
	b.	 Thick ascending limb of the loop of Henle

	c.	 Distal convoluted tubule
	d.	 Collecting duct
	e.	 All of the above
Answers: b and c
Rationale: The major sites of parathyroid hormone– 

mediated calcium absorption are in the thick ascending limb 
and the distal convoluted tubule. There is no effect of PTH 
on calcium absorption in the proximal tubule.

3.	 A 35-year-old female is referred to you for evaluation of 
bone pain. She was completely well 2 years ago when she 
started developing intermittent aches and pains. Family 
history is noncontributory. Examination is negative except 
for a 1 × 2 cm subcutaneous mass in the left popliteal 
fossa.
Laboratory values show the following: hemoglobin 12.8 g/

dL, MCV 85 fL, leukocyte and platelet count. Serum sodium, 
potassium, chloride, and bicarbonate are normal. Serum 
calcium is 9.2 mg/dL, ionized calcium 4.6 mg/dL, phosphorus 
2.0 mg/dL, alkaline phosphatase 150 U/L, 25-hydroxyvitamin 
D 22 ng/mL, 1,25-dihydroxy vitamin D 25 pg/mL, and PTH 
30 pg/mL. Which one of the following tests will assist in 
making the diagnosis?

	a.	 Serum FGF-23
	b.	 24-hour urine phosphorus and creatinine
	c.	 Bone density
	d.	 Sestamibi technician scan
	e.	 Magnetic resonance scan of the left tibial fossa
	f.	 All of the above
Answer: f
Rationale: The patient has tumor-induced osteomalacia 

based on the presence of a low serum phosphorus, normal 
serum 25-hydroxyvitamin D concentrations, and a low-normal 
1,25-dihydroxyvitamin D and PTH concentration. Investigation 
will reveal an elevated 24-hour urine phosphorus and an 
increased fractional excretion of phosphorus. TmP/GFR will 
be suppressed. FGF-23 concentrations will be increased. Bone 
density will be reduced. A sestamibi technician scan will show 
uptake over the popliteal fossa. This will be confirmed by 
magnetic resonance spectroscopy.
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GLUCOSE

The kidneys are a major site of glucose handling. This includes 
the continuous glomerular filtration of large amounts of 
glucose, almost all of which is subsequently reabsorbed by 
the proximal tubule, such that the formed urine in a healthy 
individual is nearly glucose free. The glucose reabsorbed by 

the proximal tubule is primarily taken up into the peritubular 
capillaries and provided as an energy source to further distal 
tubular segments or returned to the systemic circulation. 
Moreover and in addition to the liver, the kidneys contribute 
to the endogenous production of glucose or gluconeogenesis. 
Thus, the kidneys use glucose as fuel but also contribute to 
maintaining blood glucose levels and overall metabolic balance 
by reabsorbing filtered glucose and generating new glucose. 

KEY POINTS

•	 In a normoglycemic adult, the kidneys filter 160–180 g/day of glucose (~30% of daily 
energy expenditure), which is reabsorbed by the sodium glucose cotransporter SGLT2 
(~97%) and SGLT1 (~3%) in the early and late proximal tubule, respectively.

•	 The basal overall glucose tubular reabsorption capacities for SGLT2 versus SGLT1 is in the 
range of 3:1 to 5:1. The transport capacity of tubular SGLT1 is unmasked (up to ~80 g/
day) when more glucose is delivered to the late proximal tubule (e.g., in diabetes or with 
SGLT2 inhibition).

•	 The good correlation between the level of basolateral GLUT1 expression and the glycolytic 
activity of the different nephron segments indicates that the more distal tubule segments in 
particular are taking up glucose for energy supply via basolateral GLUT1.

•	 One of the major roles of organic anionic transporters, long considered mainly drug and 
toxin transporters, now appears to be to regulate many aspects of endogenous physiology.

•	 OAT1 and OAT3 appear to be the major renal basolateral transporters involved in the 
elimination of numerous uremic toxins originating in the gut microbiome, although OCT2 is 
likely the main route of TMAO elimination.

•	 The Remote Sensing and Signaling Hypothesis is a systems biology theory about the role of 
SLC and ABC transporters in the interorgan and interorganismal (e.g., host gut microbiome) 
“remote” communication via transporter-mediated movement of metabolites, signaling 
molecules, gut microbiome products, nutrients, uric acid, and uremic toxins into different 
body tissues and fluid compartments. It provides a framework for understanding uremia and 
hyperuricemia.

•	 Amino acid transporters often form heterodimers with ancillary subunits that are essential for 
trafficking of the transporters to the cell surface. Genetic complexity is observed in renal 
aminoacidurias due to heterodimer formation and transporter redundancy.

•	 Rare inherited aminoacidurias define four major routes of amino acid reabsorption. Amino 
acid antiporters play an important role in the apical and basolateral transport of cationic 
and neutral amino acids.
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more detail below, glucose reabsorption in the proximal 
tubule involves the two Na+-glucose cotransporters SGLT2 
and SGLT1, which are expressed in the brush border mem-
brane of the early and later proximal tubule, respectively. 
Na+–glucose cotransport is a saturable process and has a 
maximum transport capacity (Tmax). The Tmax of the kidneys 
for glucose can vary among individuals and averages ~430 g 
and ~500 g/day (300 and 350 mg/min) in female and male 
healthy human subjects, respectively.3,4 This equals ~threefold 
the normal tubular glucose load of 160–180 g/day so that 
the renal glucose reabsorption capacity is not saturated under 
conditions of normal blood glucose levels and GFR. Theoreti-
cally, at a normal GFR, the Tmax should be reached, and 
glucose should begin to be excreted in the urine at a plasma 
glucose threshold of ~15.5 mmol/L (280 mg/dL). The Tmax 
for glucose of individual nephrons is variable, however, and 
thus, low-level urinary glucose spilling begins in a normal, 
glucose-tolerant individual at modestly elevated plasma glucose 
levels of ~10–11 mmol/L (180–200 mg/dL; see “Splay,” Fig. 
8.2). A robust and linear increase in urinary glucose excretion 
occurs when blood glucose levels rise above 15–16 mmol/L. 
GFR is a determinant of the filtered glucose load, and as a 
consequence, glucosuria can occur at lower plasma glucose 
concentrations when GFR is elevated (e.g., in pregnancy or 
in diabetes), or at higher blood glucose levels when GFR is 
reduced (e.g., in chronic kidney disease; CKD). In addition, 
changes in the transport activity and expression level of SGLT2 
and SGLT1 (see later) are expected to further modify this 
relationship.

This is relevant in healthy individuals, in particular in the 
fasting state, and becomes pathophysiologically important 
in diabetes and hyperglycemic conditions. As a consequence, 
new antihyperglycemic drugs have been developed that target 
renal glucose reabsorption, induce urinary glucose loss, and 
have clinical efficacy with regard to lowering blood glucose, 
and even more importantly, they have protective effects on 
the kidney and cardiovascular system.

PHYSIOLOGY OF RENAL GLUCOSE TRANSPORT

In many organisms including human, the cellular uptake 
and metabolism of D-glucose serves as an important energy 
source.1,2 The brain primarily runs on glucose and depends 
on its continuous uptake, which alone requires ~125 g of 
glucose every day. As a consequence, glucose homeostasis is 
finely regulated, and blood glucose levels are maintained in a 
range of 4–9 mmol/L by various hormones, including insulin 
and glucagon, that regulate glucose uptake into target cells as 
well as glucose storage and endogenous glucose production.1,2

Glucose is a small molecule that is freely filtered by the 
glomeruli of the kidneys. Under conditions of normal blood 
glucose levels (~5.5 mmol/L or 100 mg/dL) and normal 
glomerular filtration rate (GFR, ~180 L/day), the kidneys 
filter 160–180 g of glucose each day. This is equal to ~30% 
of the daily energy expenditure, which would be lost into 
the urine if not regained by the renal tubules. Instead, more 
than 99% of the filtered glucose is reabsorbed by the tubules, 
primarily in the proximal tubule (Fig. 8.1). As described in 
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Fig. 8.1  Glucose transport in the kidney. (A) Under normoglycemia, ~97% of filtered glucose is reabsorbed via SGLT2 in the early segments 
of the proximal tubule. The remaining ~3% of glucose is reabsorbed by SGLT1 in the late proximal tubule such that the urine is nearly free of 
glucose. SGLT2 inhibition shifts glucose reabsorption downstream and unmasks the capacity of SGLT1 to reabsorb glucose (~40% of filtered 
glucose, depending on glucose load; see numbers in parentheses). (B) Cell model of glucose transport: The basolateral Na+-K+-ATPase lowers 
cytosolic Na+ concentrations and generates a negative interior voltage, thereby providing the driving force for Na+-coupled glucose uptake 
through SGLT2 and SGLT1 across the apical membrane. The facilitative glucose transporters GLUT2 and GLUT1 mediate glucose transport 
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reabsorption or transcellular K+ secretion to stabilize membrane potential; K+ channels KCNE1/unknown α subunit and KCNE1/KCNQ1 in early 
and late proximal tubule, respectively. (This figure was modified with permission from Vallon V. Molecular determinants of renal glucose transport. 
Am J Physiol Cell Physiol. 2011;300:C6–C8.)
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showed that glucose reabsorption in the early proximal tubule 
is completely absent in mice lacking SGLT215 (Fig. 8.3). In 
comparison, fractional glucose reabsorption along the 
proximal convoluted tubule (PCT) was only slightly reduced 
from 97% to 94% in mice lacking SGLT1.20

The phenotype of humans carrying mutations in the genes 
for SGLT1 (SLC5A1) and SGLT2 (SLC5A2) demonstrated 
their distinct quantitative contribution to renal glucose 
reabsorption. Mutations in SGLT1 cause “Intestinal Glucose 
Galactose Malabsorption” [Online Mendelian Inheritance 
in Man (OMIM) 182380] because the active intestinal 
reabsorption of glucose is mediated by SGLT1.21,22 Newborns 
with mutations in SGLT1 as well as mice lacking SGLT120 
can present with life-threatening diarrhea when exposed to 
dietary galactose or glucose; however, they show little or no 
glucosuria. In contrast, individuals with mutations in SGLT2 
present persistent “Familial Renal Glucosuria” (OMIM 233100) 
ranging from 1 to >100 g per day, but they have no intestinal 
phenotype.23 Although mutations in SGLT2 are rare and 
therefore the consequences are not well studied or fully 
understood, it is remarkable that no other complications 
(e.g., urinary infections or impaired kidney function) have 
been consistently observed in these subjects.21,23 This informa-
tion added to the rationale of developing SGLT2 inhibitors 
as potentially safe antihyperglycemic drugs (see later). 
Consistent with the described phenotypes in humans, genetic 
and pharmacologic studies in mice showed that under 
normoglycemic conditions, SGLT2 reabsorbs ~97% of the 
filtered glucose, whereas SGLT1 mediates the reabsorption 
of the remaining ~2%–3%15,20,24 (see Figs. 8.1 and 8.3).

UNMASKING A SIGNIFICANT GLUCOSE 
TRANSPORT CAPACITY OF SGLT1 IN THE LATE 
PROXIMAL TUBULE

In healthy human subjects, similar to the phenotype in 
rodents, SGLT2 is thought to reabsorb >90% of filtered 
glucose, yet they maintain a fractional glucose reabsorption 
of 40%–50% following application of a selective SGLT2 
inhibitor25–27 (see Fig. 8.1). This observation is mimicking 
the phenotype of normoglycemic mice lacking Sglt2 (Sglt2–/–), 
in which fractional renal glucose reabsorption varied between 
10% and 60%, inversely with the amount of filtered glucose, 
with a mean value of ~40%15 (see Fig. 8.3). Follow-up studies 
demonstrated that the persisting glucose reabsorption is 
mediated in the downstream late proximal tubule by SGLT1, 
whose transport capacity is unmasked by SGLT2 inhibition 
(Figs. 8.1 and 8.3). First and indirect evidence came from 
micropuncture studies in Sglt2–/– mice: these mice have no 
net glucose reabsorption in the early proximal tubule; 
however, their glucose reabsorption in the later parts of the 
PCT accessible to micropuncture, where SGLT1 is expressed 
in S2 segments, is increased compared with wild-type (WT) 
mice15 (Fig. 8.3). Metabolic cage studies further showed that 
the dose–response curve for glucosuria of a selective SGLT2 
inhibitor was shifted leftward in Sglt1–/– mice; that is, glu-
cosuria initiated at lower doses, and the maximum glucosuric 
response doubled compared with WT mice24 (Fig. 8.3). Renal 
clearance studies found that concentrations of the SGLT2 
inhibitor in early proximal tubule fluid close to the reported  
half maximal inhibitory concentration (IC50) for mouse SGLT2 
were associated with fractional renal glucose reabsorption 

A PRIMARY ROLE FOR SGLT2 IN RENAL 
GLUCOSE REABSORPTION

Experiments performed on isolated nephron segments of 
rabbit kidneys in the early 1980s identified differences in 
the rate of uptake and affinity for glucose between the early 
and late proximal tubule segments, respectively.5 Subsequent 
studies confirmed that the heterogeneity in glucose transport 
across the proximal tubule was attributed to the presence 
of two different glucose transporters in the brush border 
membrane.6 These studies and transport studies in membrane 
vesicles and analyses of mRNA expression in isolated nephron 
segments of rat and rabbit kidneys as well as the cloning of 
the responsible genes, performed largely between 1981 and 
1995, identified the Na+–glucose cotransporters SGLT2 
(SLC5A2) and SGLT1 (SLC5A1) as the primary genes and 
pathways for renal glucose reabsorption.5–14 These studies 
established the concept that the “bulk” of tubular glucose 
uptake across the apical membrane occurs in the “early” 
proximal tubule (S1/2 segment) and is mediated by the 
low-affinity and high-capacity SGLT2. In comparison, the 
higher-affinity and lower-capacity SGLT1 is thought to “clean 
up” most of the remaining luminal glucose in “later” parts 
of the proximal tubule (S2/S3 segment) (see Fig. 8.1). In 
accordance, SGLT2 and SGLT1 have been localized with the 
use of well-validated antibodies in both rodents and humans 
to the brush border membrane primarily of the early and 
late proximal tubule, respectively.15–18 In the mouse kidney, 
the levels of SGLT1 protein expression in the brush border 
were highest in S2 segments and somewhat lower in S3 
segments in medullary rays and in the outer stripe.19 In the 
human kidney, the strongest expression of SGLT1 was found 
in the S3 segment.18 In accordance and demonstrating the 
functional role of SGLT2, free-flow renal micropuncture 
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due to upstream glucose reabsorption by SGLT2. Inhibition 
of the latter, however, delivers more glucose downstream 
and unmasks the transport capacity of SGLT1 (Fig. 8.1). This 
is also consistent with a high maximal glucose transport rate 
proposed for human SGLT1 based on in vitro studies.28 As 
a consequence, combined inhibition of renal SGLT2 and 
SGLT1 is more glucosuric than inhibition of SGLT2 alone. 
This has been observed in nondiabetic and diabetic mice24,29 
and in studies using a potent dual SGLT2/SGLT1 inhibitor.30 

of 64% in WT and 17% in Sglt1–/– mice. Dosing the SGLT2 
inhibitor to fully inhibit SGLT2 reduced fractional renal 
glucose reabsorption to 44% in WT and eliminated net renal 
glucose reabsorption in Sglt1–/– mice (Fig. 8.3). Finally, the 
absence of net renal glucose reabsorption was confirmed in 
male and female mice lacking both Sglt1 and Sglt224 (Fig. 
8.3). These studies demonstrated that SGLT1 provides a 
significant glucose transport capacity in the late proximal 
tubule, which, in the normal kidney, remains mostly unused 
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during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol. 2014;306:F188–F193.)
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MOLECULAR CHARACTERIZATION OF PROXIMAL 
TUBULAR GLUCOSE TRANSPORT

APICAL GLUCOSE TRANSPORTERS
Crane first proposed in 1960 that active glucose transport 
in the intestinal epithelium (which expresses SGLT1) was 
energized by the Na+ gradient across cell membranes, the 
so-called Na+–glucose cotransport hypothesis (for review, see 
Wright et al.21). The Na+/K+-ATPase located on the basolateral 
membrane is the primary active and ATP-consuming transport 
step, which lowers cytosolic Na+ concentrations and establishes 
the concentration gradient that drives Na+ uptake, and, 
secondary, the uptake of other molecules from the luminal 
surface into proximal tubule cells (Figs. 8.1 and 8.4). This 
concept was rapidly refined and extended to active transport 
processes of a diverse range of molecules and ions including 
Na+–glucose cotransport in the kidney.21

SGLT1 and SGLT2 have been the most intensively studied 
members of the human SLC5 solute carrier (SLC) family, 
which now includes 12 members. Six of these are named as 
SGLTs, varying in their preferences for binding of glucose, 
galactose, mannose, fructose, myoinositol, choline, short-chain 
fatty acids, and other anions.21 All SGLTs have 15 exons, 
spanning from 8 to 72 kb, which code for 60- to 80-kDa 
proteins composed of 580–718 amino acids.21 The molecular 
nature of SGLTs has been largely pioneered by studies in 

The studies further indicated that SGLT2 and SGLT1 can 
account for all net glucose reabsorption in the kidney under 
normoglycemic conditions24 (Fig. 8.3). Moreover, the data 
allowed estimating that the basal overall glucose reabsorption 
capacities for SGLT2 versus SGLT1 in a nondiabetic mouse 
kidney is in the range of 3:1 to 5:1.31

Clinical Relevance
Inhibition of Renal Glucose Reabsorption as a New 
Antihyperglycemic Therapy
SGLT2 inhibitors are a new class of antihyperglycemic 
drugs that have been approved in T2DM, work inde-
pendently of insulin, improve glycemic control in all 
stages of diabetes mellitus in the absence of clinically 
relevant hypoglycemia, and can be combined with other 
antidiabetic agents. SGLT2 inhibition lowers glomerular 
hyperfiltration by a blood glucose–independent mecha-
nism. By acting as a diuretic and lowering blood pressure 
and diabetic glomerular hyperfiltration, SGLT2 inhibitors 
have the potential to induce protective effects on the 
kidney and cardiovascular system beyond blood glucose 
control.
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Fig. 8.4  Regulation of glucose transport in the proximal tubule.  (A) Insulin is a physiologic stimulator of SGLT2, which may serve to maximize 
renal glucose reabsorption capacity in situations of increased blood glucose levels (e.g., after a meal). At the same time, enhanced Na+–glucose 
uptake and insulin suppress renal gluconeogenesis. The latter, in contrast, is stimulated by fasting, which may involve increased catecholamine 
levels. In metabolic acidosis, the increase in gluconeogenesis from glutamine (Gln) is linked to the formation of (1) ammonium (NH4

+), a renally 
excreted acid equivalent, and (2) new bicarbonate, which is taken up into the circulation. The Na+-H+ exchanger NHE3 contributes to apical 
H+/NH4

+ secretion and Na+/bicarbonate reabsorption. SGLT2 and NHE3 are both stimulated by insulin to enhance Na+ and glucose reabsorption, 
and their functions may be positively linked through the scaffolding protein MAP17. (B) Diabetes increases luminal glucose delivery to both 
SGLT2- and SGLT1-expressing segments. Glucose transporters GLUT2 and GLUT1 mediate glucose transport across the basolateral membrane, 
but GLUT2 may also translocate to the apical membrane in diabetes. Angiotensin II (Ang I), serum, glucocorticoid-inducible kinase SGK1, 
hepatocyte nuclear factor HNF-1α, and protein kinase C PKCβ1 promote glucose reabsorption in the diabetic kidney, whereas hypoxia-induced 
HIF-1α, inflammation, and excessive intracellular glucose levels may be inhibitory. Basolateral glucose uptake via GLUT1/2 may be involved 
in glycolysis and tubule regeneration after injury as well as hyperglycemia-induced TGF-β. 
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BASOLATERAL GLUCOSE TRANSPORTERS
In the healthy kidney, the glucose that is being reabsorbed 
by proximal tubule cells is not linked to appreciable glucose 
metabolism in these cells. This is due to the fact that most 
glucose is reabsorbed in the early PCT (S1 segment), but 
these cells lack significant capacity for aerobic and anaerobic 
glycolysis.42–44 Thus, glucose that is taken up across the luminal 
membrane or formed within proximal tubule cells (see later) 
exits across the basolateral membrane into the interstitium 
by concentration–driven facilitative glucose transporters, 
GLUT2 and GLUT1 (see Fig. 8.1) and subsequently enters 
the peritubular capillaries by convection through fenestrated 
endothelial cells. GLUT2, the low-affinity (Km; 15–20 mM) 
“liver“ transporter is primarily expressed in the PCT (S1/S2 
segments), but GLUT2 mRNA has also been detected in the 
proximal straight tubule (PST) (S3 segment).45 GLUT2 is 
thought to be the dominant transporter involved in basolateral 
exit of glucose derived from apical glucose uptake or gluco-
neogenesis in the PCT.46–48 In comparison, GLUT1, the 
high-affinity (1–2 mM) “erythroid/brain” transporter is 
expressed along the entire proximal tubule and has been 
implicated in transcellular glucose transport, particularly in 
the S3 segments.46–48 Notably, GLUT1 is also expressed in 
the basolateral membrane of further distal tubule segments 
and at higher levels than in S3 segments. This includes 
expression in the medullary thin and thick ascending limbs 
(TAL) of the rat kidney and at the highest levels in connecting 
segments and collecting ducts. In the latter, GLUT1 was 
expressed at the highest level in intercalated cells and to a 
lesser extent in principal cells.48 These findings indicated a 
good correlation between the level of GLUT1 expression 
and the glycolytic activity of the different nephron segments, 
indicating that, in particular, the more distal tubule segments 
are taking up glucose for energy supply via basolateral GLUT1. 
Recent studies used positron emission tomography and 
α-methyl-4-[F-18]-fluoro-4-deoxy-d-glucopyranoside to monitor 
glucose transport in mouse kidneys lacking either SGLT1, 
SGLT2, or GLUT2. The studies confirmed prominent con-
tributions of SGLT2 and SGLT1 to renal glucose uptake. 
Moreover, renal glucose reabsorption appeared absent in 
mice lacking GLUT2, consistent with a more prominent role 
of GLUT2 versus GLUT1 with regard to basolateral glucose 
exit of glucose in the proximal tubule49 (Fig. 8.1). This is in 
line with the renal phenotype of patients with mutations in 
GLUT2 and GLUT1. Loss of function mutations in GLUT2 
are the basis of the Fanconi–Bickel syndrome, which includes 
a renal Fanconi syndrome, a proximal tubulopathy consisting 
of glycosuria, phosphaturia, aminoaciduria, proteinuria, and 
hyperuricemia.50–52 The observed proximal tubulopathy may 
be due to intracellular glucose accumulation and glucotoxicity 
that occurs when basolateral glucose exit is blocked. In 
comparison, patients with GLUT1 mutations have primarily 
neurologic symptoms, and no renal phenotype has been 
documented.50,53

In addition to GLUT1 and GLUT2, some of the other 12 
members of the SLC2 gene family have been found in the 
kidney and may contribute to glucose transport, but little is 
known about their quantitative contribution.54 For example, 
GLUT4 mRNA and immunoreactivity were focally localized 
in the TALH of the loop of Henle, coexpressed with IGF-I 
and increased by vasopressin treatment, indicating a potential 

the laboratory of Wright and colleagues (see Wright et al.21 
for review). This involved identifying and cloning SGLT1, 
identifying that defects in SGLT1 were associated with 
intestinal malabsorption of glucose–galactose and cloning 
of SGLT2. Wright’s group also defined the crystal structure 
of a sodium galactose bacterial isoform in Vibrio parahaemo-
lyticus (vSGLT), which allowed better characterization of how 
Na+ and sugar transport is coupled: Na+ binds first to the 
outside of the transport protein to open the outside gate, 
thereby permitting outside sugar to bind and be trapped; 
this is followed by a conformational change and the subse-
quent opening of the inward gate releases the Na+ and sugar 
into the cell cytoplasm. The transport cycle is completed by 
the change in conformation from an inward-facing ligand-free 
state to an outward-facing ligand-free state.21,32

The sugar selectivity and transport kinetics of cloned SGLTs 
were determined using electrophysiologic techniques in 
various expression systems. The affinity of SGLT1 is similar 
for glucose and galactose, whereas SGLT2 does not transport 
galactose, and neither transports fructose.21 More recent 
studies in transfected human embryonic kidney (HEK) 293T 
cells indicated that the apparent affinities (Km) for D-glucose 
are rather similar for human SGLT1 and human SGLT2, 
with values of 2 mM and 5 mM, respectively.28 Sugar binding 
occurs in a Na+-dependent manner, and the Km values for 
Na+ transport by human SGLT1 and human SGLT2 are 70 mM 
and 25 mM, respectively.28 Thus, under euglycemic conditions, 
the glucose concentration in the tubular fluid of the very 
early proximal tubule (reflecting blood glucose levels) is 
similar to the Km of SGLT2, whereas the luminal Na+ con-
centration of ~140 mM is higher than the Km of SGLT2 and 
not rate limiting.

SGLT1 and SGLT2 transport Na+ and glucose with an 
Na+–glucose coupling ratio of 2:1 and 1:1, respectively.28 The 
greater Na+–glucose coupling ratio of SGLT1 enhances its 
glucose concentration power and thereby the ability of the 
late proximal tubule to effectively reabsorb glucose despite 
falling luminal glucose concentrations (see Fig. 8.1). Na+–
glucose transport is electrogenic, and the membrane potential 
and driving force are maintained by paracellular Cl– reabsorp-
tion or transcellular K+ secretion, the latter involving KCNE1/
KCNQ1 channels in the luminal membrane of the proximal 
tubule33,34 (Fig. 8.1).

The mRNA expression of three other members of the 
SLC5 family that can transport glucose based on in vitro 
substrate studies has been detected in the kidney.35 SGLT3 
(SLC5A4) is not a glucose transporter, but glucose can 
depolarize the plasma membrane in its presence in a saturable, 
Na+-dependent manner, and this effect is inhibited by phlo-
rizin. As such, it has been proposed to be a glucose sensor; 
however, its expression and function in the kidney remain 
unclear.36 SGLT4 (SLC5A9) is expressed in the kidney, and 
transports glucose in COS-7 cells but with a lower apparent 
affinity than mannose (Ki 8 vs. 0.15 mM).37 Thus, SGLT4 
may primarily be involved in mannose homeostasis. SGLT5 
(SLC5A10) is an Na+-dependent sugar transporter that has 
a relatively high affinity and capacity for mannose and fructose 
relative to glucose and galactose.38,39 SGLT5 mRNA is highly 
kidney abundant and expressed in kidney cortex,38,40 and 
recent studies in knockout mice indicated that SGLT5 is the 
major luminal transporter for fructose reabsorption in the 
kidney.41
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segments, lactate appears to be a better gluconeogenic precur-
sor than glutamine in S2 and S3 segments.63 Moreover, studies 
in mice indicated that the luminal membrane of the thick 
ascending limb in the outer stripe of the outer medulla and 
in the cortex (including the macula densa) express SGLT1.19 
The rat appears to express SGLT1 also in the cortical TAL 
and macula densa.17 Further studies are needed to clarify 
whether the TAL (and macula densa) in human also express 
SGLT1, and determine the potential role of SGLT1 in these 
structures, including a proposed Cori cycle.

Taken together and under normal conditions, the PCT 
is the site of greatest renal glucose reabsorption and gen-
eration. The ability of early proximal tubular segments for 
gluconeogenesis but inability to metabolize glucose prevents 
a futile cycle. The reabsorption of filtered glucose and renal 
gluconeogenesis provide an energy source to distal tubular 
segments, primarily in the renal medulla, and returning the 
glucose to the systemic circulation helps to maintain blood 
glucose levels, particularly in the postabsorptive state. In 
addition, renal gluconeogenesis is closely linked to the renal 
response to metabolic acidosis. See Chapter 5 for additional 
discussion of the role of gluconeogenesis in renal metabolism.

RENAL GLUCOSE TRANSPORT IN  
DISEASE STATES

GLUCOSE TRANSPORT IS INCREASED IN  
THE DIABETIC KIDNEY
Lowering hyperglycemia is vital in diabetic patients to attenu-
ate the progression of the underlying metabolic dysfunction64 
and to reduce the risk of diabetic complications including 
nephropathy and cardiovascular disease.65 Current therapies 
for type 2 diabetes mellitus (T2DM) include drugs that target 
the liver, small intestine, adipose tissue, skeletal muscle, and/
or pancreas. Many of these therapies, including insulin, have 
difficulties to establish adequate glycemic control without 
the potential for relevant unwanted side effects, including 
hypoglycemia and weight gain, and may not reduce car-
diovascular complications.66 The following sections outline 
how glucose transport changes in the diabetic kidney, its 
implications for diabetic kidney function, and how targeting 
renal glucose transport can serve as a new antihyperglycemic 
therapy.

Diabetes mellitus is associated with increased blood glucose 
levels. This enhances the amounts of glucose filtered by the 
kidneys, as long as GFR is preserved. In fact, the early phase 
of diabetes is often associated with an increase in GFR or 
glomerular hyperfiltration (see later), which further increases 
the tubular glucose load. At the same time, the tubular 
capacity to reabsorb glucose increases by ~20%–30% to 
~500–600 g/day in patients with T2DM67,68 and type 1 diabetes 
(T1DM).3 Thus, diabetes often increases the glomerular filtra-
tion and tubular reabsorption of glucose. Moreover and 
despite increased blood glucose levels, diabetes also enhances 
renal gluconeogenesis.57 The latter can be the consequence 
of diabetes-associated metabolic acidosis, and the induced 
gluconeogenesis involves metabolism of glutamine to glucose 
associated with the generation of ammonia and bicarbonate57 
(see Fig. 8.4). Other potential triggers for gluconeogenesis 
in diabetes include the activation of the sympathetic nervous 
system, the reduced insulin levels observed in T1DM, 
enhanced circulating fatty acids, or the kidneys receive another 

role in local fuel control.45 GLUT5 is strongly expressed in 
the apical membrane of the S3 segment in the rat kidney 
but proposed to transport primarily fructose.45,55 GLUT12 
can transport glucose, and an apical localization has been 
reported in distal tubules and collecting ducts, but its quantita-
tive role remains to be determined.56

RENAL FORMATION OF GLUCOSE
The kidneys not only reabsorb the filtered glucose and use 
glucose as an energy source, but they also generate new 
glucose. Gluconeogenesis involves the formation of glucose-
6-phosphate from precursors such as lactate, glutamine, 
alanine, and glycerol with its subsequent hydrolysis by 
glucose-6-phosphatase to generate free glucose that can exit 
the cell. The healthy human kidneys produce ~15–55 g glucose 
per day by gluconeogenesis. In fact, the human liver and 
kidneys provide about equal amounts of glucose via gluco-
neogenesis in the postabsorptive state (i.e., 12–16 hours after 
the last meal).57 Renal gluconeogenesis occurs along the 
entire proximal tubule, but its activity is usually higher in 
the earlier segments.43,58

Renal gluconeogenesis is stimulated by epinephrine and 
inhibited by insulin57 (see Fig. 8.4). Insulin-induced suppres-
sion of gluconeogenic gene expression in the proximal tubule 
was accompanied by phosphorylation and inactivation of 
forkhead box transcription factor 1 (FoxO1).59 In contrast 
to the liver, renal gluconeogenesis is probably insensitive to 
glucagon.57 Studies in humans indicated that in the postab-
sorptive state, renal gluconeogenesis uses primarily lactate 
as substrate, followed by glutamine, glycerol, and alanine.60

In contrast to the uniform stimulation of gluconeogenesis 
along the entire proximal tubule by starvation, metabolic 
acidosis enhances gluconeogenesis primarily in S1 and S2 
segments.43,58,61 Furthermore, gluconeogenesis in response 
to metabolic acidosis primarily uses glutamine as substrate. 
During the process of renal gluconeogenesis from glutamine, 
the conversion of glutamine to glutamate and α-ketoglutarate 
produces ammonium (NH4

+), which is excreted into the 
urine as an acid equivalent. The subsequent pathway from 
α-ketoglutarate to glucose forms new bicarbonate, which is 
returned as buffer to the systemic circulation (see Fig. 8.4). 
The described link between proximal tubular ammonium, 
bicarbonate, and glucose formation explains why acidosis is 
a prominent stimulus for renal gluconeogenesis.57,60

Apical glucose uptake via SGLT1 or SGLT2 can have an 
inhibitory influence on the expression of renal gluconeogenic 
genes (see Fig. 8.4). This effect may serve to prevent glucose 
overload in the cells of the proximal tubule, and has been 
proposed to involve glucose-induced and sirtuin 1–mediated 
deacetylation of peroxisome proliferator–activated receptor 
gamma coactivator 1-α, a coactivator of FoxO1.59

In general, it is expected that cytosolic glucose in proximal 
tubule S3 segments is used for metabolism or leaves the cell 
via basolateral GLUT1. It has also been hypothesized that 
glucose generated from lactate in the medullary S3 segment 
forms part of an intrarenal Cori cycle62; glucose enters the 
lumen by reversed transport through SGLT1 and is taken 
up by downstream tubular segments, where it is used as energy 
substrate for glycolysis (e.g., in medullary TAL), and the 
formed lactate is being returned to the neighboring S3 
segment as a substrate for gluconeogenesis. Studies in human 
proximal tubule segments indicated that in contrast to S1 
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induced T1DM in rats proposed targeting of GLUT2 (but 
not GLUT1) also to the brush border membrane of proximal 
tubules.82,83 The latter may be linked to protein kinase C 
PKCβ1 activation83–85 and may implicate facilitative glucose 
transport, together with SGLT2 and SGLT1 in the increased 
glucose reabsorption across the apical membrane of proximal 
tubules in the diabetic kidney (Fig. 8.4).

The available data on changes in glucose transporters 
in diabetic patients are sparse and also variable. Primary 
cultures of human exfoliated proximal tubular epithelial cells 
harvested from fresh urine of patients with T2DM showed an 
increased glucose uptake associated with increased protein 
expression of SGLT2 and GLUT2.86 An increase in SGLT2 
protein expression has also been reported in fresh kidney 
biopsies of patients with T2DM and advanced nephropathy.87 
On the other hand, the mRNA expression of SGLT2 and 
GLUT2 was slightly lower in 19 patients with T2DM and 
preserved kidney function as compared with 20 nondiabetic 
patients matched for age and estimated GFR (eGFR), all being 
subjected to nephrectomy.88 Similar results were reported for 
SGLT2 and GLUT2 mRNA in another set of patients with 
T2DM, but the results did not reach statistical significance.89

If an increase in SGLT2 expression occurs in the diabetic 
kidney, then it may simply reflect overall growth and hyper-
trophy of the diabetic proximal tubule and the associated 
increase in transport machinery,90,91 and this may be exag-
gerated with advanced nephropathy when nephrons are lost 
and the remaining nephrons aim to compensate. Moreover, 
upregulation of SGLT2 expression in diabetic rats has been 
linked to activation of Ang II AT1 receptors92 and the transcrip-
tion factor, hepatocyte nuclear factor HNF-1α.93 The latter 
as well as HNF-3β have also been implicated in renal GLUT2 
upregulation79 (see Fig. 8.4). Notably, pharmacologic inhibi-
tion of SGLT2 in normoglycemic mice also increased renal 
membrane SGLT2 protein expression,71 possibly reflecting 
a negative feedback regulation of SGLT2 expression by 
intracellular glucose levels. Along this line, if renal SGLT2 
expression is reduced in the diabetic kidney, this may be 
due to enhanced diabetes-induced proximal tubular gluco-
neogenesis (Fig. 8.4) or reflect more severe tubular hypoxia 
or inflammation.94–96

SGLT1 AND GLUT1
The renal expression of SGLT1 protein appears to vary among 
genetic mouse models of diabetes: renal SGLT1 protein 
expression was found to be increased in leptin-deficient ob/
ob mice,97 a model of T2DM, and reduced in Akita mice, a 
model of T1DM70; the latter study used knockout mice as 
negative antibody control. In contrast to SGLT2 (see earlier), 
insulin stimulation slightly decreased SGLT1-mediated 
Na+–glucose transport in HEK-293T cells,73 indicating differ-
ences in the regulation of these two transporters. In contrast 
to the strong increase in SGLT2 (see earlier), SGLT1 protein 
was not significantly changed in fresh kidney biopsies of 
patients with T2DM and nephropathy in comparison with 
nondiabetic controls.87 The interpretation of renal SGLT1 
mRNA expression data may be complicated by the observation 
that mRNA and protein expression can dissociate, at least 
in mouse kidney.98

GLUT1 protein expression was downregulated in proximal 
tubules isolated from rat cortices at 2 and 4 weeks after STZ,81 
but increased in kidneys of rats at 30 weeks after STZ.56 A 

signal from insulin-dependent cells that cannot take up 
glucose due to low insulin levels (T1DM) or insulin resistance 
(T2DM) and are glucose “starved.”

Increasing renal glucose reabsorption in response to a 
rise in filtered glucose makes sense with regard to energy 
substrate conservation. Moreover, the further distal segments 
may need/use more glucose as an energy substrate to reabsorb 
the load of salt and other compounds, which is increased 
due to glomerular hyperfiltration. Renal glucose retention 
and enhanced glucose formation become maladaptive in 
diabetes, however, when they sustain hyperglycemia (see Fig. 
8.4). In this regard, the kidney provides a safety valve that 
can prevent extreme hyperglycemia. When blood glucose 
levels increase to the point that the filtered load exceeds the 
Tm or tubular transport capacity for glucose, then the surplus 
is excreted in the urine. The safety valve, however, only opens 
at rather high blood glucose levels (>15 mmol/L) (see Fig. 
8.2) and only works as long as glomerular filtration is main-
tained, and its threshold depends on the level of expression 
and activity of the involved glucose transporter, and its 
functionality may thus vary from patient to patient.

GLUCOSE TRANSPORTERS IN THE DIABETIC KIDNEY
The levels of protein expression and activity of SGLT2, SGLT1, 
GLUT2, and potentially GLUT1 determine the capacity of 
renal glucose reabsorption, and their upregulation may 
explain the increased glucose transport maximum that can 
be observed in diabetes. The available preclinical and human 
studies reported increased, unchanged, or reduced renal 
glucose transporter expression and/or activity in diabetes 
or under high-glucose conditions.69 The observed different 
responses may reflect different diabetes models, metabolic 
states, levels of kidney injury, other factors that regulate the 
expression of these transporters, the use of nonselective 
antibodies, or dissociations between mRNA and protein 
expression.

SGLT2 AND GLUT2
Using knockout mice as gold standard negative antibody 
controls, the renal protein expression of SGLT2 was found 
to be increased by 40%–80% in the early hyperglycemic stages 
of genetic mouse models of T2DM (db/db) and T1DM 
(Akita).70,71 The proximal tubule, like many nephron segments, 
expresses insulin receptors and binds insulin.72 Application 
of insulin to HEK-293T cells phosphorylated SGLT2 at Ser624, 
which increased Na+–glucose transport.73 Thus, the insulin 
release following a meal may act on the PCT to enhance 
SGLT2 activity and conserve filtered glucose (see Fig. 8.4). 
Moreover, hyperinsulinemia associated with insulin resistance 
in obesity and T2DM may enhance renal SGLT2 activity72 
(Fig. 8.4). This may be coordinated with a stimulatory effect 
of insulin on other Na+-coupled transporters in the proximal 
tubule, including the Na+–proton exchanger NHE3.72,74 Recent 
studies indicated that SGLT2 may be functionally linked to 
NHE375–77 such that SGLT2 inhibition may, to some extent, 
inhibit NHE3 in the proximal tubule (Fig. 8.4). A similar 
interaction has been proposed for the coregulation of SGLT1 
and NHE3 in the small intestine.

Consistent with a potential concerted regulation of luminal 
and basolateral glucose transport, upregulation of GLUT2 
expression has been reported in renal proximal tubules in 
diabetic rats.78–81 Notably, studies in streptozotocin (STZ)-
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basolateral GLUT1 (or GLUT2), rather than the filtered 
glucose, that affects the tubular synthesis of TGF-β 1 and 
thereby the development of tubulointerstitial fibrosis and 
tubular growth (Fig. 8.4).

INHIBITION OF RENAL GLUCOSE REABSORPTION 
AS A NEW ANTIHYPERGLYCEMIC THERAPY

When blood glucose levels increase to the point that the 
filtered load exceeds the transport capacity of the tubular 
system, then the surplus is excreted in the urine. This renal 
safety valve can prevent extreme hyperglycemia. As outlined 
earlier, most capacity for renal glucose reabsorption is 
provided by SGLT2 in the early proximal tubule. When SGLT2 
is inhibited, the reabsorptive capacity for glucose declines 
to the residual capacity of SGLT1, which equals ~80 g/day. 
In other words, SGLT2 inhibition causes the renal safety 
valve to open at a lower threshold (see Fig. 8.2) and makes 
it also relevant to glucose homeostasis in the euglycemic and 
moderately hyperglycemic range. Several SGLT2 inhibitors 
have now been approved as glucose-lowering agents for 
subjects with T2DM and preserved kidney function. Previously, 
the presence of glucosuria in a diabetic patient indicated 
inappropriate blood glucose control, as it showed that blood 
glucose was so high that the filtered glucose overwhelmed 
the glucose reabsorption capacity. In contrast and with the 
use of SGLT2 inhibitors, glucosuria is purposely induced to 
improve blood glucose control. The following sections discuss 
the role of SGLT2 in the pathophysiology of renal glucose 
reabsorption and outline the unexpected logic of inhibiting 
SGLT2 in the diabetic kidney.90 This includes the counter-
productive enhancement of renal glucose reabsorption via 
SGLT2 in diabetes as well as a brief discussion of the basic 
mechanisms that link a primary inhibition of Na+–glucose 
cotransport in the kidney to secondary beneficial conse-
quences on the metabolism, the kidneys, and the cardiovas-
cular system.

Long-term access to excessive exogenous energy resources 
is not part of human evolution. As a consequence, it may 
not come as a surprise that the body’s responses to excess 
exogenous energy resources can be maladaptive. In contrast, 
the body’s responses to environments with scarce energy 
resources have been intensively tested and refined during 
evolution for the survival of the organism. Therefore, targeting 
metabolism in the “periphery” by inhibiting renal glucose 
reabsorption and spilling glucose as an energy resource into 
the urine and then using the central metabolic counterregula-
tory mechanisms to readjust the metabolism, may provide 
unique benefits as an antihyperglycemic approach.90 This is 
supported by clinical outcome studies using an SGLT2 inhibi-
tor on top of standard of care in patients with high cardio-
vascular risk that demonstrated protective effects with regard 
to clinically relevant renal and cardiovascular outcomes.107–109

Phlorizin is a flavonoid contained in the bark of various 
fruit trees and was discovered to cause glucosuria more than 
100 years ago.110 Phlorizin competitively inhibits SGLT2 and 
SGLT1, the former with a 10-fold higher affinity.21,28 SGLT1 
is expressed in many other organs and is the primary pathway 
for glucose reabsorption in the intestine.111 As a consequence, 
oral administration of phlorizin is burdened by extrarenal 
side effects, most prominently diarrhea. In comparison and 
in healthy subjects, SGLT2 appears to be expressed only in 

study in patients with T2DM and preserved kidney function 
reported that in whole renal tissue, GLUT1 mRNA expression 
were slightly lower as compared with nondiabetic patients.88

Why should diabetes reduce renal SGLT1 expression? 
Although this would make the renal glucose valve to open 
earlier (and make SGLT2 inhibitors more efficacious, see 
later), this may not be the kidneys’ intention. A reduced 
renal SGLT1 protein expression was also observed in response 
to genetic or pharmacologic SGLT2 inhibition in nondiabetic 
mice.15,71 These conditions and diabetes share an enhanced 
glucose load to the late proximal tubule. In vitro studies in 
proximal tubule cells indicated that high glucose can reduce 
SGLT expression and Na+–glucose cotransport activity via 
enhanced oxidative stress.99 Studies in a model of pig epithelial 
tubular cells (LLC-PK1) showed that hypoxia can diminish 
SGLT1 (and SGLT2) protein expression by activation of 
hypoxia-inducible factor-1α (HIF-1α).95 Thus, an increased 
glucose load to the outer medullary S3 segment enhances 
Na+–glucose reabsorption and thereby hypoxia, which may 
downregulate SGLT1 to limit oxygen-consuming transport 
work and glucotoxicity in this segment, which has a high 
sensitivity to acute injury94 (see Fig. 8.4).

In comparison, an increase in SGLT1 expression in the 
diabetic kidney would further increase the renal glucose 
reabsorption capacity but may put the S3 segment at risk of 
hypoxia and enhanced glucotoxicity. Studies in Akita diabetic 
mice indicated that the serum and glucocorticoid-inducible 
kinase SGK1 may stimulate SGLT1 activity and glucose 
reabsorption in PSTs.100 SGK1 could also promote proximal 
tubular glucose reabsorption by enhancing the activity of 
luminal K+ channels (KCNE1/KCNQ1), which maintain the 
electrical driving force during electrogenic Na+–glucose 
cotransport33,34,101 (see Fig. 8.4). SGK1 was upregulated in 
proximal tubules in patients with diabetic nephropathy.102

Transport functions in proximal tubules require high 
turnover of ATP, which, under normal conditions, is derived 
primarily through mitochondrial oxidative phosphoryla-
tion.43,103 This may change in pathophysiologic situations with 
impaired mitochondrial function, when glycolysis may be 
enhanced and contribute to maintaining ATP. For example, 
a shift to glycolysis has been proposed in proximal tubules 
regenerating from acute kidney injury (AKI) as well as 
proximal tubules undergoing atrophy.104 This metabolic switch 
to glycolysis occurred early during proximal tubule regenera-
tion and was reversed during successful tubular recovery, 
but persisted and became progressively more severe in tubule 
cells that failed to redifferentiate. Tubular upregulation of 
HIF-1α in mice enhanced renal GLUT1 mRNA expression; 
this was associated with less oxygen consumption and increased 
glycolysis.105 Thus, hypoxia may increase basolateral GLUT1-
mediated facilitative uptake of glucose, which is then used 
for glycolysis and recovery. Hypoxia-induced GLUT1 likely 
applies to distal tubule segments but may also be relevant 
for medullary S3 segments.104 In this regard, studies in the 
proximal tubular cell line LLC-PK1, which was cultured and 
polarized on porous tissue culture inserts, showed that 
basolateral exposure to 25 mmol/L D-glucose enhanced 
glucose uptake via GLUT1 and the subsequent intracellular 
metabolism of glucose enhanced TGF-β 1 synthesis and 
secretion; this was not observed in response to apical glucose 
exposure.106 These in vitro studies suggest that it may be the 
hyperglycemia-induced persistent uptake of glucose via 
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studies in diabetic rodents have shown that SGLT2 inhibition 
can reduce growth, lipid accumulation, inflammation, and 
injury of the diabetic kidney secondary to a strong blood 
glucose–lowering effect70,71,87,97,128–131 (Fig. 8.5). The observed 
small effect of SGLT2 inhibitors on blood glucose control in 
the EMPA-REG OUTCOME trial and the CANVAS program 
alone, however, appears insufficient to fully explain the 
rapid beneficial effect on heart failure detectable within 
a few months. Although other mechanisms are likely to 
contribute (see later), it is also possible that, in contrast 
to SGLT2 inhibitors, these other agents have simultaneous 
countervailing effects that offset the benefits of better gly-
cemic control, including increased obesity or an increased  
hypoglycemia risk.

SGLT2 inhibition lowers body weight and has a low 
hypoglycemia risk. In patients with T2DM, including those 
in the EMPA-REG OUTCOME trial and the CANVAS program, 
the glucosuric effect of SGLT2 inhibition was associated with 
a 2- to 3-kg lower body weight. Although the diuretic effect 
and fluid loss may contribute to the initial weight loss, the 
majority of the steady-state weight loss with SGLT2 inhibitor 
treatment is due to fat loss, including lesser visceral and 
subcutaneous fat132–134 (see Fig. 8.5), due to a shift in substrate 
utilization from carbohydrates to lipids.119,135,136 The released 
free fatty acids are used by the liver to form ketone bodies and 
thus increase ketogenesis.137 SGLT2 inhibitors may improve 
cardiac outcomes in part by increasing plasma levels of ketone 
bodies like β-hydroxybutyrate, which are used as energy 
substrate to improve the performance of cardiac myocytes 
(or the kidney) in diabetes mellitus138,139 (Fig. 8.5). SGLT2 
inhibitors can increase the risk of diabetic ketoacidosis,137 
particularly when the drugs are used off-label in patients  
with T1DM.137

SGLT2 inhibitors do not increase the incidence of 
hypoglycemia.107–109,118 This is because they become ineffec-
tive at lowering blood glucose any further once the filtered 
glucose load falls to ~80 g/day, which can be handled by 
renal SGLT1 (see Fig. 8.1). In addition, SGLT2 inhibitors 
leave the metabolic counterregulation intact and increase 
plasma glucagon concentrations and subsequently endogenous 
hepatic glucose production (gluconeogenesis) in patients 
with T2DM.119,122 This is potentially relevant for cardiovascular 
outcome, because episodes of hypoglycemia can impair the 
cardioprotective effects of antihyperglycemic therapy.140

SGLT2 inhibition lowers blood pressure and improves 
hyperuricemia. A meta-analysis of patients with T2DM treated 
with SGLT2 inhibitors found a consistent decrease in systolic 
blood pressure of 3–6 mm Hg,118 similar to preclinical data 
and the EMPA-REG OUTCOME trial and the CANVAS 
program. The magnitude of this blood pressure effect is 
expected to have cardiovascular protective consequences, 
particularly in high-risk patients.141 The blood pressure–
lowering effect of SGLT2 inhibition relates to the reduction 
in body weight and a modest glucose-based osmotic diuresis 
(100–470 mL/day) and a small natriuretic effect.126,142–145 The 
lower blood pressure and an associated modest reduction 
in plasma volume146 may quickly reduce cardiac pre- and 
afterload and thereby contribute to the rapid beneficial effects 
in heart failure patients107 (see Fig. 8.5).

Beneficial renal and cardiovascular effects of SGLT2 
inhibition may also be due to a plasma uric acid–lowering 
effect.147 The uricosuric effect of SGLT2 inhibitors is positively 

kidney proximal tubule,18,98 with a proposed expression and 
function in α cells of the pancreas112 needing confirmation. 
Inhibition of renal glucose transport became practical when 
phlorizin derivates were developed that are specific for SGLT2, 
have good oral bioavailability, and are suitable for once-daily 
dosing.113 Three members in this class, dapagliflozin (Forxiga 
or Farxiga in the United States), canagliflozin (Invokana), 
and empagliflozin (Jardiance) are approved in the United 
States and Europe for use in T2DM with preserved kidney 
function. Others, including ipragliflozin (Suglat), luseogli-
flozin (Lusefi), and tofogliflozin (0) are approved in Japan. 
SGLT2 inhibitors are under clinical investigation as add-on 
therapies to insulin in T1DM.

SGLT2 inhibitors act on their target from the extracellular 
surface of the cell membrane114 and reach their target by 
glomerular filtration and, as indicated for empagliflozin, also 
by tubular secretion.115 SGLT2 inhibitors induce a sustained 
urinary glucose loss of 40–80 g/day.113,116,117 In patients with 
T2DM, this is associated with a decrease in Hb A1C levels 
by 0.5%–0.7% at 12 weeks of treatment, and this effect 
persisted for up to 52 weeks.118 The higher the blood glucose 
level and GFR, the more glucose is filtered and reabsorbed 
and, as a consequence, can be excreted in response to SGLT2 
blockade. Thus, SGLT2 blockers naturally have a greater 
efficacy when it is desirable for them to be more effica-
cious.15,119,120 By lowering blood glucose levels and body weight, 
SGLT2 inhibitors improve β-cell function and sensitivity to 
insulin in patients and rodent models with T2DM.119,121–124 
Because the renal mechanism of action of SGLT2 inhibitors 
is independent of insulin, their efficacy is not declining with 
progressive β-cell dysfunction and/or insulin resistance, and 
SGLT2 inhibitors act synergistically with other blood glucose–
lowering agents.113

Two SGLT2 inhibitors have now been evaluated in major 
clinical trials in patients with T2DM: empagliflozin in the 
7,020-patient EMPA-REG OUTCOME trial107,109 and, more 
recently, canagliflozin in 10,142 patients in the CANVAS 
program.108 In addition to cardiovascular endpoints, both 
trials also included measurement of albuminuria and eGFR. 
The outcomes of the EMPA-REG OUTCOME and the CANVAS 
program are similar in most regards. Both went beyond the 
requisite safety parameters to show ~35% reductions in the 
incidence of heart failure. Both trials also reported beneficial 
effects on the kidney, including 40%–50% reductions in the 
hazard ratios for albuminuria or decline in eGFR. The relative 
risk of cardiovascular death was significantly reduced by 
SGLT2 inhibition in the EMPA-REG OUTCOME trial but 
not in the CANVAS program. This difference might be due 
to the higher prevalence of cardiovascular disease in the 
EMPA-REG OUTCOME cohort at baseline. The main car-
diovascular effect of SGLT2 inhibition was on heart failure, 
rather than ischemic events, and both trials showed tangible 
benefits on heart failure outcomes. These benefits occurred 
when added to standard care, which included ~80% of patients 
being treated with an angiotensin-converting enzyme inhibitor 
or angiotensin AT1 receptor antagonist. The main side effect 
of SGLT2 inhibitors is an increased risk of genitourinary 
infections due to the glucosuric effect.125

How can inhibition of renal glucose transport protect the 
kidney and cardiovascular system? By reducing hyperglycemia, 
SGLT2 inhibitors have the potential to reduce glucotoxicity 
in the kidney and extrarenal organs.126,127 In accordance, 
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reabsorption by providing more substrate for Na+–glucose 
cotransport via SGLT2 and SGLT1 and by causing the tubule 
to grow, which enhances the transport machinery and capacity. 
The increased reabsorption reduces the NaCl and fluid 
delivery to the downstream macula densa, which senses this 
reduction and causes GFR to increase through the normal 
physiologic action of tubuloglomerular feedback (TGF) (Fig. 
8.6). The primary effect of the TGF is to adjust the tone of 
the afferent arteriole and thereby GFR of the same nephron 
to stabilize the NaCl and fluid delivery downstream of the 
macula densa. This facilitates the fine regulation of NaCl 
and fluid balance in the distal nephron by neurohumoral 
control. A secondary consequence of this TGF physiology is 
that the mechanism contributes to the autoregulation of 
GFR and renal blood flow. Moreover, it makes GFR responsive 
to primary changes in tubular transport upstream of the 
macula densa, like in the diabetic kidney. A primary increase 
in proximal reabsorption also reduces distal tubular flow 
rate, which increases GFR by lowering tubular back pressure—
i.e., the hydrostatic pressure in Bowman space—and thereby 
increasing the effective glomerular filtration pressure (Fig. 
8.6). Mathematical modeling indicates that TGF and the 

related to the increase in tubular and urinary glucose delivery, 
as observed in healthy subjects and patients with T2DM148,149 
(see Fig. 8.5) and may involve an interaction with the luminal 
urate transporter URAT1.149

SGLT2 inhibition lowers diabetic glomerular hyperfiltration. 
Glomerular hyperfiltration, which is observed in a subset of 
patients at the onset of T1DM and T2DM, can increase the 
risk for developing diabetic nephropathy later on.150 Less 
than 1% of filtered Na+ is excreted in the urine in normal 
human subjects to match urinary excretion to dietary Na+ 
intake (i.e., almost all the filtered Na+ is reabsorbed). As a 
consequence, GFR, as the primary determinant of filtered 
Na+, also becomes the primary determinant of renal Na+ 
reabsorption. The latter, however, determines transport work 
and, thereby, renal oxygen consumption and requirement. 
Therefore, glomerular hyperfiltration increases transport 
work and oxygen consumption in the diabetic kidney, and 
lowering GFR has opposite effects.142

According to the “tubular hypothesis,” glomerular hyper-
filtration in diabetes is explained by primary tubular hyper-
reabsorption (for review, see Vallon and Thomson69). 
Moderate levels of hyperglycemia increase proximal tubular 

Renal protection

Albuminuria

Renal O2 consumption
Transport work

Kidney growth
Inflammation

Hyper-
glycemia

GFR
???

PBow

NHE3

SGLT1

SGLT2

HIF Glucosuria
Diuresis

Natriuresis
Uricosuria

SNA

Hct

Hypoglycemia

Renal/cardiac
protection

ECV/blood pressure
Uric acid levels

Body weight & fat
Mild ketosis

Lipolysis & hepatic
gluconeogenesis

Insulin need/levels
Glucagon

SGLT2 inhibitors
target the metabolic
periphery & make
use of endogenous

compensation
mechanisms

?

?

?

[Na+/Cl–/K+]MD

Fig. 8.5  Proposed mechanisms of kidney and heart protection by SGLT2 inhibition in type 1 and type 2 diabetes. SGLT2 inhibition 
attenuates the primary proximal tubular hyperreabsorption in the diabetic kidney, which increases/restores (1) the signal of the tubuloglomerular 
feedback at the macula densa ([Na+/Cl−/K+]MD) and (2) the hydrostatic pressure in the Bowman space (PBow). This lowers glomerular hyperfiltration 
with beneficial effects on tubular transport work and thus oxygen consumption and the filtration of albumin. By lowering blood glucose, SGLT2 
inhibitors can reduce kidney growth and inflammation and albuminuria. SGLT2 inhibitors have a modest osmotic diuretic, natriuretic, and 
uricosuric effect, which can reduce extracellular volume (ECV), blood pressure, serum uric acid levels, and body weight. SGLT2 inhibition blunts 
an expected reactive increase in sympathetic nerve activity (SNA). SGLT2 may be functionally linked to the Na+-H+-exchanger 3 (NHE3) such that 
SGLT2 inhibition may also inhibit NHE3 in the proximal tubule. SGLT2 inhibition lowers insulin levels (therapeutic need and/or endogenous) and 
increases glucagon levels, which increases lipolysis and hepatic gluconeogenesis. These metabolic adaptations reduce fat tissue/body weight 
and the hypoglycemia risk and induce a mild ketosis, which all may be beneficial for the kidney and cardiovascular system. The hypoglycemia 
risk is further reduced by SGLT1-mediated glucose reabsorption. SGLT2 enhances active glucose and Na+ reabsorption in the outer medulla; 
this may enhance hypoxia-inducible factor (HIF)–induced genes and have kidney and cardiac protective effects through enhancing erythropoietin, 
hematocrit, and oxygen transport. Black arrows indicate consequences of SGLT2 inhibition, and red arrows demonstrate direction of changes 
in the associated variables. “?” indicates hypotheses that need further confirmation. (This figure was modified with permission from Vallon V, 
Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia 2017;60:215–225.)



	 CHAPTER 8 — Renal Handling of Organic Solutes 	 229

in humans. The SGLT2 inhibitor empagliflozin decreased 
GFR by 19% in T1DM patients with baseline hyperfiltration 
independently of lowering blood glucose levels.120 The SGLT2 
inhibitor canagliflozin initially lowered eGFR in patients with 
T2DM and basal eGFR of ≥55 mL/min/1.73 m2. Following 
this initial dip, eGFR increased over the following weeks and 
months in the canagliflozin-treated group such that eGFR 
was better preserved after 2 years of follow-up and associated 
with reduced urinary albumin-to-creatinine ratios than in 
the control group, which had been treated with glimepiride 
to achieve similar blood glucose control.154

Surviving nephrons in advanced stages of CKD are assumed 
to hyperfilter as a way of compensation for the reduced 
nephron number and thus maintain a high glucose load on 
the level of the single nephron. This should preserve the 
acute GFR-lowering effect of SGLT2 inhibition, even if the 
effect on overall glucose homeostasis was attenuated. In 

changes in tubular back pressure contribute equally to the 
increase in GFR in diabetes.151

Vice versa, SGLT2 inhibition attenuates proximal tubule 
hyperreabsorption in the diabetic kidney and thereby lowers 
diabetic glomerular hyperfiltration (see Figs. 8.5 and 8.6). 
This has been shown in micropuncture studies in rats using 
direct application of phlorizin into the Bowman space152 and 
by acute or chronic systemic application of selective SGLT2 
inhibitors.153 In accordance, pharmacologic or genetic inhibi-
tion of SGLT2 suppressed hyperfiltration on the whole-kidney 
level in diabetic mice.70,71 Consistent with the proposed local 
mechanism, the suppression of diabetic hyperfiltration in 
response to SGLT2 inhibition was associated with an increase 
in the NaCl concentration at the macula densa152,153 and in 
the hydrostatic pressure in the Bowman space,152 and was 
independent of effects on blood glucose70,152,153 (Fig. 8.5). 
The GFR-lowering effect has more recently been confirmed 
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sensor in the deep cortex and outer medulla of the kidney, 
and the induced response then helps the failing heart and also 
the kidney. In accordance with an overall nephroprotective 
effect, SGLT2 inhibitor use reduced the risk of AKI in an 
analysis of >3000 patients with T2DM by ~50%.162 Nevertheless, 
caution is warranted, as excessive volume depletion and the 
transport shift to the outer medulla may increase the AKI 
risk in individual sensitive patients.

Preservation of blood pressure–lowering and heart failure– 
protective effects of SGLT2 inhibitors in CKD despite attenu-
ated antihyperglycemic effects. The amount of filtered glucose 
determines the glucosuric and blood glucose–lowering effect 
of SGLT2 inhibition. As a consequence, the antihyperglycemic 
effects of SGLT2 inhibitors are attenuated in patients with 
reduced GFR. In contrast, the blood pressure–lowering and 
heart failure–protective effects are preserved in patients with 
CKD and reduced GFR (eGFR ≥30 mL/min 1.73 m2).163,164 
Modeling studies of CKD and nephron loss predicted that 
the increase in single-nephron GFR in remaining nephrons 
and the reduction of glucose reabsorption by SGLT2 inhibition 
increase paracellular Na+ secretion in the proximal tubule.165 
Thus, the model predicted that the chronic natriuretic and 
diuretic effects of SGLT2 inhibition persist in CKD. The 
modeling approach also predicted that the SGLT2 inhibition–
induced changes in the oxygen signal at the renal sensor 
are preserved in CKD.165

Ongoing trials with different SGLT2 inhibitors, also includ-
ing studies in nondiabetic patients with heart failure and/
or CKD, will provide further data for comparison between 
SGLT2 inhibitors and are expected to further refine our 
understanding of the therapeutic potential and safety of 
SGLT2 inhibition.

ORGANIC CATIONS AND ANIONS

ORGANIC ANION TRANSPORTERS AND 
ORGANIC CATION TRANSPORTERS

Historically, the renal organic anion transport system has 
been one of the best studied in physiology.166–173 Essentially, 
it has been operationally characterized as the probenecid-
sensitive para-aminohippurate (PAH) transport system. 
Classically, it is described as a proximal tubule transport system 
of small organic anions (e.g., PAH) bound with low affinity 
to plasma proteins (mainly albumin). Because, with an intact 
glomerular filtration barrier, albumin-bound molecules would 
not be filtered, they move into the peritubular capillaries. 
Molecules like PAH are efficiently extracted on a “first pass” 
by a high-capacity transport system with selectivity for organic 
anions. This explains why PAH clearance can be used as a 
measure of renal plasma flow. Operationally, the system can 
be blocked by the organic anion drug probenecid, which 
has seen considerable clinical use in the setting of hyperuri-
cemia and to increase blood levels of other organic anion 
drugs like penicillins and cidofovir.174–176

The main gene responsible for this probenecid-inhibited 
PAH transport is a SLC transporter known as OAT1 (SLC22A6) 
and was originally called NKT (novel kidney transporter).177,178 
Like most other members of the mammalian SLC family, it 
has 12 membrane-spanning segments (Fig. 8.7A). At the 
time of its discovery, NKT was proposed to function as either 

accordance, the SGLT2 inhibitor canagliflozin modestly 
reduced eGFR together with proteinuria within 3 weeks in 
patients with T2DM and basal eGFR values between 30 and 
50 mL/min/1.73 m2 (CKD3).155 Empagliflozin also induced 
a small decline in eGFR in patients with T2DM and CKD2 
and CKD3; this effect was maintained at 52 weeks, associated 
with reduced urine albumin-to-creatinine ratios and, most 
importantly, full reversibility after a 3-week washout period, 
indicating a functional GFR reduction.156

Lowering single-nephron glomerular hyperfiltration in 
CKD and thereby the oxygen-consuming transport work may 
help to preserve the integrity of the remaining nephrons 
and overall kidney function in the long term (see Fig. 8.5). 
This has been proposed for blockers of angiotensin II157 and 
may also apply to SGLT2 inhibitors. Because ~80% of patients 
were also treated with a form of angiotensin II blockade, the 
EMPA-REG OUTCOME trial and CANVAS program provided 
evidence that the two strategies are additive and apply to 
patients with initial GFRs of at least 30 mL/min/1.73 m2 of 
body surface area.108,109 The additive effect is consistent with 
the concept that angiotensin II blockade is primarily dilating 
the efferent arteriole, whereas SGLT2 inhibition primarily 
constricts the afferent arteriole.

SGLT2 inhibition has distinct effects on renal cortical and 
medullary O2 requirements. Mathematical modeling predicted 
that inhibition of SGLT2 in the diabetic kidney reduces oxygen 
consumption in the PCT and renal cortex, in part by lowering 
GFR142,143 (Fig. 8.5). The predicted increase in cortical O2 
pressure and availability has been observed in a diabetic rat 
model using phlorizin, a dual SGLT1/SGLT2 inhibitor.158 
Interestingly, preserving renal cortical oxygenation may be 
important to preserve kidney function in patients with CKD.159

SGLT2 inhibition also shifts glucose uptake downstream to 
the S3 segments (see earlier) and enhances transcellular Na+ 
reabsorption in distal segments, including the S3 segment 
and medullary TAL. This may further reduce the already 
physiologically low O2 availability in the renal outer medulla. 
The latter has been proposed for SGLT2 inhibition using 
mathematical modeling142,143 and was shown in vivo in rats in 
response to acute dual SGLT2/SGLT1 inhibition by phlorizin 
in nondiabetic and diabetic rats.158 The effect on medul-
lary transport and oxygenation would be attenuated by the 
reduction in blood glucose and GFR in response to SGLT2 
inhibition.142,143 Moreover, the proposed SGLT2 inhibitor–
induced reduction in oxygen pressure in the deep cortex 
and outer medulla may stimulate hypoxia-inducible factors 
HIF-1 and HIF-2 (see Fig. 8.5). Gene knockout of SGLT2 
increased the renal mRNA expression of hemoxygenase,1,7 
a tissue-protective gene that is induced by HIF-1α. On the 
other hand, activation of HIF-2 may explain an enhanced 
erythropoietin release from renal interstitial cells in response 
to SGLT2 inhibition.160 Together with the diuretic effect, the 
latter may contribute to the observed modest increase in 
hematocrit and hemoglobin in response to SGLT2 inhibi-
tion. This may improve the oxygenation of the kidney outer 
medulla and cortex but also facilitate oxygen delivery to 
the heart and other organs (Fig. 8.5). Notably, changes in 
hematocrit and hemoglobin from baseline explained 51.8% 
and 48.9%, respectively, of the effect of the SGLT2 inhibitor 
empagliflozin versus placebo on the risk of cardiovascular 
death.161 In other words and in addition to its volume effect, 
SGLT2 inhibition may simulate systemic hypoxia to the oxygen 
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through the following mechanisms: (1) exchange (antiport) of 
PAH in the plasma with α-ketoglutarate by OAT1; (2) cotrans-
port (symport) of sodium and α-ketoglutarate into the cell by 
NaDC3; and (3) extrusion of sodium into the plasma, creating 
a sodium gradient, through the ATP-dependent action of 
the sodium–potassium ATPase (Na-K-ATPase). Thus, organic 
anion transport is ATP dependent only in an indirect way and 
depends on two other gradients: (1) a sodium gradient gener-
ated by the Na-K-ATPase, among other factors, that enables 
cotransport of sodium with α-ketoglutarate into the cell by 
NaDC3; and (2) a high intracellular α-ketoglutarate level 
that is partly due to the aforementioned NaDC3 cotransport 
and partly contributed by aerobic mitochondrial metabolism 
resulting in the generation of tricarboxylic acid (TCA) cycle 
intermediates such as α-ketoglutarate. Blocking any of these 
processes, for example, ouabain inhibition of the Na-K-ATPase, 
lithium inhibition of NaDC3, or probenecid inhibition of 
OAT1, markedly diminishes or even completely abolishes PAH 
transport via OAT1. In general, OAT3 appears to function 
via an analogous tertiary transport system, although it is not 
entirely clear that the linkage to α-ketoglutarate exchange 
is as tight.

When OAT1 was originally discovered (as NKT), two other 
homologous transporters, NLT (now OAT2, SLC22A7)181 and 
OCT1, organic cation transporter 1 (SLC22A1)182 were also 
found in the sequence database, and it was proposed that 
this was a new family of SLC transporters, which is now known 
as SLC22.178 Since then, the SLC22 family has grown to roughly 
30 transporters in humans and mice.183,184

A new evolutionary-based classification of SLC22 has been 
proposed, which divides the family into a major OAT clade 
and a major OCT clade, which further divide into six subclades 
(Fig. 8.8). The assumption is that the various SLC22 subclades 
defined by phylogenetic relationships will lead to a better 
functional classification and help deorphanize SLC22 trans-
porters of unclear function. Accordingly, subclades within 
the OAT clade include the OAT subclade, the OAT-like 
subclade, and the OAT-related subclade; within the OCT 
clade is the OCT subclade, OCT-like (OCTN) subclade, and 
the OCT-related subclade.183,185 The specific details of many 
of these transporters are beyond the scope of this chapter, 
and, indeed, many remain “orphans” with respect to endog-
enous substrate preference. Nevertheless, it is important to 
point out that, with the exception of certain subclades, the 
predominant expression for most of the other SLC22 trans-
porters tends to be in the kidney proximal tubule, choroid 
plexus, or the liver. Even so, SLC22 transporters are expressed 
throughout the body, and there are even members with highly 
selective localization to the olfactory epithelium and brain 
substructures (OAT6, SLC22A20).186 SLC22 is thus a very 
interesting SLC family involved in the transport of anionic, 
cationic, and zwitterionic drugs; toxins; metabolites; signaling 
molecules; antioxidants; dietary components; vitamins; gut 
microbiome products; and uremic toxins.183

Here we focus on OAT1 (SLC22A6) and OAT3 (SLC22A8), 
which are the major renal metabolite, drug, and toxin 
(including uremic toxin) organic anion transporters (Table 
8.1); OCT2 (SLC22A2), the major transporter of cationic 
drugs and metabolites; and URAT1 (SLC22A12), the latter 
being the most extensively studied of several urate transporters 
in the OAT subclade. Along with a number of other SLC 
and ABC transporters, these SLC22 transporters are the most 

an organic anion or organic cation transporter; numerous 
studies have since confirmed that, although OAT1 and other 
members of the OAT subfamily are predominantly organic 
anion transporters, they can also transport organic cations 
and zwitterions.179,180

The current view of how a prototypical organic anion—PAH 
in this case—is taken up across the basolateral membrane 
(blood side) of the proximal tubule cell involves three different 
transporters: OAT1, the sodium–dicarboxylate cotransporter 
(NaDC3, SLC13A3), and the sodium–potassium ATPase (Fig. 
8.7B). This “tertiary” transport system is believed to operate 
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endogenous substrates enables a range of drugs and toxins to 
coopt these transporters expressed in the gut, liver, kidney, and 
many other tissues. But the pharmaceutical and commercial 
relevance of these transporters can create the misconception 
that these widely expressed and evolutionarily conserved genes 
primarily exist to handle synthetic drugs. Although this is 
apparently their key role from the perspective of clinical 
pharmacology and pharmacokinetics, it is becoming clear 
that this lens is extremely limited even from the clinical point 
of view, because it is now evident that OAT1, OAT3, and other 
“drug” transporters are central to endogenous physiology 
and are important for understanding the pathophysiology of 
uremia, hyperuricemia, and a number of genetic conditions.

OAT1 KNOCKOUT AND OAT3 KNOCKOUT MICE
Our understanding of in vivo OAT function has changed 
with the application of omics (e.g., metabolomics, transcrip-
tomics) analyses to Oat knockout mice. The Oat1 and Oat3 
knockout mice were first analyzed over a decade ago and 
have continued to yield considerable insight into the in vivo 
function of these two major organic anion transporters, 
particularly their endogenous function.191–196

As expected, the Oat1 knockout mouse tissue has defective 
uptake of the classic organic anion transporter probe PAH, 
whereas the Oat3 knockout mouse tissue has defective uptake 
of estrone sulfate.191,197 Consistent with in vitro data, the Oat1 
and/or Oat3 knockout mice have altered in vivo or ex vivo 
(e.g., embryonic kidney organ cultures) handling of diuretics 

clinically relevant and quantitatively important organic anion 
and organic cation transporters in the proximal tubule of 
the kidney.184,187

OAT1 (SLC22A6) AND OAT3 (SLC22A8)
Both OAT1 and OAT3 were among the original seven drug 
transporters that regulatory agencies identified as important 
for analysis of the possibility of transport of new drug enti-
ties.188 This regulatory attention has perpetuated the notion 
that these transporters primarily transport drugs. Although 
it is true that the OATs transport drugs (e.g., antibiotics, 
antivirals, nonsteroidal antiinflammatory drugs, diuretics) 
and toxins (e.g., organic mercurials, aristolochic acid), it is 
now clear that they, as well as the other five SLC and ABC 
transporters highlighted by regulatory agencies, transport 
many endogenous metabolites, signaling molecules, vitamins, 
gut microbiome, and dietary products.184

Indeed, there is a growing appreciation that the primary 
function of these multispecific transporters may not be the 
handling of drugs and toxins but rather the modulation of 
local and systemic metabolism and signaling.189,190 Much of 
this change in our understanding of “what drug transporters 
really do” is the result of “omics” analyses of knockout mice, 
human  genome-wide association studies (GWAS), and the 
identification of heritable mutations that cause or modulate 
well-known metabolic diseases.184

According to this new systems biology view (explained in 
more detail later), the multispecificity of these transporters for 
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basolateral uptake transporters OAT1 and OAT3 in the 
proximal tubule, transit the cell, and exit through apical 
transporters (including members of the ABCC or MRP fami-
lies)—all before flowing down the luminal (urinary) space to 
be excreted or, for the loop and thiazide diuretics, to inhibit 

(e.g., loop, thiazides), antibiotics (e.g., penicillin, ciprofloxa-
cin), a wide range of antiviral agents, and methotrexate.198–204

Knockout mice responses to loop and thiazide diuretics 
provide a useful illustration (Fig. 8.9). These albumin-bound 
drugs in the peritubular capillaries must be transported by 

Table 8.1  Some SLC22 Transporter Substrates

Substrate

SLC22 Transporter

SLC22A6
OAT1

SLC22A8
OAT3

SLC22A1
OCT1

SLC22A2
OCT2

Nonsteroidal antiinflammatory drugs
Ibuprofen
Naproxen

✓ ✓

Antivirals
Tenofovir
Adefovir
Cidofovir

✓ ✓

β-lactam antibiotics
Ampicillin
Benzylpenicillin

✓ ✓

Diuretics
Bumetanide
Furosemide

✓ ✓

TCA cycle intermediates ✓ ✓
Short-chain fatty acids ✓ ✓
Bile acids ✓
Flavonoids ✓ ✓
Gut microbiome products ✓ ✓ ✓ ✓
Organic mercurials ✓ ✓
Cisplatin ✓ ✓
Metformin ✓ ✓
Cimetidine ✓ ✓ ✓
Thiamine ✓ ✓

TCA, Tricarboxylic acid.
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molecular properties of drug substrates that predispose to 
interaction with OAT1 or OAT3208—the sets of metabolites 
appear fairly distinct, although there is still much overlap.194

These chemical properties of drugs and metabolites 
interacting with OAT1 versus OAT3 deserve further mention. 
With respect to drugs, OAT1 and OAT3 strongly favor anionic 
drug substrates, but both transporters (especially OAT3) can 
bind a limited number of cationic/zwitterionic drugs.180 
Cimetidine is an example.179 Importantly, chemical properties 
of metabolites interacting with the OATs appear substantially 
different from the drug data. This could partly be due to a 
selection factor related to which drugs make it to market. 
However, it remains that, more than for drugs, the molecular 
and chemical properties of metabolites appear to distinguish, 
in a general way, between OAT1 and OAT3 substrates—with 
OAT3 substrates being larger, less polar, more chemically 
complex, and containing more ring structures.194 Nevertheless, 
it is worth mentioning again that there is overlap between 
OAT1 and OAT3 metabolite substrates.

In addition, metabolic reconstructions based on changes 
in gene expression in the knockouts have been performed.207–209 
These metabolic reconstructions are generally consistent with 
metabolomics data; the reconstructions indicate that OATs 
regulate many systemic biochemical pathways as well as those 
in the proximal tubule (Table 8.2). For example, among the 
top biochemical pathways revealed in reconstructions are 
purine metabolism, TCA cycle, fatty acid metabolism, eico-
sanoid metabolism, amino acid metabolism (tryptophan, 
tyrosine, arginine), and a variety of vitamin-dependent 
pathways. Together, the reconstructions and the metabolomics 
data support the view that OATs are not simply “drug” 
transporters but impact many aspects of systemic and proximal 
tubule physiology.

Together, the metabolic reconstructions based on knockout 
omics data and the analysis of endogenous substrates (e.g., 

salt reabsorption in later nephron segments. Three to five 
times more diuretic is required to achieve the same degree of 
natriuresis after deletion of either Oat1 or Oat3 in mice.191,198

OATs are implicated in renal organic mercurial toxicity 
because mercury binds to glutathione and other thiol-
containing compounds, many of which are “effectively” seen 
as organic anions by the transporter.205 When the Oat1 
knockout mouse was treated with high-dose mercury, the 
kidneys were surprisingly well protected from injury (histologi-
cally and by renal indices), consistent with the inability of 
the organic mercurial to be taken up by the proximal tubule 
due to the absence of Oat1.206

Perhaps most interesting, and somewhat unexpected, have 
been the results from performing metabolomics analyses on 
the plasma of the Oat knockout animals191,193–195,207 (Fig. 8.10). 
These have revealed a somewhat surprising range of endog-
enous OAT substrates.

Generally speaking, both OAT1 and OAT3 appear to play 
a key role in regulating the flow of organic anions through 
the so-called gut–liver–kidney axis.194 This includes the renal 
handling of many compounds derived from the gut 
microbiome—either products of the gut microbiome or due 
to the action of the gut microbiome on dietary components 
such as phytochemicals. For example, in the Oat3 knockout, 
among the greatest changes are in flavonoids that have been 
acted upon by phase 2 liver enzymes (e.g., glucuronidation). 
This highlights the important connection between OATs 
(especially OAT3) with liver metabolism (via so-called drug-
metabolizing enzymes) of endogenous compounds as well 
as drugs and toxins.

Other groups of metabolites elevated in the Oat3 knockout 
include primary and secondary bile acids.194 In Oat1 and 
Oat3 knockouts, fatty acids, TCA cycle intermediates, and 
vitamins are also elevated. Nevertheless, unlike the case of 
FDA-approved drugs—where it is difficult to distinguish 
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OCT2 (SLC22A2)
Unlike the OAT subclade (of the SLC22 OAT major clade), 
which is large, the OCT subclade (one of three subclades 
of the SLC22 OCT major clade) consists of three highly 
homologous (both protein sequence and function) transport-
ers: OCT1, OCT2, and OCT3.183 OCTs are generally held to 
be electrogenic uniporters.219 Organic cation transporter 2 
(OCT2) is the main renal uptake transporter on the baso-
lateral membrane (blood side) of the proximal tubule cell 
that is involved in the elimination of organic cationic drugs 
such as metformin and cis-platinum.220,221 On the luminal 
(apical, urine side) of the cell, it appears that MATE (SLC47) 
transporter family members efflux organic cations into the 
urinary space.222 Recently, the primary liver OCT, OCT1—one 
of the drug transporters that, along with OAT1 and OAT3, 
has been highlighted by regulatory agencies as important 
for new drug testing to identify transport mechanisms—has 
been shown to be a thiamine transporter.223

Thus, as with the OATs, OCTs may function primarily in 
regulating metabolite flow into and out of tissues, and as 
with OATs, the best in vivo functional information regarding 
endogenous function comes from analysis of metabolites 
altered in the knockout mice. On the whole, the known drug 
and metabolite substrates for the OCTs appear less diverse 
than for the OATs, and it appears that, based on molecular 
property analysis of drug substrates, OCT1 and OCT2 have 
largely overlapping specificities, at least for drugs.180

OCT2 SINGLE NUCLEOTIDE POLYMORPHISMS
The OCTs appear more polymorphic than the OATs; SNPs 
in OCT2 have received considerable clinical attention because, 
consistent with in vitro studies, they can affect levels of the 
antidiabetic agent metformin and the chemotherapeutic 
agent cis-platinum.224–227 These associations are much better 
established than the SNP associations mentioned above for 
the OATs.228 Because metformin and cis-platinum have been 
so widely used, and because of the potential for toxicity, it 
is important for the clinician to be aware of the possibility 
that SNPs in OCT2 can affect drug levels.

metabolites, signaling molecules) from the perspective of 
chemical properties calls into question the oft-discussed 
“redundancy” of OAT1 and OAT3 in the proximal tubule. 
From a practical pharmacokinetic perspective, this view may 
still be a useful first approximation for many drugs that can 
interact with both OAT1 and OAT3. But considering the 
endogenous metabolite preferences alone (without consider-
ing drugs), a more appropriate view might be that the two 
transporters have distinct roles in many metabolic processes, 
although they work together to handle certain substrates like 
uric acid. Based on current data, OAT1 appears more linked to 
local and systemic aerobic metabolism, whereas OAT3 appears 
more linked to flow of metabolites that originate in the gut 
or liver (e.g., primary and secondary bile acids). There is also 
some evidence to suggest that OAT3 could modify phenotypes, 
for instance, in diabetic disease,210 blood pressure,192 and in 
the setting of treatment with SGLT2 inhibitors.115

OAT1 AND OAT3 SINGLE-NUCLEOTIDE 
POLYMORPHISMS
Nonsynonymous coding region single-nucleotide polymor-
phisms (SNPs) in the OATs are uncommon compared with 
noncoding region SNPs.211 Although SNPs in OATs have 
received less attention than OCT SNPs—because OCTs appear 
to be more polymorphic in humans—associations have, in 
recent years, been reported that affect diuretic responsiveness, 
mercury toxicity, antibiotic levels, and hyperuricemia.212–216 
A noncoding SNP in the OAT1 gene appears to be associated 
with the progression of renal disease; whether or not this is 
related to altered handling of one or more uremic or other 
toxins is not clear.217 Based on animal and human data, it 
would not be surprising if OAT3 SNPs are found to be associ-
ated with glucose homeostasis or diabetic renal disease. 
Because there is considerable overlap in drugs transported 
by OAT1 and OAT3, it may be that SNPs in both OATs (or 
in an OAT and the “corresponding” apical transporter such 
as MRP2 or MRP4) are required for pronounced drug, toxin, 
and metabolite phenotypes.218 This question needs to be 
examined in more detail.

Table 8.2  Top Pathways Affected by Oat1 Loss 
in Knockout Mice

TCA cycle
Tyrosine metabolism
Alanine, aspartate, and glutamate metabolism
Butanoate metabolism
Arginine and proline metabolism
Tryptophan metabolism
Nicotinate and nicotinamide metabolism
Valine, leucine, and isoleucine degradation
Nitrogen metabolism
Glyoxylate and dicarboxylate metabolism
Propanoate metabolism
Glycine, serine, and threonine metabolism
Purine metabolism
Pyrimidine metabolism

TCA, Tricarboxylic acid.
Adapted from Liu HC, Jamshidi N, Chen Y, et al. An organic 

anion transporter 1 (OAT1)-centered metabolic network.  
J Biol Chem. 2016;291:19474-19486.

Clinical Relevance
The Remote Sensing and Signaling Hypothesis:  
A Framework for Understanding Hyperuricemia  
and Uremia
The OATs and OCTs have recently garnered a great 
deal of attention because of regulatory concerns due 
to transporter-mediated drug–drug interactions. Much 
more is likely on the way regarding drug-metabolite 
interactions (DMI) with the advent of better techniques 
to analyze metabolites in tissues and body fluids. With 
new approaches to uremia and hyperuricemia (especially 
in CKD) being considered, one expects more clinical 
studies and trials aimed at decreasing the burden of 
uremic toxins and uric acid—and prolonging time to 
severe CKD and dialysis. In this regard, the Remote 
Sensing and Signaling Hypothesis should be useful for 
considering approaches to ameliorate perturbed inter-
organ and interorganismal communication via metabo-
lites and signaling molecules, including those derived 
from the gut microbiome.
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Some of these uremic toxins (e.g., indoxyl sulfate) may play 
a role in the actual progression of renal disease, presumably 
via OAT-mediated uptake into proximal tubule cells.195,236 
The pathophysiology of uremia is beyond the scope of this 
chapter, and readers are referred instead to Chapter 52. 
But it is important to emphasize the growing appreciation 
of the role of OAT1 and OAT3 in regulating levels of many 
molecules considered uremic toxins. Thus, it will be interest-
ing to determine whether SNPs, or other factors that affect 
the expression or function of OAT1 and OAT3, alter the time 
at which the uremic syndrome develops or the progression 
of renal disease.

OCT2 also appears to be a transporter of certain cationic 
uremic toxins, notably TMAO, a molecule accumulating in 
CKD that is associated with cardiovascular disease.237 The 
apical transporters of organic anions, the MATEs, appear to 
be involved in the efflux of TMAO. Of note, the deletion in 
mice of OAT3, which can transport a few organic cations 
despite being an organic anion transporter, results in elevated 
levels of TMAO, although it is not clear whether TMAO is 
actually transported by OAT3.195

URIC ACID TRANSPORT
Uric acid is an antioxidant that also has deleterious effects.238 
It is also on the list of “uremic toxins.” Apart from gout and 
kidney stones, hyperuricemia has been associated with car-
diovascular disease, metabolic syndrome, hypertension, and 
progression of renal disease.239 Metabolism of purines by 
enzymes primarily in the liver (e.g., xanthine oxidase) results 
in uric acid formation. On the other hand, uric acid elimina-
tion and retention in the body is largely determined by the 
kidney and, to a lesser extent (in the absence of kidney 
disease), by the intestine.

One of the unexpected results of GWAS and knockout 
mouse studies from the perspective of uric acid homeostasis 
was the number of SLC and ABC “drug” transporters that 
were implicated in regulating serum uric acid levels and then 
shown to transport urate.238,240 These transporters include 
ABCG2 (also known as BCRP), URAT1 (a close relative of 
OAT1 and OAT3), OAT1 and OAT3, as well as other OATs. In 
murine knockouts of OAT1, OAT3, and URAT1 (SLC22A12, 
originally discovered as Rst in mice241), there are alterations 
in renal urate handling, although they are not as great as 

APICAL MEMBRANE PROXIMAL TUBULE 
TRANSPORTERS INVOLVED IN THE HANDLING 
OF ORGANIC ANIONS, ORGANIC CATIONS, 
AND ORGANIC ZWITTERIONS

In the proximal tubule, the OAT1, OAT3, and OCT2 function 
in basolateral side uptake (influx) of organic anions and cations 
from the blood. Although what happens to these charged 
organic molecules inside the cell remains poorly defined, their 
exit, usually in unchanged form, has become better understood 
in recent years. Many of the organic anions taken up by OAT1 
and OAT3, for example, are effluxed across the apical mem-
brane by members of the ABCC family, MRP2 (ABCC2) and 
MRP4 (ABCC4).168 These are not the only apical transporters 
of organic anions in the proximal tubule; for example, OAT4 
and the well-known ABC transporters, P-glycoprotein and 
ABCG2, appear to play a role for certain substrates.168 Although 
in simplified representations, there is a tendency to match 
basolateral OAT1 and OAT3 with apical MRP2 and MRP4, it 
is likely that, depending on the anionic substrate taken up by 
OAT1 and OAT3, one or several apical transporters are involved 
in apical efflux into the proximal tubule lumen.

With respect to the apical efflux of organic cations, in 
recent years, MATEs, particularly MATE-2K, have received 
attention.168,222 MATEs are members of the SLC47 family, 
and it is well established that they transport many cationic 
drugs taken up by OCT2. Other apical transporters might 
also transport some OCT2 substrates, but their contribution 
is not well defined. It is also important to mention the organic 
cation/zwitterion transporters OCTN1 (SLC22A4) and 
OCTN2 (SLC22A5). Although they are sometimes listed along 
with drug transporters, their endogenous substrates—
ergothioneine and carnitine, respectively—are well estab-
lished.229,230 Indeed, mutations in OCTN2 cause systemic 
carnitine deficiency, which can lead to severe cardiac and 
skeletal myopathy. Ergothioneine, on the other hand, is 
considered an important antioxidant. Nevertheless, OCTNs 
have some ability to interact with cation drugs.

RENAL TRANSPORT OF SPECIFIC ORGANIC 
SUBSTRATES IN DISEASE

UREMIC TOXIN TRANSPORT
The importance of OATs in renal handling of gut microbiome–
derived metabolites merits further discussion. Many of the 
metabolites accumulating in the Oat knockouts, such as 
indoxyl sulfate, kynurenine, p-cresol sulfate, and hippurate, 
are among the sets of gut microbiome–derived small molecules 
(organic anions); they are also frequently implicated as 
“uremic toxins”193,195 (Table 8.3).

The list of small molecules implicated in uremic toxicity 
is long and much debated.231,232 These uremic toxins are 
thought to play a role in many tissue and organ toxicities 
and dysfunctions that occur in the uremic syndrome associated 
with severe CKD. It is unlikely that any single uremic toxin 
on the list is the key to all the manifestations of the uremic 
syndrome, although there is growing evidence that certain 
uremic toxins play a role in particular tissue toxicities. These 
include TMAO (trimethylamine-N-oxide), which has been 
implicated in cardiovascular toxicity,233,234 and indoxyl sulfate, 
which has been implicated in multiple aspects of the uremic 
syndrome.235

Table 8.3  Uremic Toxins Accumulating in Oat1 
and/or Oat3 Knockout Mice

Indoxyl sulfate
p-Cresol sulfate
Hippurate
CMPF
Phenyl sulfate
Xanthurenate

Indolelactate
Kynurenate
Putrescine
Uric acid
Creatinine

CMPF, 3-Carboxy-4-methyl-5-propyl-2-furanpropanoate.
Adapted from Wikoff WR, Nagle MA, Kouznetsova VL, et al. 

Untargeted metabolomics identifies enterobiome metabolites 
and putative uremic toxins as substrates of organic anion 
transporter 1 (Oat1). J Proteome Res. 2011;10:2842-2851; 
and Wu W, Bush KT, Nigam SK. Key role for the organic 
anion transporters, OAT1 and OAT3, in the in vivo handling 
of uremic toxins and solutes. Sci Rep. 2017;7:4939.
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to be an example of remote organ communication (i.e., 
between injured kidney to intestine; see also later) with the 
apparent “objective” of optimizing uric acid levels as transport 
in another organ (intestinal efflux) takes over from the 
declining kidney, thereby reducing the plasma uric acid levels. 
From studies in animal models, it is believed that the high 
uric acid level itself in CKD leads to increased expression 
and/or function of intestinal ABCG2, and if so, this may be 
a case of substrate induction of the transporter.245

CREATININE TRANSPORT
Although new measures may soon become routinely used in 
hospitals, serum creatinine continues to be considered an index 
of renal function both in primary care and hospital settings. 
A number of members of the SLC22 family (containing OATs 
and OCTs) transport creatinine. These include OCT2, OAT2, 
OAT3, and possibly OAT1.246–248 All of these are considered 
key transporters of organic cation drugs, organic anion drugs, 
and zwitterionic drugs. Their relative importance in renal 
creatinine handling is debated, but it is likely that all play some 
role in the renal handling of creatinine, with OCT2 and OAT2 
being particularly important, at least based on more recent 

might have been expected if these genes were, as was thought 
by many at the time, the major contributors to renal urate 
handling.196 Subsequently, another SLC transporter, related 
to the glucose transporters, known as GLUT9 (SLC2A9), 
was found to be very important for renal urate handling.242 
Other transporters implicated in uric acid transport are 
MRP2 (ABCC2), MRP4 (ABCC4), NPT1 (SLC17A1), NPT4 
(SLC17A3), OAT4 (SLC22A11), and OAT10 (SLC22A13).243 
The list of associated genes, which includes nontransporters as 
well, continues to grow as more analyses are done in different 
ethnic groups. Indeed, based on GWAS and other studies, it 
appears that different subsets of the aforementioned genes 
may be more or less important in urate handling, depending 
on ethnicity and gender.

Together, these transporters are responsible for the complex 
handling of uric acid by the kidney, but it is important to 
emphasize that ABCG2 is increasingly perceived as the main 
intestinal uric acid efflux transporter.244 Intestinal extrusion 
of urate becomes particularly important in the setting of 
severe renal insufficiency, and in this regard, it has been 
found that SNPs in ABCG2 become more highly associated 
with uric acid levels in CKD patients215 (Fig. 8.11). This seems 
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Clin Kidney J. 2016;9:444–453.)



238	 Section I — Normal Structure and Function

transporter internalization or PDZ domain association). It 
is envisioned to work in parallel with the neuroendocrine, 
growth factor cytokine, and autonomic systems. The argument 
is that this type of SLC and ABC transporter-mediated remote 
interorgan and remote interorganismal communication via 
small molecules of “high informational content” (e.g., rate-
limiting metabolites, signaling molecules, antioxidants, 
vitamins) is as critical as these other homeostatic systems 
and, as such, deserves comparable consideration for under-
standing health and disease states.

The hypothesis seems to be particularly relevant to renal 
disease. Consider, for instance, the previously discussed 
example of apparent interorgan remote communication—in 
order to reestablish uric acid homeostasis.243 An injured 
organ—the malfunctioning kidney in CKD—is involved in a 
kind of “organ cross-talk” with the intestine, whereby intestinal 
ABCG2 transporters, and possibly others, appear to “take 
over” from many renal SLC uric acid transporters as tubular 
function declines. As discussed earlier, high urate, certain 
uremic toxins, or both—accumulating as a consequence of 
renal disease—are thought to induce expression of intestinal 
transporters.

More generally, considering the uremic syndrome as partly 
due to “pathologic” transporter-mediated remote interorgan 
and interorganismal communication of uremic toxins—which 
includes signaling molecules that bind G-protein–coupled 

studies. The issue is clinically relevant, because a number 
of drugs (e.g., trimethoprim) are thought to “artificially” 
create the impression of renal dysfunction when creatinine 
is the primary measure used because of drug–metabolite 
interactions at the level of the transporter.168

THE REMOTE SENSING AND SIGNALING 
HYPOTHESIS: A FRAMEWORK FOR 
UNDERSTANDING HYPERURICEMIA AND UREMIA

It is evident from in vitro transport studies, metabolomics 
analyses of knockout animals, GWAS studies, and metabolic 
diseases due to transporter mutations that multispecific “drug” 
transporters of both the SLC and ABC transporter family 
are critical in the local and systemic regulation of levels of 
a huge array of metabolites.183,184,189,190,249

The Remote Sensing and Signaling Hypothesis—which 
began to be formulated in 2004–2007186—argues that the 
physiologic role of multispecific “drug” transporters and their 
close (often mono- or oligo-specific) relatives is the regulation 
of “remote” interorgan and interorganismal communication 
via metabolites and signaling molecules by these SLC and 
ABC transporters (Fig. 8.12).

The system is hypothesized to be actively regulated through 
transcriptional mechanisms (e.g., nuclear receptors) and 
posttranslational mechanisms (e.g., kinases regulating 
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as well as drug-metabolizing enzymes (DMEs) in different tissues communicating “remotely” (interorgan and interorganismal) in part 
due to differentially expressed transporters via the gut–liver–kidney axis in health and disease. The Remote Sensing and Signaling 
Hypothesis emphasizes the role of multispecific (“drug” transporters like OAT1, OAT3, ABCG2, and MRPs) and more selective SLC22 transporters 
as well other SLC and ABC drug and DMEs in a remote interorgan and interorganism communication network involving transporters and DMEs 
in epithelial and nonepithelial tissues as well as various body fluid spaces, such cerebrospinal fluid, breast milk, and urine. This remote sensing 
and signaling system works in concert with more classic systems involved in homeostasis and resetting homeostasis in the setting of diseases 
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acid transporters define four major renal transport pathways, 
namely, a transporter for neutral amino acids (mutated in 
Hartnup disorder), a transporter for cationic amino acids 
and cystine (mutated in cystinuria), a transporter for anionic 
amino acids (mutated in dicarboxylic aminoaciduria), and 
a transporter for glycine and proline (mutated in iminogly-
cinuria)254 (see Chapter 44 for a detailed discussion of these 
inherited disorders). With the exception of iminoglycinuria, 
aminoacidurias also affect intestinal transport. Genetic 
complexity is observed in cystinuria and iminoglycinuria, 
demonstrating the involvement of more than one gene 
in the transport process. Apart from intestinal transport, 
aminoacidurias affecting apical transport have little effect on 
other organs, indicating that expression of these transport-
ers is largely specific to the apical membrane in the kidney 
and intestine, although some renal amino acid transporters 
are also found in the brain. The four major amino acid 
transport activities were verified further by in vitro studies 
using a variety of methods such as microperfusion studies, 
brush border membrane vesicles, cortical slices, and cell 
lines.254,255 In vitro studies, in addition, identified a fifth  
transport activity, namely for β-amino acids, for which no 
corresponding disorder exists. Transport across the basolateral 
membrane has been more challenging to delineate, and it 
is unclear whether the five apical pathways are matched by 
five basolateral exit routes. A clear pathway for the release of 
cationic amino acids has been genetically identified through 
the rare amino aciduria lysinuric protein intolerance (LPI) 
and through functional studies.256,257 A release pathway for 
neutral amino acids was defined functionally using vesicles 
derived from the basolateral membrane.258 Release of 
anionic amino acids is difficult to measure, due to significant 
metabolism of glutamate by epithelial cells259 (see also Fig. 
8.4). Glycine is likely to join other neutral amino acids for 
efflux, but the efflux pathways for proline and β-amino acids 
remain unclear. More than 98% of all filtered amino acids 
are reabsorbed in the proximal tubule; other parts of the 
tubule thus do not significantly contribute to amino acid 
reabsorption and are not discussed here.260 Some differences 
in transporter expression are observed between the PCT 
and the PST; these are illustrated in Fig. 8.13. Species dif-
ferences may occur in the kidney and are mentioned where  
relevant.

MOLECULAR BIOLOGY OF RENAL AMINO  
ACID TRANSPORTERS

Molecular cloning, human genetics, and mouse models have 
helped to identify almost all amino acid transporters in the 
apical and basolateral membrane.254,261 Renal epithelial amino 
acid transporters are found in a variety of SLC families (Table 
8.4). The SLC nomenclature is generally used for the genes, 
whereas acronyms are typically used for the proteins that 
describe some of the properties of the transporter. Expression 
cloning using Xenopus laevis oocytes or mammalian cell lines 
has been instrumental in the identification of renal amino 
acid transporters.262 Additional transporters were identified 
by sequence similarity. As a result of these efforts, the amino 
acid transporter endowment of renal epithelial cells is now 
well understood, and an overview is depicted in Fig. 8.13. 
In the following, transporters for each group of amino acids 
are described in detail.

receptors (e.g., kynurenine) and nuclear receptors (e.g., 
indoxyl sulfate)—provides a different lens on the numerous 
biochemical and cellular aberrations found in the uremic 
syndrome, which affect many tissues and body compart-
ments. Moreover, the source of many uremic toxins in the 
body is the gut microbiome—the result of interorganismal 
communication—and these toxins affect signaling and 
metabolism in multiple organs before, in many cases, being 
eliminated by proximal tubule multispecific “drug” transport-
ers, such as the OAT1, OAT3, OCT2, and the MATEs.

The Remote Sensing and Signaling Hypothesis provides 
a systems pathophysiology framework for thinking about the 
many metabolic and signaling aberrations of the uremic 
syndrome in the context of remote interorgan and interor-
ganismal small molecule communication. Such a systems-level 
view may lead to the consideration of new therapeutic 
approaches aimed at altering remote sensing and signaling 
mechanisms as they become better understood—with the 
hope of ameliorating some of the many harmful manifesta-
tions of the uremic syndrome.

DRUG–METABOLITE INTERACTIONS

As more is learned about the endogenous substrates of OATs, 
OCTs, and other drug transporters, and as more is learned 
through metabolomics and metabolic reconstructions (such 
as those described above) regarding the regulation of tissue-
specific metabolism by these transporters, it will become 
possible to consider new ways to modulate complex metabolic 
diseases like uremia and to understand the implications of 
drug–metabolite interactions (DMI) beyond simple competi-
tion at the level of the transporter itself.168,208 For example, 
currently the thinking on DMI is largely limited to looking 
at the transporter-level competition between the drug tri
methoprim, which binds OCT2 and thereby raises the plasma 
concentration of a single OCT2-transported metabolite such 
as creatinine. But in the case of OAT1, it is now well estab-
lished from knockout studies that loss of OAT1 function 
affects many metabolic pathways.208,209 The implication is that 
a drug that competes for OAT1 binding with endogenous 
metabolites normally transported by OAT1 (e.g., probenecid) 
will have broad effects on metabolism, affecting metabolites 
and signaling molecules that may themselves not be direct 
OAT1 substrates. This type of DMI may help partly explain 
the broad metabolic syndrome–like effects seen in the setting 
of chronic use of certain OAT-transported drugs, such as 
diuretics and HIV antivirals.250,251 Much work needs to be 
done in this area of DMI where competition for transport 
by the drug may affect a wide range of metabolic pathways; 
this would seem particularly relevant in the setting of moderate 
CKD where the affected metabolites would likely include 
certain uremic toxins.168

AMINO ACIDS

PHYSIOLOGY OF RENAL AMINO  
ACID TRANSPORT

Rare inherited defects of renal amino acid transport have 
been instrumental for our understanding of renal metabolite 
reabsorption.252,253 Four disorders associated with apical amino 
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Fig. 8.13  Amino acid transporters in the proximal tubule. The common name of amino acid transporters in the proximal convoluted tubule 
and proximal straight tubule are shown next to each transporter. Transporter requirement for ancillary subunits are indicated by a tubelike 
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Table 8.4  Human Tubular Amino Acid Transporters Properties and Distribution of Human Renal Tubular Transporters

Amino Acid 
Transporter SLC PCT/PST Substrates Affinities Disease

Structure
class

Apical

B0AT1 SLC6A19 PCT All neutral 800–15,000 µM Hartnup disorder (OMIM 234500) LeuT
B0AT2 SLC6A15 PCT BCAA, Met, Pro 50–200 µM n.r. LeuT
Collectrin TMEM27 PCT N/A Ancillary n.r. 1TM
rBAT SLC3A1 PCT < PST N/A Ancillary Cystinuria (OMIM 220100) 1TM
b0,+AT SLC7A9 PCT > PST Arg, Lys, Orn, CssC, 

Met, Leu, Ala
100 µM Cystinuria (OMIM 220100), isolated 

cystinuria (OMIM 238200)
LeuT

EAAT3 SLC1A1 PCT < PST Glu, Asp, CssC 20–80 µM Dicarboxylic amino aciduria (OMIM 
222730)

Glt

AGT1 SLC7A13 PCT = PST Glu, Asp, CssC 20–60 µM n.r. LeuT
PAT2 SLC36A2 PCT Iminoglycinuria (OMIM 242600), 

Hyperglycinuria (OMIM138500)
LeuT

SIT SLC36A2 PCT < PST Iminoglycinuria (modifier) (OMIM 
242600)

LeuT

TauT SLC6A6 PCT, PST n.r. LeuT

Basolateral

LAT2 SLC7A8 PCT n.r. LeuT
4F2hc SLC3A2 PCT = PST Ancillary Lethal 1TM
y+LAT1 SLC7A7 PCT = PST Lysinuric protein intolerance 

(OMIM 222700)
LeuT

TAT1 SLC16A10 PCT n.r. MFS
LAT4 SLC43A2 PCT = PST BCAA, Met, Phe 5000 µM n.r. MFS

BCAA, Branched-chain amino acids; CssC, cystine; 1TM, single transmembrane-helix protein; MFS, multifacilitator superfamily; n.r., not 
reported; OMIM, Online Mendelian Inheritance in Man; PCT, proximal convoluted tubule; PST, proximal straight tubule.

Links to Diseases Refer to the OMIM Database.



	 CHAPTER 8 — Renal Handling of Organic Solutes 	 241

Table 8.5  Physiologic Characteristics of Knockout Mice of Renal Amino Acid Transporters

Transporter Plasma AA Urine AA Renal Pathology Other Features

rBAT Normal +++: Lys, Arg, Orn, CssC Nephritis, kidney stones None
b0,+AT +: His, Ser, Glu/n +++: Lys, Arg, Orn, CssC, 

+ Glu/n
Glomerular fibrosis, 

nephritis, kidney stones
None

B0AT1 Normal +++ Neutral AA None
Reduced serum creatinine

Propensity for colitis, improved 
glycemic control

B0AT3 Normal +++: Gly
++: Ala, Val, Leu, Ile, Met, 

Ser, Thr, Gln, Phe, Tyr

None Stress-induced increase of blood 
pressure

TAT1 +: Phe, Tyr, Trp
-: Gly, Ala, Met, Ser, 

Thr, Asn, Gln
HPD +: Phe, Tyr, Trp

+: Phe, Tyr, Trp
HPD +: Val, Ile, Leu, Thr, 

Gln, His, Phe, Tyr, Trp

None None

LAT4 -: Ala, Pro, His, Ser Not available None reported Liver inflammation, malnutrition
LAT2 +: Gly, Ala, Ser, Thr, 

Gln, Val, Lys
+: Gly, Ser, Thr, Gln, Leu, 

Val
None None

y+LAT1 Not available +++: Lys, Arg, Orn None Failure to thrive, intrauterine growth 
restriction

TauT –: Taurine
-: Glu

+++: Taurine Enlarged kidney, 
glomerulosclerosis, 
nephropathy

Muscle weakness, cardiomyopathy, 
retinal degeneration, hearing 
loss, chronic liver disease

CssC, Cystine; Glu/n, glutamate or glutamine; HPD, high-protein diet; +, elevated, ++ significantly elevated, +++ highly elevated; -, reduced, 
–, significantly reduced.

TRANSPORTERS FOR NEUTRAL AMINO ACIDS

APICAL TRANSPORTERS
The presence of a dominant transporter for neutral amino 
acids can be inferred from the aminoaciduria observed in 
Hartnup disorder, which is restricted to neutral amino acids, 
but affecting every member of this group.263 This transporter 
was identified as the amino acid transporter B0AT1 (Broad 
neutral (0) Amino acid Transporter 1, SLC6A19).264,265 
Although Hartnup disorder shows simple recessive inheri-
tance and therefore is monogenic, the transporter protein 
requires association with ancillary proteins to traffic to the 
apical membrane and to be fully functional.266 In the kidney, 
this is facilitated by collectrin (TMEM27),267 whereas in the 
intestine, this role is served by angiotensin-converting enzyme 
2 (ACE2).268 Both proteins are type I transmembrane (TM) 
proteins with a single TM domain. Although ACE2 is expressed 
in the kidney, its expression levels in the proximal tubule are 
too small to make a significant contribution to B0AT1 surface 
expression. B0AT1 and TMEM27 are both expressed in the 
PCT.267 Consistent with the monogenic inheritance, mutations 
in TMEM27 have not been observed in Hartnup disorder 
and would be expected to show an amino acid transporter 
defect in the kidney but not intestine. Thus far, more than 
20 different causative mutations have been identified in the 
SLC6A19 gene.269 Interestingly, rare variants in SLC6A19 have 
been associated with low serum creatinine levels and may 
have a kidney protective effect or affect creatinine synthesis.270 
B0AT1 transports all neutral amino acids in symport with 
1Na+; in contrast to many other members of the SLC6 family, 
chloride ions are not cotransported.271 Substrate affinities 
range from 1–12 mM, with a preference for branched-chain 
amino acids (BCAA) and methionine, followed by large 
hydrophilic and aromatic amino acids.272 In in vitro systems 
proline and tryptophan are very poor substrates of B0AT1, 

but in vivo data suggest a significant contribution to the 
transport of both amino acids.273 Mice lacking B0AT1 replicate 
the human aminoaciduria of Hartnup disorder but do not 
show any additional pathology (Table 8.5). In addition to 
the low-affinity B0AT1 transporter in the PCT, functional 
studies suggest the presence of a high-affinity transporter for 
neutral amino acids in the PST. A candidate could be B0AT2 
(SLC6A15), which is expressed at low levels in the proximal 
tubule.274 B0AT2 has a narrower substrate specificity than 
B0AT1, showing a strong preference for BCAA and methionine 
with substrate affinities <100 µM. Like B0AT1, the transporter 
is Na+ dependent and chloride independent.275

Specific Apical Transporters for Proline  
and Glycine

Proline and glycine have unusual physicochemical properties, 
which cause these amino acids to be inefficiently transported 
by more broadly specific amino acid transporters. Glycine is 
lacking a side chain, reducing its affinity to side-chain binding 
pockets, whereas proline has a secondary amino group and 
restricted flexibility. As a result, proline is a poor substrate for 
B0AT1 and is not recognized by the basolateral neutral amino 
acid transporter LAT2 (see later). A common transporter for 
glycine, proline, and hydroxyproline in humans is supported 
by two lines of evidence. First, in the rare disorder imino-
glycinuria, all three amino acids are found in the urine.273 
Second, prolinemia, when passing the renal threshold, causes 
prolinuria, hydroxyprolinuria, and glycinuria.276 Although 
iminoglycinuria is an autosomal recessive disorder, it shows 
clear signs of genetic complexity.277 For instance, some cases 
of iminoglycinuria show malabsorption of proline in the 
intestine. Moreover, in some cases, heterozygotes are normal, 
whereas in other pedigrees, hyperglycinuria is observed. These 
cases can all be explained by the combined action of proton–
amino acid transporter 2 (PAT2, SLC36A2), the system IMINO 
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aminoaciduria was observed, suggesting cooperation between 
LAT2 and TAT1. LAT4 (SLC43A2) allows efflux of BCAA, 
methionine, and phenylalanine, thus covering large neutral 
amino acids.292 A specific efflux pathway for small neutral 
amino acids has not been identified and thus is likely to 
occur through cooperation between LAT2, TAT1, and LAT4: 
efflux of small neutral AA in exchange for large neutral AA or 
aromatic AA, which is supported by the appearance of small 
neutral amino acids in the urine of Lat2 knockout mice.293

LAT2 (SLC3A2-SLC7A8) shows a distinct asymmetry with 
regard to affinity on the two faces of the membrane. The 
KM values on the outside range from 40–200 µM, while on 
the inside, KM values range from 3–30 mM.294 The trans-
porter accepts all neutral amino acids except proline. TAT1 
(SLC16A10) shows very low affinity for its substrates, ranging 
from 3–7 mM.295 Although the transporter is related to mono-
carboxylate transporters, it does not cotransport protons.290 
Apart from aromatic amino acids, TAT1 also transports the 
N-methylated derivatives of these amino acids and l-dopa.

LAT4 (SLC43A2) belongs to a separate transporter family 
than 4F2hc-LAT2. It does not require additional subunits 
and transports its substrates with low affinity (KM for phenyl-
alanine is 5 mM) on both sides of the membrane.296

The kidney contributes to gluconeogenesis and pH regula-
tion. The glutamine, asparagine, and histidine transporter 
SNAT3 (SLC38A3) is located in the basolateral membrane 
but is typically expressed at low levels. During chronic acidosis, 
it is upregulated and glutamine imported for deamination 
by phosphate-activated glutaminase.297 The resulting glutamate 
is further deaminated to 2-oxoglutarate, which serves as a 
substrate for gluconeogenesis298 (see also Fig. 8.4). Ammonia 
is released into the urine, thereby disposing of protons. 
Upregulation of SNAT3 mRNA during chronic metabolic 
acidosis involves promoter regulation and mRNA stability.299 
The related transporter SNAT (SLC38A5) is also expressed 
in the kidney and may contribute to glutamine uptake.300 Its 
subcellular localization is unknown.

There is no clear pathway for the basolateral exit of proline. 
Although glycine is inefficiently transported by many neutral 
amino acid transporters, including 4F2hc-LAT2, the latter 
does not accept proline. Release of taurine also remains 
unclear. The GABA/betaine transporter BGT1 (SLC6A12) 
has been identified in the basolateral membrane of renal 
epithelial cells but accumulates its substrates in the cytosol 
and therefore is not a feasible efflux pathway.

TRANSPORTERS FOR CATIONIC AMINO ACIDS 
AND CYSTINE

APICAL TRANSPORTERS
The presence of a transporter for cationic amino acids that is 
shared with cystine can be deduced from the aminoaciduria 
observed in cystinuria, which includes both groups of amino 
acids.301 Renal cystine clearance is close to GFR in cystinuria, 
whereas cationic amino acids remain partially reabsorbed. Cat-
ionic amino acids and cystine are transported in the proximal 
tubule by the heteromeric transporter rBAT/b0,+AT (broad 
neutral and cationic amino acid transporter).302 Cystinuria is 
an autosomal recessive disorder. Homozygous (or compound 
heterozygous) mutations in the rBAT encoding gene SLC3A1 
are classified as type A cystinuria, whereas homozygous (or 
compound heterozygous) mutations in the b0,+AT encoding 

transporter SIT1 (SLC6A20), and the general neutral amino 
acid transporter B0AT1 (SLC6A19).273 Homozygous mutations 
in PAT2 account for iminoglycinuria, whereas heterozygous 
mutations cause selective hyperglycinuria. SIT1 mutations 
contribute to the iminoglycinuria phenotype and also explain 
a sporadically observed reduced proline absorption in the 
intestine. B0AT1 provides the baseload for proline and glycine 
reabsorption, explaining why the extent of aminoaciduria is 
well below the filtered amounts.273 The related glycine and 
alanine transporter B0AT3 (SLC6A18) is only functional in 
mouse278,279 (Table 8.5) but not in higher mammalian species, 
where its function has been replaced by PAT2.

PAT2 (SLC36A2) has been identified as the specific 
transporter for small neutral amino acids, specifically alanine, 
glycine, and proline. Single N-methylation of amino acids is 
tolerated such as in sarcosine or proline. PAT2 is mutated 
in all cases of iminoglycinuria and is expressed in the proximal 
tubule of the kidney.273 The KM values for its substrates range 
from 0.1–0.6 mM.280

SIT1 (SLC6A20) accepts only amino acids with secondary, 
tertiary, or quaternary amines, such as proline, sarcosine, 
betaine, and methylaminoisobutyric acid.281,282 SIT1 is an Na+ 
and Cl— dependent transporter, transporting 1 substrate, 
2Na+ and 1Cl– ion. This generates a net positive transporter 
current, which can be observed when expressed heterolo-
gously. Expression of the transporter at the cell surface 
requires collectrin (TMEM27).283

B0AT3 (SLC6A18) preferentially transports alanine and 
glycine.279 SLC6A18 knockout mice have hyperglycinuria and 
slightly elevated urine levels of other neutral amino acids,278 
but humans with homozygous mutations in SLC6A18 are 
normal because even the normal allele is nonfunctional.273,284 
The mouse transporter requires collectrin coexpression for 
trafficking and also for its catalytic function.284

Specific Apical Transporters for Β-Amino Acids

This group of amino acids consists of taurine, β-alanine, and 
its homolog gamma-aminobutyric acid (GABA). Plasma 
concentration of GABA is very low (about 0.1 µM), while 
taurine levels are significantly higher (about 50 µM). Both 
amino acids are often accepted by the same transporters, 
but in the kidney, specific GABA transporters are observed 
as well. Reabsorption of these amino acids is mainly mediated 
by the taurine transporter TauT (SLC6A6).285 PAT2 shows 
weak affinity for these substrates but is probably physiologically 
irrelevant. TauT translocates taurine with a KM of 20 µM in 
a process that involves the cotransport of 2Na+ and 1Cl–. 
Urinary taurine excretion in TauT-deficient mice reaches 
the filtered amounts.286

BASOLATERAL TRANSPORTERS
Functional studies identified an Na+-independent transporter 
broadly specific for neutral amino acids also in the basolat-
eral membrane. The heteromeric amino acid transporter 
4F2hc-LAT2 (SLC3A2-SLC7A8) matches with regard to the 
substrate specificity but mechanistically is an antiporter.287–289 A 
uniporter has been identified for aromatic amino acids (TAT1, 
SLC16A10),290 but this transporter cannot explain the net 
flux of amino acids across the renal epithelium as illustrated 
by Tat1 knockout mice.291 These mice show elevated levels of 
aromatic amino acids in the urine but normal levels of other 
amino acids. Only on a high-protein diet, a more general 
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SLC7A7 light chain of the heteromeric transporter 4F2hc-
SLC7A7.313,314 The disease is very rare, with less than 200 
cases reported, mainly from the Finnish population, where 
a founder mutation exists. In contrast to apical transport 
disorders, which are often benign, LPI can be a very severe 
disease, although clinical symptoms vary widely.256 It also has 
a number of extrarenal pathologies, such as alveolar pro-
teinosis and immune defects, which are not well understood. 
Plasma levels of cationic amino acids are reduced, which 
affects urea cycle function, causing the adverse reaction to 
protein ingestion. Urine levels of cationic amino acids are 
very high, particularly that of lysine. Intestinal absorption of 
cationic amino acids is also affected. Although a functionally 
redundant transporter exists (4F2hc-SLC7A6), its expression 
is low and cannot replace malfunction of SLC7A7.315 Function-
ally, SLC7A6 and SLC7A7 are characterized as system y+L, 
indicating a transporter that exchanges neutral and cationic 
amino acids, which was initially discovered in placenta and 
erythrocytes.316 The y+LAT1 (SLC7A7) transporter accepts 
neutral and cationic amino acids with high affinity (Km values 
about 20 µM), but the affinity for neutral amino acids is two 
orders of magnitude lower in the absence of Na+.317 As a 
result, the preferential mode of operation is an efflux of 
cationic amino acids in exchange for extracellular neutral 
amino acids. The y+LAT1 transporter is widely expressed in 
the basolateral membrane of the proximal tubulus.

The prevalence of exchangers for the transport of cationic 
and neutral amino acids sets these mechanisms apart from 
the paradigm set by glucose reabsorption. One possible reason 
could be the maintenance of cytosolic amino acid pools that 
are significantly higher than those observed in blood plasma 
and which are required for protein biosynthesis and amino 
acid homeostasis.318 In the presence of basolateral facilitators, 
cytosolic amino acid pools would be close to those observed 
in the blood.

TRANSPORTERS FOR ANIONIC AMINO ACIDS

The main apical transporter for anionic amino acids in the 
proximal tubule is EAAT3 (named EAAC1 in rodents, 
SLC1A3).319 EAAT3 transports both glutamate (KM = 14 µM) 
and aspartate and shows a preference of D-aspartate over 
L-aspartate.320 As pointed out earlier, EAAT3 also contributes 
to cystine transport,321 but cystine is only marginally elevated 
in individuals with dicarboxylic aminoaciduria.322 The latter 
is a rare condition caused by mutations in EAAT3.322 It is 
readily detected by highly elevated urine levels of aspartate 
and glutamate; excretion can reach or even exceed the filtered 
amounts. In addition to the kidney, EAAT3 is expressed in 
neurons and the intestine and allows high cytosolic accumula-
tion due to the cotransport of 3Na+ and 1H+ and the antiport 
of 1K+.323 Despite expression of EAAT3 in neurons, dicarboxylic 
aminoaciduria is considered a benign disorder.324 However, 
an association of EAAT3 mutations with obsessive-compulsive 
disorder has been reported.325 Expression of EAAT3 is rela-
tively low in the PCT, increases toward the PST, and is also 
observed in the distal parts of the tubule.319 Nevertheless, 
90% of the filtered anionic amino acid load is reabsorbed 
in the PCT. The transporter is regulated by osmolarity and 
amino acid deprivation.326 A dedicated efflux pathway for 
glutamate in renal epithelial cells has not been identified. 
In fact, there is evidence for an accumulative glutamate 

gene SLC7A9 are classified as type B.303 This genetic heteroge-
neity can be detected in the heterozygous state, where rBAT 
heterozygotes do not show residual aminoaciduria, while b0,+AT 
heterozygotes show some release of cystine and lysine into the 
urine. Cystinuria causes formation of kidney stones due to  
the low solubility of cystine.301 The distribution of rBAT along 
the proximal tubule shows increasing expression toward the 
PST, whereas b0,+AT shows the opposite trend. This suggested 
that rBAT may have a different partner in the PST, which was 
shown to be the aspartate/glutamate transporter AGT1.304 
Initially AGT1 was thought to have a basolateral localization; 
however, follow-up studies using more specific antibodies dem-
onstrated an apical localization. Functionally, AGT1 operates 
as a cystine transporter, exchanging cystine for glutamate. 
Interestingly, this suggests that cystine is transported as a 
neutral amino acid in the PCT and as an anionic amino acid 
in the PST. In b0,+AT knockout mice fractional excretion of 
arginine reaches 80%, while only 11% of the tubular cystine 
load is excreted.305 This is consistent with the presence of 
additional cystine transporters, such as AGT1 and EAAT3 (see 
anionic amino acid transporters later). The rBAT protein is a 
highly glycosylated type II membrane protein that is connected 
by a disulfide bridge to the transporter subunit b0,+AT just 
outside the membrane.306 Heterodimer formation is essential 
for the exit of the complex from the endoplasmic reticulum.307 
Transport properties of rbat/b0,+AT have been largely eluci-
dated using the oocyte endogenous transporter that associates 
with rbat when its cRNA is expressed in this system.308 These 
experiments show that rbat/b0,+AT is an obligatory antiporter 
that preferentially takes up cationic amino acids from the 
lumen in exchange for neutral amino acids. This directionality 
is imposed by the inside-negative cell membrane potential, 
and it is also confirmed by the lack of neutral amino acids in 
cystinuria.309 Affinities for cationic amino acids and cystine 
are approximately 100 µM; neutral amino acids have slightly 
higher apparent KM values.310 The acidic amino acid–cystine 
exchanger AGT1 transports cystine with a KM of 68 µM.304 In 
mice, the gene is only expressed in males and thus is unlikely 
to be essential for renal cystine reabsorption. In humans, 
isolated cystinuria, a rare disorder in which only cystine is 
elevated in urine, is caused by selected mutations in b0,+AT 
that affect the substrate selectivity of the transport subunit.311 
Mutations in AGT1 have not been identified thus far.

Clinical Relevance
Transporters for Cationic Amino Acids and Cystine 
Apical Transporters
Urolithiasis occurs in most cases of cystinuria. The 
generation of kidney stones is managed through  
the combination of several treatments. Tiopronin 
(α-mercaptopropionylglycine) is administered to form 
adducts with cysteine, which have a higher solubility 
than cystine. Potassium citrate is used to increase the pH 
of urine >7.5. Reduction of animal protein intake and 
nocturnal fluid intakes are recommended. All treatments 
are aimed to reduce cysteine formation and precipitation.

BASOLATERAL TRANSPORTERS
A basolateral exit pathway for cationic amino acids is defined 
by the disease LPI.256,312 LPI is caused by mutations in the 
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of the membrane (e.g., outside). Subsequently, weak interac-
tions between substrate and the transporter cause the 
transporter to enclose the substrate, resulting in the occluded 
conformation. The transporter transitions further into an 
inside–open conformation to release the substrate.328 In the 
case of antiporters, the energy barrier for a substrate-less 
translocation is too high; thus, the return to the initial 
conformation is only possible in a substrate-bound state. In 
the case of symporters and uniporters, the empty transporter 
can transition back through a substrate-free occluded state, 
back to the outside–open conformation, thereby closing the 
catalytic cycle. However, at least in the case of the LeuT 
protein fold, a pseudosubstrate in the form of a leucine side 
chain residing close to the substrate binding site occupies 
the empty binding site, thereby facilitating the transition 
back to the outside conformation.331

For the LeuT-fold, high-resolution structures have been 
identified for all but one stage of the transport cycle (Fig. 

transporter in the basolateral membrane, which would prevent 
efflux.259 In accordance, glutamate is intensively metabolized 
in epithelial cells, and efflux may be limited. Moreover, 
members of the SLC22 family are nonspecific anion transport-
ers, and those located in the basolateral membrane may 
serve as efflux pathways for glutamate.327

STRUCTURAL INFORMATION OF AMINO  
ACID TRANSPORTERS

Plasma membrane amino acid transporters thus far fall into 
three different protein folds, namely the LeuT-fold, the 
Glt-fold, and the multifacilitator superfamily (MFS)-fold328 
(see Table 8.4). Functionally, it has long been established 
that transporters must be able to adopt an inward-facing and 
an outward-facing conformation.329,330 All transporters analyzed 
thus far operate in an alternating access mode in which the 
substrate and cosubstrates (if applicable) bind on one side 

outward

inward2A65

4US3

3TT3

3TT1

5JAF
Fig. 8.14  Transport cycle of LeuT-fold proteins. TM1 helix and pseudosubstrate Leu25 (Leu29MhsT) are shown in pink, the Na+ ions are shown 
as green spheres, and Glu290 (or Asp263MhsT) as cyan, and substrate at the binding site as yellow spheres. (Reused from Malinauskaite L, Said 
S, Sahin C, et al. A conserved leucine occupies the empty substrate site of LeuT in the Na(+)-free return state. Nat Commun. 2016;7:11673, under 
creative common license.)



	 CHAPTER 8 — Renal Handling of Organic Solutes 	 245

acid transport, collectrin is thought be involved in kidney 
development and vesicle exocytosis, but these functions are 
mechanistically less well understood.341 The 4F2 heavy chain 
has additional functions in integrin signaling, which are well 
understood in cancer cells but not in epithelial cells.266,306,342
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BOARD REVIEW QUESTION

1.	 What statement about the sodium glucose cotransporter 
SGLT2 in the kidney is incorrect?
	a.	 SGLT2 reabsorbs >90% of the filtered glucose in an 

euglycemic individual with normal kidney function
	b.	 SGLT2 is expressed in the early proximal tubule
	c.	 SGLT2 inhibition enhances GFR in short term
	d.	 SGLT2 inhibition excretes only ~50% of the filtered 

glucose in an euglycemic individual with normal kidney 
function

	e.	 SGLT2 inhibition is uricosuric
Answer: c
Rationale: SGLT2 is expressed in the brush border of the 

early proximal tubule. SGLT2 reabsorbs >90% of the filtered 

glucose in an euglycemic individual with normal kidney 
function. SGLT2 inhibition excretes only ~50% of the filtered 
glucose in an euglycemic individual with normal kidney 
function, because SGLT1 in the downstream later part of 
the proximal tubule can compensate when more glucose is 
delivered to that site. SGLT2 inhibition is uricosuric and can 
lower blood urate levels. SGLT2 inhibition reduces GFR in 
short term through the tubuloglomerular feedback mecha-
nism and by increasing tubular back pressure. SGLT2 inhibi-
tion can preserve or maintain higher GFR in the long term 
in type 2 diabetic patients.
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Maintaining normal acid–base homeostasis is critical for 
normal health. Acid–base disorders can lead to a number 
of clinical problems, such as growth retardation, nausea, 
and vomiting; increased susceptibility to cardiac arrhythmias; 
decreased cardiovascular catecholamine sensitivity; bone disor-
ders, including osteoporosis and osteomalacia; recurrent neph-
rolithiasis, skeletal muscle atrophy; paresthesia; and coma.266 
In people with chronic kidney disease (CKD), metabolic 
acidosis leads to more rapid progression of worsened renal 
function and increased risk of requiring renal replacement 
therapy.97,216 Finally, the presence of either metabolic acidosis 
or metabolic alkalosis correlates with increased mortality in 
patients both with and without CKD.214,289,327

Acid–base homeostasis involves two separate but related 
processes, bicarbonate reabsorption and new bicarbonate 
generation. The first relates to the reabsorption of bicarbonate 

filtered by the glomerulus. The second relates to the need 
to generate “new bicarbonate” to replenish bicarbonate that 
neutralizes endogenous and exogenous fixed acid loads. 
Finally, a number of pathophysiologic conditions generate 
acid or alkali loads to which the kidneys must respond to in 
order to maintain acid–base homeostasis.

BICARBONATE REABSORPTION

Bicarbonate reabsorption involves coordinated transport 
events in multiple nephron segments (Fig. 9.1). The proximal 
tubule reabsorbs the majority of filtered bicarbonate. Little-
to-no bicarbonate reabsorption occurs in the thin descending 
limb of the loop of Henle, moderate reabsorption occurs in 
the thick ascending limb (TAL) of Henle loop, and the 

KEY POINTS

•	 Proximal tubule filtered bicarbonate reabsorption involves apical H+ secretion by NHE3 and 
H+-ATPase, and in the neonatal kidney NHE8 substitutes for NHE3.

•	 Proximal tubule bicarbonate reabsorption is regulated by peritubular HCO3
– and CO2, but 

not directly by peritubular pH.
•	 Proximal tubule basolateral NBCe1 is necessary for bicarbonate reabsorption and regulates 

both ammonia metabolism and citrate reabsorption.
•	 Aquaporins transport CO2 and NH3 in addition to H2O.
•	 Renal ammonia transport involves selective transport of NH3 and NH4

+ by specific 
membrane proteins that exhibit significant axial and apical versus basolateral plasma 
membrane heterogeneity along the nephron and collecting duct.

•	 Ammonia metabolism involves both ammonia generation (ammoniagenesis) and ammonia 
recycling; the latter occurs through the protein glutamine synthetase.

•	 Renal interstitial sulfatides, probably by reversibly binding interstitial NH4
+, are necessary for 

normal ammonia metabolism.
•	 The bicarbonate secreting anion exchanger, pendrin, which is necessary for recovery from 

metabolic alkalosis, has a critical role in volume homeostasis and blood pressure regulation 
through roles both as a Cl– reabsorbing protein and through indirect interactions with the 
Na+-reabsorbing protein, ENaC.
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been thought to occur through lipid-phase diffusion, the 
integral membrane protein, aquaporin 1 (AQP1), may 
mediate ~50% of CO2 transport across the apical plasma 
membrane.46 Cytosolic CO2 is then hydrated, forming car-
bonic acid, through a process accelerated by the cytosolic 
carbonic anhydrase, carbonic anhydrase II (CA II). Cytosolic 
carbonic acid spontaneously dissociates to H+ and HCO3

–. 
This “replenishes” the H+ secreted across the apical plasma 
membrane by apical NHE3 and H+-ATPase.

Cytosolic HCO3
– is transported across the basolateral plasma 

membrane. In the S1 and S2 segments of the proximal tubule 
the primary HCO3

– transport mechanism is a sodium-coupled, 
electrogenic bicarbonate cotransporter, NBCe1-A.1,256 Because 
NBCe1-A is electrogenic, generation and regulation of the 
transmembrane voltage between cytoplasm and interstitium 
is important, and appears to be related to extracellular 
pH-dependent activation of the basolateral TWIK-related 
acid-sensitive K+ channel, TASK2.445 In the S3 segment, 
an Na+-dependent, Cl–/HCO3

– exchanger appears to be 
the primary mechanism of basolateral HCO3

– transport,217 
although NBCe1 may also contribute.284

In addition to active H+ secretion–mediated luminal 
bicarbonate reabsorption, the proximal tubule also exhibits 
passive H+ and bicarbonate transport. Because bicarbonate 
reabsorption decreases the luminal bicarbonate concentration 
and increases the luminal H+ concentration relative to the 
peritubular space, passive bicarbonate transport results in 
bicarbonate secretion, which limits net bicarbonate reabsorp-
tion. The molecular mechanisms of bicarbonate backleak 
are unclear, but several functional aspects are known. It is 
quantitatively less in the newborn than in the adult kidney,323 
is decreased by angiotensin II (AngII),242 involves both paracel-
lular and transcellular components, and involves membrane 
proteins, but not NHE3.158,315 Quantitatively, the bicarbonate 
backleak rate is less than that of bicarbonate reabsorption 
in the initial portions of the proximal tubule. However, in 
more distal portions, particularly when luminal bicarbonate 
concentrations have decreased as a result of more proximal 
bicarbonate reabsorption, bicarbonate backleak rates are 
greater as a result of the greater transepithelial bicarbonate 
gradient. Simultaneously, the lower luminal pH limits NHE3-
mediated proton secretion and bicarbonate reabsorption. 
This can result in the bicarbonate backleak rate becoming 
equivalent to the bicarbonate reabsorption rate. When this 
occurs, there is no further net bicarbonate reabsorption. 
Under typical circumstances, this occurs when luminal 
bicarbonate concentrations have decreased to approximately 
6 mmol/L, corresponding to a luminal pH of 6.8.

Proteins Involved in Proximal Tubule  
Bicarbonate Reabsorption

Na+/H+ Exchangers.  Na+/H+ exchangers are expressed widely 
in the kidney, where they function in intracellular pH regula-
tion, transepithelial bicarbonate reabsorption, and vacuolar 
acidification. All use the extracellular-to-intracellular Na+ 
gradient to enable secondary active, electroneutral H+ secre-
tion. Although the preferred ions are Na+ and H+, Li+ can 
substitute for Na+ and NH4

+ can substitute for H+.204 The 
latter process, which enables Na+/NH4

+ exchange, appears 
to be important for proximal tubule NH4

+ secretion.274

NHE3 (SLC9A3) is the primary apical Na+/H+ exchanger 
in the proximal tubule and mediates the majority of 

remaining filtered bicarbonate is reabsorbed in the distal 
convoluted tubule (DCT), connecting segment (CNT), initial 
collecting tubule (ICT), and the collecting duct.

PROXIMAL TUBULE

GENERAL TRANSPORT MECHANISMS
Proximal tubule bicarbonate reabsorption involves several 
distinct, but interconnected, processes (Fig. 9.2). First, 
protons (H+) are secreted into the luminal fluid. Multiple 
proteins mediate H+ secretion; the apical Na+/H+ exchanger, 
NHE3, and an apical H+-ATPase are the primary mechanisms 
of proton secretion in the adult kidney. In the neonatal 
kidney, the Na+/H+ exchanger, NHE8, appears to substitute 
for NHE3 as the primary Na+/H+ exchanger (NHE) isoform.30 
In the adult kidney, NHE3 is responsible for 60%–70% of 
H+ secretion and H+-ATPase accounts for the majority of 
the remainder.

Secreted H+ combines with luminal HCO3
– to form carbonic 

acid (H2CO3). Luminal carbonic acid dissociates to water 
(H2O) and carbon dioxide (CO2). Although this can occur 
spontaneously, the spontaneous dehydration rate is inadequate 
to support normal rates of proximal tubule bicarbonate 
reabsorption. The dehydration reaction is catalyzed by car-
bonic anhydrase IV (CA IV), a membrane-bound carbonic 
anhydrase isoform present in the proximal tubule brush 
border.

Luminal CO2 then moves across the apical plasma mem-
brane into the cell. Although this process has traditionally 

Collecting duct ~5%

Proximal
tubule
~80%

Thick ascending limb
of Henle loop ~15%

Fig. 9.1  Summary of sites of bicarbonate reabsorption. The proximal 
tubule is the primary site quantitatively for filtered bicarbonate reabsorp-
tion. Minimal reabsorption occurs in the thin limb of the loop of Henle. 
The thick ascending limb of the loop of Henle reabsorbs the majority 
of the bicarbonate not reabsorbed in the proximal tubule. The collecting 
duct is the primary site for reabsorption of the remaining filtered 
bicarbonate. 
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binding complex, and alters NHE3 lipid raft distribution, 
which cause changes in specific aspects of basal as well as 
acutely regulated NHE exchange activity.346 Dephosphoryla-
tion, mediated by the serine/threonine phosphatase PP1, 
but not PP2, at serines 552 and 605, and at other novel 
phosphorylation sites, stimulates NHE3 activity.105 Ang II 
counteracts the effects of cAMP/PKA by dephosphorylating 
NHE3 at serine 552, which may be a key event in the regula-
tion of renal proximal tubule sodium handling.89

Movement of NHE3 between different subcellular locations, 
including microvilli, intermicrovillar clefts, endosomes, and 
the cytoplasm, is an important regulatory mechanism. Only 
NHE3 in microvilli contributes to bicarbonate reabsorption. 
Redistribution within these domains is regulated by a variety 
of factors, including renal sympathetic nerve activity, gluco-
corticoids, insulin, AngII, dopamine, and PTH.22,39,87,260,334 
This process involves a number of cellular proteins, including 
dynamin, NHERF-1, clathrin-coated vesicles, calcineurin 
homologous protein-1, ezrin phosphorylation, G-protein 
alpha subunits, and G-protein beta-gamma dimers.8,100,179

luminal bicarbonate reabsorption. Multiple mechanisms 
regulate NHE3; the best studied are parathyroid hormone 
(PTH), dopamine, and AngII. Both PTH and dopamine 
inhibit NHE3 activity, whereas AngII has a biphasic effect, 
stimulatory at low concentrations and inhibitory at high 
concentrations. Both PTH and dopamine increase intra-
cellular cyclic adenosine monophosphate (cAMP) levels, 
leading to decreased NHE3 activity,87 and dopamine also 
has protein kinase C- (PKC)-dependent effects.137 AngII 
decreases cAMP levels and activates PKC, tyrosine kinase, and  
phosphatidylinositol-3-kinase.178

NHE3 phosphorylation is an important regulatory mecha-
nism. Serine-552 (in the rat sequence) is a consensus protein 
kinase A (PKA) phosphorylation site, and phosphorylation 
of this site causes localization to the coated pit region of the 
brush-border membrane, where NHE3 cannot contribute to 
bicarbonate reabsorption.211 Similarly, phosphorylation of 
serine-719 regulates insertion into the plasma membrane.345 
This phosphorylation affects interactions of multiple signaling 
proteins with NHE3, alters the size of the NHE3 protein 
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Fig. 9.2  Bicarbonate reabsorption in the proximal tubule. Proximal tubule HCO3
– reabsorption involves integrated function of multiple proteins. 

Protons are secreted by the Na+/H+ exchanger, NHE3, and by H+-ATPase, and titrate luminal HCO3
– to H2CO3. Luminal H2CO3 dehydration to 

H2O and CO2 is accelerated by luminal carbonic anhydrase activity mediated by CA IV. CO2 enters the cell via aquaporin I (AQP1) and most 
likely also via passive lipid-phase diffusion, where its hydration to H2CO3 is accelerated by cytoplasmic CA II. H2CO3 rapidly dissociates to H+ 
and HCO3

–, thereby “replenishing” the secreted cytosolic H+. Cytosolic HCO3
– exits across the basolateral plasma membrane primarily by the 

electrogenic sodium-bicarbonate cotransporter, NBCe1-A. In the PST, a basolateral Cl–/HCO3
– exchange activity (not shown) is the primary 

basolateral HCO3
– exit mechanism. ATP, Adenosine triphosphate; CA IV, carbonic anhydrase 4; PST, proximal straight tubule. 
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1 : 2 coupling ratio.151,173,232 Moreover, it appears that when 
NBCe1-A is expressed in a proximal tubule cell line, Ser-982 
phosphorylation shifts the stoichiometry from 1 : 3 to 1 : 2.152 
Two aspartate residues near Ser-982 are necessary for this 
stoichiometry shift.153 Thus, the coupling ratio of 1 : 3 appears 
to be important for NBCe1-A to facilitate bicarbonate exit 
and to be determined, at least in part, by phosphorylation–
dephosphorylation of specific amino acid residues.

Proximal tubule NBCe1-A–mediated bicarbonate transport 
is regulated by physiologic conditions. Transport activity 
increases in response to metabolic acidosis and to a variety 
of stimuli that increase bicarbonate reabsorption.130,314,373 
However, changes in steady-state protein expression do not 
appear to be an important regulatory mechanism, as metabolic 
acidosis does not appear to alter NBCe1-A expression.220 
Other factors known to regulate NBCe1-A activity include 
intracellular ATP, possibly through an as yet unidentified 
kinase,173 and a regulated recycling pathway involving PKC305 
and calcium/calmodulin-dependent protein kinase II.306 
Although Ste20/SPS1-related proline-alanine-rich kinase 
(SPAK)-dependent Ser65 phosphorylation and IRBIT- and 
SPAK-dependent Thr49 phosphorylation regulate NBCe1-B 
activity,176 as a result of alternative splicing these residues are 
not present in NBCe1-A. Moreover, because of differential 
splicing, the auto-inhibitory domain present in NBCe1-B and 
NBCe1-C is not present in NBCe1-A, which results in approxi-
mately fourfold greater basal activity of NBCe1-A compared 
with the –B and –C variants.259

Defects in NBCe1 are the most common cause of autosomal 
recessive proximal RTA (pRTA).186,219,491 In addition to causing 
severe pRTA, NBCe1 defects can cause growth and mental 
retardation, basal ganglia calcification, cataracts, corneal 
opacities (band keratopathy), glaucoma, elevated serum 
amylase and lipase, and defects in the enamel suggestive of 
amelogenesis imperfecta.186,219 In mice, homozygous NBCe1 
deletion causes a very severe phenotype, with severe metabolic 
acidosis, marked volume depletion, and death within a few 
weeks after birth. Heterozygous deletion causes a milder 
phenotype but still causes development of pRTA.129,167

NBCe1, in addition to its role in proximal tubule bicarbon-
ate reabsorption, also has a critical role regulating other 
proximal tubule acid–base functions. NBCe1 gene deletion 
causes abnormal renal ammonia and organic anion metabo-
lism, and these effects appear to be mediated through altera-
tions in proximal tubule proteins involved in the metabolism 
and/or transport of these acid–base components.167,293 This 
critical role of NBCe1 appears to be due, at least in part, 
to the A splice variant, NBCe1-A. Recent studies show that 
mice with NBCe1-A-specific deletion live to adulthood, have 
spontaneous metabolic acidosis without increased ammonia 
excretion, an abnormal physiologic response, and have greatly 
impaired ammonia metabolism and excretion response to 
acid loading.228 The abnormal ammonia excretion correlates 
with abnormal expression of critical proteins involved in 
ammoniagenesis, including PDG, PEPCK, and GS.228

Carbonic Anhydrase.  Carbonic anhydrases are a family of 
zinc metalloenzymes that catalyze the reversible hydration 
of CO2 to form carbonic acid (H2CO3), reaction A in the 
equation:

CO H O H CO H HCO2 2 2 3 3+ ⇔ ⇔ ++ −
A B

.

NHE8 (SLC9A8) is a second Na+/H+ exchanger found in 
the proximal tubule.149 Under normal conditions in the adult 
kidney, NHE8 is mostly intracellular,38 but in the absence of 
NHE3 and during acid-loading in normal mice, NHE8 protein 
expression increases in brush border membrane fractions 
and contributes to bicarbonate reabsorption.30 In the neonatal 
kidney, brush border membrane NHE8 expression is increased 
and NHE3 expression is decreased compared with adult 
kidneys, suggesting that NHE8 is the primary mechanism of 
apical NHE activity in the neonatal kidney.30,31,309,406

NHE1 (SLC9A1) is a third member of the NHE family 
that is present in the proximal tubule. NHE1 is a ubiquitous 
sodium hydrogen exchanger present in essentially all cells 
in mammalian organs and is located in the proximal 
tubule in the basolateral plasma membrane.34 Its role in 
the proximal tubule appears to be acute intracellular pH  
regulation.60

H+-ATPase.  A second mechanism of proximal tubule apical 
H+ secretion involves the vacuolar H+-ATPase.443 H+-ATPase 
is expressed in the brush border microvilli, the base of the 
brush border, and apical invaginations between clathrin-
coated domains.52 H+-ATPase also acidifies proximal tubule 
endosomes and lysosomes, senses endosomal pH, and 
is involved in recruiting trafficking proteins to acidified 
vesicles, thereby ensuring appropriate progression from early 
endosomes to lysosomes.54 Proximal tubule H+-ATPase activ-
ity is increased by AngII, increased axial flow, and chronic 
metabolic acidosis.74,103,427 H+-ATPase has a direct binding 
interaction with aldolase, which may underlie the develop-
ment of proximal RTA in individuals with hereditary fructose 
intolerance.247 In addition, PKA stimulates and the adenosine 
monophosphate–activated protein kinase (AMPK) inhibits 
apical plasma membrane H+-ATPase insertion and activity.7

NBCe1 (SLC4A4).  Basolateral bicarbonate exit largely is 
mediated by the electroneutral sodium-bicarbonate cotrans-
porter, NBCe1. In humans, three splice variants of the NBCe1 
gene are known; NBCe1-A, also known as kNBC1, is the 
primary splice variant expressed in the kidney, where it is 
found exclusively in the basolateral plasma membrane in 
the proximal convoluted tubule.61,256 In mice, there are a 
total of five known splice variants.219 NBCe1-A has large 
cytoplasmic amino- and carboxy-termini tails, 14 transmem-
brane domains, and two glycosylation sites.45,244,335,490

NBCe1-A in the proximal tubule mediates the coupled 
net movement of Na+ and HCO3

–. The majority of evidence 
suggests this involves a 1 : 3 ratio of Na+ and HCO3

– equiva-
lents.151,336 Because the cytoplasm is negatively charged relative 
to the peritubular compartment, this electrical gradient 
provides the driving gradient to enable the coupled movement 
of Na+ and HCO3

− out of the cell, against their concentration 
gradient. The coupling ratio of Na+ and HCO3

– is likely to 
be critically important: a 1 : 3 coupling mediates net HCO3

– 
efflux, whereas with a 1 : 2 ratio, depending on the assumptions 
of intracellular Na+ and HCO3

– concentration and of baso-
lateral membrane voltage, the net electrochemical gradient 
may favor HCO3q influx. Indeed, some proximal renal tubular 
acidosis (RTA) cases may result from NBCe1 mutations that 
alter the coupling ratio.491 However, the specific molecular 
mechanisms of this 1 : 3 coupling ratio are only partially 
understood. In nonrenal cells, NBCe1-A appears to have a 
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Increased luminal flow enhances apical plasma membrane 
NHE3 activity.312 In addition, increased flow minimizes changes 
in the luminal bicarbonate concentration, thereby maintaining 
a higher mean luminal bicarbonate concentration, which 
facilitates bicarbonate reabsorption.13 Proximal tubule brush 
border microvilli may function as flow sensors, with drag 
force transmitted through the actin filament, altering cyto-
skeletal elements and regulating transport.103

AngII.  AngII is an important regulator of proximal tubule 
ion transport, including bicarbonate reabsorption. Low AngII 
concentrations increase but high concentrations inhibit 
bicarbonate reabsorption.78,442 Both luminal and peritubular 
low-dose AngII stimulate bicarbonate reabsorption, mediated 
predominantly through apical and basolateral AT1 recep-
tors. Acidosis increases AT1 receptor expression, which may 
contribute to adaptive changes in bicarbonate reabsorption.279

Potassium.  Chronic hypokalemia stimulates and hyperkalemia 
inhibits proximal tubule bicarbonate reabsorption.328 This 
is associated with parallel changes in apical Na+/H+ exchange 
and basolateral sodium–bicarbonate cotransport activity,372 
and involves increased apical and basolateral plasma mem-
brane AT1 receptor expression.126 Acute changes in extracel-
lular potassium concentration, however, do not alter proximal 
tubule bicarbonate transport.77

Endothelin.  Endothelin has important and direct effects on 
ion transport in a variety of renal epithelial cells, including 
the proximal tubule. Endothelin can be produced in the 
proximal tubule and exhibits an autocrine effect to stimulate 
NHE3.240 In particular, metabolic acidosis–induced increases 
in NHE3 expression may require endothelin B (ET-B) receptor 
activation.222

PTH.  PTH acutely inhibits proximal tubule bicarbonate 
reabsorption through activation of adenylyl cyclase and 
increased intracellular cAMP production.263 Systemic PTH 
administration leads acutely to metabolic acidosis, but chroni-
cally leads to metabolic alkalosis.183 The acute effect is due 
primarily to increased urinary bicarbonate excretion, likely 
due to changes in proximal tubule bicarbonate reabsorption; 
the chronic effect is due to increased titratable acid excretion, 
which is likely due to increased excretion of dihydrogen and 
hydrogen phosphate.183

Calcium Sensing Receptor.  The calcium sensing receptor 
(CaSR) is present in the apical membrane in the proximal 
tubule. CaSR activation, either by increased luminal calcium 
or through calcimimetic agents, increases bicarbonate 
reabsorption through a mechanism likely involving the 
activation of apical NHE3.66 CaSR activation may modulate 
the effects of PTH in proximal tubule bicarbonate reabsorp-
tion; hypercalcemia resulting from excess PTH has the 
opposite effect of PTH alone on bicarbonate transport.

LOOP OF HENLE
The TAL of the loop of Henle reabsorbs ~15% of the filtered 
bicarbonate load. The overall schema is fundamentally similar 
to that in the proximal tubule. Apical Na+/H+ exchange and 
vacuolar H+-ATPase secrete H+. Quantitatively, apical Na+/
H+ exchange activity is the major H+ secretory mechanism; 

In the absence of carbonic anhydrase, the hydration/
dehydration reaction (reaction A) is rate limiting, whereas 
reaction B occurs essentially instantaneously.

CA II.  CA II is the predominant carbonic anhydrase in 
the kidney and in the proximal tubule. It is located in the 
cytoplasm of the proximal tubule, in addition to multiple 
other sites in the kidney, including thin descending limb, 
thick ascending limb of the loop of Henle (TAL), and 
intercalated cells. In the mouse kidney, CA II is also expressed 
in collecting duct principal cells.

CA IV.  CA IV is found in the proximal tubule and in 
intercalated cells in the collecting duct.352 CA IV is linked 
to the plasma membrane via a glycosylphosphatidylinositol 
(GPI) anchor and extends into the extracellular compartment; 
the active site is thus extracellular, not intracellular.492 In the 
proximal tubule, CA IV is expressed in both apical and 
basolateral plasma membranes where, by facilitating HCO3

– 
interconversion with CO2, it contributes to transepithelial 
bicarbonate reabsorption.53

REGULATION OF PROXIMAL TUBULE  
BICARBONATE REABSORPTION
Systemic Acid–Base

Changes in extracellular acid–base status profoundly alter 
proximal tubule bicarbonate reabsorption. Both metabolic 
and respiratory acidosis increase bicarbonate reabsorption, 
and alkalosis decreases it. This occurs with both acute and 
chronic pH changes, although the effects are substantially 
greater with chronic changes. It is important to note that 
these effects are mediated through changes in interstitial 
(i.e., peritubular) HCO3

–, and pCO2. Changes in luminal 
HCO3

– have the opposite effect on proximal tubule bicarbon-
ate transport, a manifestation of glomerular–tubular balance.

Recent studies have begun to elucidate the mechanisms 
through which extracellular bicarbonate and CO2 regulate 
proximal tubule bicarbonate reabsorption. Changes in either 
peritubular CO2 or HCO3

– concentration, but not pH when 
the other two components are constant, alter bicarbonate 
reabsorption.489 These effects are specific to bicarbonate 
reabsorption, as fluid reabsorption rates do not change. The 
basolateral plasma membrane protein, protein–tyrosine phos-
phatase, receptor-type, gamma (PTPRG), is necessary for this 
molecular sensing.488 PTPRG may couple to the ErbB tyrosine 
kinases, ErbB1 and ErbB2, as inhibitors of these proteins block 
these responses, and phosphorylation of ErbB1 and ErbB2 is 
regulated by both bicarbonate and CO2 concentration.370 An 
additional mechanism may involve the intrarenal angiotensin 
system, as peritubular CO2 stimulates intracellular AngII pro-
duction and luminal secretion, which acts through an apical 
AT1 receptor to stimulate bicarbonate reabsorption.485,487

Chronic metabolic acidosis increases proximal tubule 
bicarbonate reabsorption more than acute metabolic acidosis. 
This adaptive increase involves increased NHE3 expression 
and activity and increased H+-ATPase activity,16,74,314 but not 
detectable changes in NBCe1 or NBCe1-A expression.220,228 
Glucocorticoid levels rise with chronic metabolic acidosis,464 
and glucocorticoid receptor activation enhances acidosis-
induced increases in NHE3 expression and apical trafficking.14

Luminal Flow Rate.  Renal bicarbonate reabsorption changes 
in parallel with glomerular filtration rate and luminal flow.310 
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mitogen-activated protein kinase kinase (MAP) extracellular 
signal-related kinase (ERK) pathway.146,448 High-mobility group 
box 1 (HMGB1) is a nuclear protein released extracellularly 
in response to infection or injury, where it interacts with 
toll-like receptor 4 (TLR4) and other receptors to mediate 
inflammation. It inhibits TAL bicarbonate reabsorption 
through a receptor for advanced glycation end products 
(RAGE)-dependent mechanism that involves signaling through 
Rho and Rho-associated kinase (ROCK).147,446

Another important regulatory factor is medullary osmolality. 
Increased tonicity inhibits and decreased tonicity stimulates 
bicarbonate reabsorption; this occurs through phosphati-
dylinositol 3-kinase–mediated changes in apical Na+/H+ 
exchange activity.140,144 In addition, AVP, which contributes 
to the development of the medullary osmotic gradient, 
discussed elsewhere in this textbook, inhibits bicarbonate 
reabsorption.139

ACID–BASE TRANSPORTERS IN THE TAL
Many of the major H+ and HCO3

– transporters were  
discussed earlier in relation to the proximal tubule and are 
not repeated here.

NBCn1 (SLC4A7)

NBCn1 facilitates the electroneutral, coupled transport of Na+ 
and HCO3

– in a 1 : 1 ratio. In the kidney, NBCn1 is found in 
the basolateral plasma membrane in the TAL, outer medullary 
collecting duct (OMCD) intercalated cells, and terminal inner 
medullary collecting duct (IMCD).220,311 Because the concen-
trations of Na+ and HCO3

– are generally lower in the cytoplasm 
than in the interstitium, basolateral NBCn1 likely mediates 
peritubular HCO3

– uptake. Moreover, both metabolic acidosis 
and hypokalemia increase TAL NBCn1 expression.189,220 Thus, 
NBCn1 is unlikely to mediate a critical role in bicarbonate 
reabsorption. Instead, it is likely to contribute to ammonia 
reabsorption, which will be discussed later.

DISTAL CONVOLUTED TUBULE
The DCT consists of two cell types, DCT cells and intercalated 
cells, and the mechanisms involved in bicarbonate reabsorp-
tion appear to differ between DCT and intercalated cells. 
DCT cells express apical NHE275 and NHE2 inhibitors 
decrease bicarbonate reabsorption.444 Basolateral HCO3

– exit 
likely involves AE2.11 A basolateral Cl– channel that has limited 
HCO3

– permeability may also contribute.463 Cytosolic CA II 
is present, but not apical CA IV.53 In the late DCT intercalated 
cells are present.251 Quantitatively, intercalated cells constitute 
only a very small proportion of all cells in the DCT, ~4% and 
7% in the mouse and rat kidneys, respectively.201 The majority 
of intercalated cells in the DCT are type A and non-A, non-B 
intercalated cells.201

COLLECTING DUCT
The renal collecting duct is the final site of bicarbonate 
reabsorption and both reabsorbs and secretes luminal 
bicarbonate.261 Specific proteins in specific epithelial cell 
types, which vary in type and frequency in different collecting 
duct segments, mediate these processes.

Collecting Duct Segments

Technically, the collecting duct begins with the ICT, immedi-
ately distal to the CNT, and extends through the IMCD. The 

vacuolar H+-ATPase activity is present, but has at most a minor 
role in bicarbonate reabsorption.67,148 Two Na+/H+ exchanger 
isoforms are present in the TAL, NHE2, and NHE3, and 
NHE3 appears to be the predominant isoform.409,444 Secreted 
H+ reacts with luminal HCO3

–, forming H2CO3, which dis-
sociates to CO2 and H2O. Whether luminal CA IV is present 
is unclear, with conflicting reports in the literature.53,402 
Luminal CO2 moves down its concentration gradient across 
the apical plasma membrane into the cell cytoplasm. Cyto-
plasmic CA II catalyzes CO2 hydration to form H2CO3, which 
dissociates to H+ and HCO3

–, thereby regenerating the H+ 
secreted across the apical plasma membrane. Several baso-
lateral bicarbonate exit mechanisms are present. These 
include basolateral Cl–/HCO3

– exchange, possibly AE2,11 and 
a coupled K+-HCO3

– cotransport activity that may be mediated 
by KCC4.270 Although an electroneutral sodium–bicarbonate 
cotransporter (NBCn1) is present,424 electrochemical gradients 
for its transport favor bicarbonate uptake, not extrusion, 
suggesting that it is unlikely to contribute significantly to 
basolateral bicarbonate exit.

Several plasma membrane proteins either directly or 
indirectly alter bicarbonate reabsorption. Inhibiting the apical 
Na+-K+-2Cl– cotransporter, NKCC2, increases bicarbonate 
reabsorption.67 This may occur because inhibiting NKCC2 
decreases Na+ entry, which decreases intracellular Na+, 
increasing the Na+ uptake gradient for apical Na+/H+ exchange 
and thereby increasing bicarbonate reabsorption. Inhibiting 
basolateral Na+/H+ exchange activity decreases bicarbonate 
reabsorption through cytoskeletal alterations that decrease 
apical NHE3 expression.145,447

Regulation of TAL Bicarbonate Reabsorption

A variety of stimuli regulate TAL bicarbonate reabsorption. 
Metabolic acidosis increases TAL bicarbonate reabsorp-
tion,69,138 but whether the effects are specific to metabolic 
acidosis or due to other mechanisms is not clear. One study 
reported that metabolic acidosis induced with NH4Cl and 
that chloride loading with NaCl had similar effects on 
bicarbonate transport, raising the possibility that chloride 
loads, not acid loads, regulate TAL bicarbonate transport.138 
Data in favor of acidosis regulating TAL bicarbonate transport 
are that NH4Cl-induced metabolic acidosis, but not equivalent 
chloride loading with NaCl, increases TAL NHE3 expression.198 
Further supporting a role of the TAL in acid–base regulation 
is that experimental models of metabolic alkalosis decrease 
bicarbonate reabsorption.141

Several hormones regulate bicarbonate reabsorption. AngII 
stimulates TAL bicarbonate reabsorption, likely through 
activation of AT1 receptors.68,272 Glucocorticoid receptors are 
present in the TAL and glucocorticoids are necessary for 
normal bicarbonate reabsorption.408 Mineralocorticoids, at 
high concentrations, stimulate bicarbonate reabsorption,141 
but their absence does not alter basal transport.408 Arginine 
vasopressin (AVP) inhibits bicarbonate reabsorption through 
prostaglandin E2-mediated inhibition of apical Na+/H+ 
exchange activity.44,139 PTH inhibits bicarbonate reabsorption, 
but the effect is less than the effect of AVP.139

Cytokines also regulate bicarbonate transport. Lipopolysac-
charide (LPS) inhibits transport; this effect involves the 
cytokine receptor, TLR4, and separate pathways activated by 
luminal and peritubular LPS. Luminal LPS involves the mTOR 
pathway, whereas peritubular LPS functions through the 
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Type A Intercalated Cell

The type A intercalated cell is involved in H+ secretion, 
HCO3

– reabsorption, and ammonia secretion. The proteins 
involved in these processes are, in general, different from 
those in the proximal tubule and TAL (Fig. 9.4).

Both vacuolar H+-ATPase and P-type H+-K+-ATPases are 
involved in apical H+ secretion. H+-ATPase is abundant in 
the apical plasma membrane and in apical cytoplasmic 
tubulovesicles in type A intercalated cells. H+-ATPase 
undergoes trafficking between the cytoplasmic compartment 
and the apical plasma membrane; this mechanism, rather 
than changes in total protein expression, appears to be the 
major adaptive response to acid–base disturbances.27 In 
addition to having a major role in H+ secretion, H+-ATPase 
also has an essential role in cell volume regulation and 
maintenance of intracellular electronegativity, replacing the 
Na+-K+-ATPase that provides these functions in most other  
cell types.73

A second means of H+ secretion involves electroneutral, 
K+-dependent H+-K+-ATPase activity that is mediated by P-type 
H+-K+-ATPase proteins.155 At least two H+-K+-ATPase α-isoforms 
are present. One, HKα1, is similar to the α-isoform involved 
in gastric acid secretion. The other, HKα2, is similar to the 
α-isoform in the colon. K+ reabsorbed via apical H+-K+-ATPase 
can either recycle across the apical plasma membrane or 
exit the cell across the basolateral plasma membrane, and 
relative movement across the apical versus basolateral plasma 
membranes is regulated by dietary K+ intake.484

A truncated isoform of the erythrocyte anion exchanger, 
termed kAE1, is present in the basolateral plasma membrane 
and mediates basolateral bicarbonate exit.9 Cl– that enters 
the cell via basolateral Cl–/HCO3

– exchange exits via the KCl 
cotransporter, KCC441,264; a basolateral Cl– channel, presumably 
ClC-Kb in humans and ClC-K2 in rodents, also contributes 
to Cl– recycling.210

CNT arises from a different embryonic origin than the ICT 
and the remainder of the collecting duct. However, the CNT 
is included in the discussion of the role of the collecting duct 
in acid–base regulation because it has cell types and acid–base 
transport mechanisms similar to the collecting duct. Different 
portions of the collecting duct are identified by where they 
reside: ICT, cortical collecting duct (CCD), outer medullary 
collecting duct in the outer stripe (OMCDo), outer medullary 
collecting duct in the inner stripe (OMCDi), and the IMCD.

Cell Composition

Collecting duct segments contain several distinct epithelial 
cell types, and the cellular composition differs in the various 
collecting duct segments. Two distinct cell types, intercalated 
cells and principal cells, are present. Principal cells account 
for ~60%–65% of cells and intercalated cells account for the 
remainder in the ICT, CCD, and OMCD. In the IMCD, the 
proportion of intercalated cells is less, about 10% of cells in 
the initial portion of the rat IMCD, and it decreases progres-
sively from the outer medullary–inner medullary junction 
distally, completing disappearing by the middle of the papilla. 
In the terminal IMCD, the epithelium is composed of IMCD 
cells, a cell distinct from both intercalated cells and principal 
cells. The CNT contains both intercalated cells and a cell 
type specific to the CNT, termed the CNT cell; in some 
species, principal cells are also present.

At least three distinct intercalated cell subtypes exist: the 
type A (or α) intercalated cell, the type B (or β) intercalated 
cell, and the non-A, non-B intercalated cell (Fig. 9.3). In the 
CNT, both type A and non-A, non-B intercalated cells are 
present, and type B intercalated cells are infrequent. In the 
CCD, both type A and type B intercalated cells are present, 
and the non-A, non-B cell is infrequent. In the OMCD and 
IMCD, only the type A intercalated cell is present under 
normal conditions.

Type A intercalated cell

H+-ATPase

Pendrin

Rhcg

AQP2

AE1

Rhbg

Type B intercalated cell

Principal cell

Non-A, non-B intercalated cell

Fig. 9.3  Intercalated cell subtypes in the distal nephron and collecting duct. The late DCT, connecting segment, initial collecting tubule, CCD, 
OMCD, and IMCD have multiple distinct cell types. Three intercalated cell types can be distinguished based on ultrastructural features and 
differential expression in plasma membrane domains of several proteins involved in renal acid–base transport, including H+-ATPase, AE1, 
pendrin, Rhbg, and Rhcg. H+-ATPase is present in the apical portion of the type B intercalated cell, where it is found in cytoplasmic vesicles; 
ultrastructural analysis shows it is not in the apical plasma membrane. These specific intercalated cell subtypes occur at different frequencies 
specific to the various tubule segments. CCD, Collecting duct system; DCT, distal convoluted tubule; IMCD, inner medullary collecting duct; 
OMCD, outer medullary collecting duct. 
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to H+ secretion and luminal HCO3
– reabsorption. Ammonia, 

which is increased in metabolic acidosis and hypokalemia, 
increases type B intercalated cell apical H+-K+-ATPase and 
basolateral Cl–/HCO3

– exchange activity, which would result 
in increased net HCO3

– reabsorption.121

Non-A, Non-B, or Type C Intercalated Cell

A third intercalated cell subtype, generally termed the non-A, 
non-B cell, is present in the CNT and ICT.201,391 This cell has 
several features that distinguish it from both the type A 
intercalated cell and the type B intercalated cell. These 
differences include the expression of both pendrin and 
H+-ATPase in the apical plasma membrane and in apical 
cytoplasmic vesicles, the absence of basolateral plasma 
membrane H+-ATPase and AE1, the presence of apical, but 
not basolateral Rhcg, and the absence of basolateral Rhbg 
(see Fig. 9.3). Thus, it differs significantly from both type A 
and type B intercalated cells. Studies of the developing kidney 
show that non-A, non-B cells and type B intercalated cells 
arise simultaneously, but from different foci.164,374 This cell 
type was termed “non-A, non-B cell” in early studies. However, 
its unique transporter expression, distribution, and devel-
opmental origin suggest this is a third distinct intercalated 
cell subtype.

Principal Cells

Principal cells have indirect and direct roles in acid secretion. 
Indirectly, principal cell–mediated Na+ reabsorption leads 
to luminal electronegativity; this facilitates H+ secretion by 
the electrogenic, and thus voltage-sensitive, H+-ATPase. In 
addition, principal cells have direct roles. Functional studies 
show that principal cells have apical H+ secretory and baso-
lateral Cl–/HCO3

– exchange activities,452,460 and they express 
H+-ATPase102,425 and both the HKα1 and HKα2 isoforms of 
H+-K+-ATPase.155 In the mouse and rat kidney, principal cells 
in the OMCDi and initial IMCD express both carbonic 
anhydrase activity and CA II protein.101,205 Finally, the ammonia 
transporters, Rhcg and Rhbg, are both present in principal 
cells in the rat and mouse CCD and OMCD.199

IMCD Cell

The IMCD cell is a distinct cell type and is the predominant 
cell present in the terminal IMCD. It exhibits carbonic 
anhydrase activity,205 both H+-ATPase and H+-K+-ATPase 
activity,155,435 and basolateral Cl–/HCO3

– exchange.449 In vitro 
microperfusion studies have demonstrated directly that the 
IMCD secretes H+ and reabsorbs luminal HCO3

–.437

Cytoplasmic CA II is abundant in type A intercalated cells 
and enables intracellular generation of H+ for apical secretion 
and HCO3

– for basolateral transport. In addition, membrane-
associated carbonic anhydrases are present in the apical 
region (CA IV) and, at least in mouse and rabbit, in the 
basolateral region (CA XII) of intercalated cells.316

Type B Intercalated Cell

The type B intercalated cell mediates a major role in HCO3
– 

secretion and luminal Cl– reabsorption. It contains basolateral 
H+-ATPase and an apical Cl–/HCO3

– exchanger, pendrin.10 
H+-ATPase is also present in vesicles throughout the cell, but 
it is not present in the apical plasma membrane. Similar to 
the type A intercalated cell, H+-ATPase, rather than Na+-K+-
ATPase, maintains intracellular electronegativity and prevents 
cell swelling.73 Type B intercalated cells also express H+-K+-
ATPase.421,473 In the rabbit and mouse an apical H+-K+-ATPase 
activity is present,250,456 whereas in the rat a basolateral H+-
K+-ATPase activity may be present.133 The type B cell also has 
cytoplasmic CA II, which facilitates intracellular H+ and 
HCO3

– production. Fig. 9.4 summarizes the proteins involved 
in type B intercalated cell acid–base transport.

There is functional evidence that pendrin-mediated apical 
Cl–/HCO3

– exchange works in concert with an apical Na+-
dependent Cl–/HCO3

– exchanger, NDCBE (Slc4a8), to mediate 
net NaCl absorption,237 and NDCBE protein and mRNA have 
been reported in renal cortical homogenates.237,468 However, 
in recent studies using single-cell RNA-seq NDCBE transcripts 
were virtually undetectable in type B intercalated cells.80 
Basolateral Na+ and Cl– exits are mediated by the basolateral 
NaHCO3 cotransporter, AE4,73 and a Cl– channel, ClC-K2/
Barttin, or ClC-Kb.170

The type B intercalated cell also has the ability to secrete 
H+ and reabsorb luminal HCO3

−. As noted earlier, most studies 
indicate the type B intercalated cell has an apical H+-K+-ATPase 
activity that may mediate proton secretion, and functional 
studies have shown that CCD intercalated cells with apical 
Cl–/HCO3

– exchange activity (i.e., all type B intercalated 
cells) also have basolateral Cl–/HCO3

– exchange activity that 
is functionally distinct from the kAE1 activity that present 
in type A intercalated cells.459

The type B intercalated cell has several roles in acid–base 
and ion transport homeostasis. Genetic deletion of the apical 
Cl–/HCO3

– exchanger, pendrin, impairs HCO3
– secretion, 

luminal Cl– reabsorption, and, through a mechanism involving 
coordinated function with principal cell luminal Na+ reabsorp-
tion.203,339,413 The type B intercalated cell may also contribute 

Fig. 9.4  Bicarbonate transport by the type A and the type B intercalated cell. Top panel shows a model of acid–base transport by the type 
A intercalated cell. Two families of H+ transporters, H+-ATPase and H+-K+-ATPase, are present in the apical plasma membrane. Secreted H+ 
titrates luminal HCO3

– to form H2CO3, which dehydrates to water (H2O) and carbon dioxide (CO2). Luminal carbonic anhydrase activity, most 
likely mediated by CA IV, is variably present in the collecting duct (see text for details). Cytosolic H+ and HCO3

– are formed from CA II-accelerated 
hydration of CO2 and rapid dissociation of H2CO3. Cytosolic HCO3

– exits across the basolateral plasma membrane via the anion exchanger, 
kAE1. Cl– that enters via kAE1 recycles via a basolateral Cl– channel. K+ that enters via apical H+-K+-ATPase can either recycle via an apical, 
Ba+-sensitive K+ channel or be reabsorbed via a basolateral Ba+-sensitive K+ channel. A basolateral Na+/H+ exchanger is present but does not 
contribute to bicarbonate reabsorption and is not shown. Bottom panel shows a model of acid–base transport by the type B intercalated cell. 
Apical pendrin is the primary mechanism of bicarbonate secretion. Chloride enters the cell via pendrin and exits across a basolateral chloride 
channel, ClC-K2/barttin. Basolateral H+-ATPase extrudes protons into the peritubular compartment. Cytoplasmic bicarbonate and protons are 
produced from CO2 and water in a CA II–catalyzed reaction. In addition, an apical H+-K+-ATPase in series with a basolateral Cl–/HCO3

– exchange 
activity is present and may contribute to bicarbonate reabsorption by the type B intercalated cell. Apical NDCBE is present and mediates 
Na+-(HCO3

–)2 exchange for Cl−. When coupled with pendrin this can enable coupled Na+-Cl− reabsorption. CA II, Carbonic anhydrase II. 
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H+-ATPase

Electrogenic apical H+ secretion in acid-secreting intercalated 
cells and basolateral proton transport by bicarbonate-secreting 
intercalated cells is mediated by the vacuolar H+-ATPase. 
Intercalated cells in the OMCD and initial IMCD, type A 
intercalated cells in the CCD, and non-A, non-B intercalated 
cells in the CNT and CCD, contain H+-ATPase in the apical 
plasma membrane and in an apical cytoplasmic vesicle pool, 
and redistribution between the cytoplasmic vesicle pool and 
the apical plasma membrane is a major mechanism regulating 
H+ secretion. H+-ATPase is also present in the apical region 
of principal cells and CNT cells, but expression is much less 
than in intercalated cells. In Type B intercalated cells, 
H-ATPase is present in the basolateral plasma membrane 
and in sub-apical vesicles, but not in the apical plasma 
membrane. The role of apical H+-ATPase in nonintercalated 
cells has not been clearly defined; it may be involved in 
endosomal trafficking and fusion,184 and in the OMCDi it 
can also mediate apical H+ secretion.452

Vacuolar H+-ATPase is an assembly of multiple subunits 
that form two main domains, the V1 domain, which is extra-
membranous and hydrolyzes ATP, and the V0 domain, which 
is a transmembranous portion and transports protons. The 
V0 domain is composed of six subunits; the V1 domain is 
composed of eight subunits and is linked to the V0 domain 
via a stalk region composed of subunits from both V0 and 
V1. Distinct isoforms and splice variants have been identified 
for many of these H+-ATPase subunits and their cell-specific 
distribution may contribute to cell-specific regulation of 
proton and bicarbonate transport.

Genetic defects in several H+-ATPase subunits have been 
shown to cause distal RTA (dRTA), also known as Type I 
RTA, in humans. Defects in the B1 subunit of the hydrolytic 
V1 domain resulting from ATP6V1B1 gene mutations can 
produce early-onset hearing loss in combination with auto-
somal recessive, severe dRTA.194,195,382 Mice with B1 subunit 
deletion have incomplete distal RTA.116 In these mice, the 
B2 subunit appears to substitute partially for the B1 subunit, 
enabling partial compensation.301 Mutations in the a4 subunit 
(ATP6V0A4) in the H+-translocating V0 domain also produce 
recessive, severe early onset of dRTA, with variable onset of 
hearing loss.371,382,411

Normal H+-ATPase function appears to involve coexpression 
of the Atp6ap2/(pro)renin receptor. This is a type 1 trans-
membrane protein and an accessory subunit of H+-ATPase 
and may also function in the renin-angiotensin system. Its 
deletion results in decreased H+-ATPase activity and impaired 
renal acid–base homeostasis.399 Although Atp6ap2 is a cell 
surface protein capable of binding and nonproteolytically 
activating prorenin, prorenin does not acutely regulate 
H+-ATPase activity.96 Atp6ap2 also appears to regulate NKCC2 
and AQP2 expression, and this may occur through the 
autophagosomal substrate p62.399

H+-K+-ATPase

The second mechanism of collecting duct H+ secretion involves 
electroneutral H+-K+ exchange.155 The active protein is a 
heterodimer composed of α- and β-subunits. The α-subunit 
is an integral membrane protein with multiple membrane 
spanning domains and contains the catalytic portion of the 
enzyme. Two α-subunit isoforms have been identified. HKα1, 
also termed the gastric isoform, was identified originally in 

FUNCTIONAL ROLE OF DIFFERENT  
COLLECTING DUCT SEGMENTS
CNT-ICT

Relatively little information is available on the functional 
role of the CNT and ICT in acid–base homeostasis. Morpho-
logic and immunolocalization studies suggest that the CNT 
and ICT contain type A and type B intercalated cell types 
and non-A, non-B cells.201,391,419 Under basal conditions, the 
CNT, at least in the rabbit, secretes bicarbonate through a 
Cl–-, carbonic anhydrase–, and H+-ATPase–dependent mecha-
nism404; this likely involves apical pendrin, cytosolic CA II, 
and basolateral H+-ATPase.

CCD

Unlike the OMCD and IMCD, which can secrete only acid (i.e., 
reabsorb bicarbonate), the CCD both reabsorbs and secretes 
bicarbonate. The basal direction of bicarbonate transport 
varies among species, but both bicarbonate absorption and 
secretion can be induced in response to systemic acid or 
alkali loading.18,245,261 The ability to secrete bicarbonate, 
which is not found in the OMCD or IMCD, correlates with 
the presence of type B intercalated cells in the CCD, but 
not in the OMCD or IMCD. Mineralocorticoids stimulate 
CCD bicarbonate secretion, likely related to generation of 
metabolic alkalosis and to stimulation of pendrin expres-
sion128,413; however, mineralocorticoid receptors are present 
in type B intercalated cells,288,363 and thus direct stimulation 
of type B cell ion transport by mineralocorticoids is possible.

OMCD

The OMCD is responsible for approximately 40%–50% of 
the net acid secretion that occurs in the collecting duct. 
Both intercalated cells and principal cells contribute to acid 
secretion, although intercalated cells are believed to be the 
primary cell responsible for OMCD acid secretion.452,460

IMCD

The IMCD secretes H+ and reabsorbs luminal bicarbonate.433 
However, the number of type A intercalated cells is substan-
tially less than in other collecting duct segments. In the rat 
they account for only 10% of cells in IMCD186 and in all 
species examined the prevalence diminishes distally such 
that almost no intercalated cells exist in the distal portion 
of IMCD (IMCD3). Nonetheless, bicarbonate reabsorption 
occurs in the terminal IMCD and basolateral Cl–/HCO3

– 
exchange is present in cultured IMCD cells.449 H+ secretion 
is partly mediated by H+-K+-ATPase.439 In rats fed a potassium-
deficient diet, H+-K+-ATPase activities were upregulated,435 
but H+-K+-ATPase accounted for only ~50% of bicarbonate 
reabsorption in the IMCD, indicating that other mechanisms 
of luminal acidification also contribute, likely including 
H+-ATPase. The IMCD expresses CA IV and luminal, cyto-
plasmic, and lateral membrane–associated carbonic anhydrase 
activity has been reported.205,432

PROTEINS INVOLVED IN COLLECTING DUCT  
H+/BICARBONATE TRANSPORT
Collecting duct H+ and HCO3

– transport involves the coor-
dinated activity of multiple transporters in conjunction with 
specific carbonic anhydrase isoforms. Later in this chapter 
we review the specific proteins involved.
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Carbonic Anhydrase

Three carbonic anhydrase isoforms, CA II, CA IV, and CA 
XII, are present in the collecting duct. CA II is cytosolic in 
proximal tubule cells, discussed earlier, in intercalated cells, 
and in principal cells in the collecting ducts of mice.420 CA 
II is present in all intercalated cell types, but expression is 
generally greater in the type A than in type B intercalated cells.

CA IV is an extracellular, membrane-associated carbonic 
anhydrase tethered to the membrane through a glycosylphos-
phatidylinositol lipid (GPI) anchoring protein. It is expressed 
apically in the majority of cells in rabbit OMCD and IMCD 
and in type A intercalated cells in the CCD.356 In the OMCDi, 
luminal carbonic anhydrase inhibition decreases bicarbon-
ate absorption, suggesting an important role for CA IV in 
acid–base homeostasis.403

Carbonic anhydrase XII (CA XII) is another extracellular, 
membrane-associated carbonic anhydrase found in the col-
lecting duct.316 In contrast to CA IV, CA XII is an integral 
membrane protein with a single transmembrane spanning 
region.316 Basolateral CA XII immunoreactivity has been 
reported in principal cells in the human kidney, and in the 
mouse, basolateral CA XII immunoreactivity is found in type 
A intercalated cells in the CCD and OMCD.316,319

kAE1

The major basolateral anion exchanger in type A intercalated 
cells is kAE1, a truncated form of the erythrocyte anion 
exchanger AE1. In the human, rat, and mouse kidneys, kAE1 
is expressed almost entirely in the basolateral plasma mem-
brane. In the rabbit kidney under basal conditions, kAE1 is 
present in intracytoplasmic multivesicular bodies, as well as 
in the basolateral plasma membrane; metabolic acidosis 
decreases intracellular kAE1 and increases basolateral kAE1, 
suggesting regulated trafficking contributes to bicarbonate 
reabsorption.416

Several mutations in AE1 cause human autosomal dominant 
and autosomal recessive dRTA. Autosomal dominant dRTA 
can be caused by a trafficking defect leading either to mis-
targeting to the apical plasma membrane or failure of plasma 
membrane insertion.324,362 Autosomal recessive dRTA due to 
defective AE1 is commonly due to mutations that lead to 
intracellular protein retention.388

KCC4

KCC4 is a member of the SLC12 family of solute transporters 
and mediates electroneutral, coupled transport of K+ and 
Cl–. Basolateral KCC4 expression has been shown in the 
proximal convoluted tubule (PCT), TAL, DCT, CNT, and 
type A intercalated cells.41,412 In the type A intercalated cell, 
KCC4 likely contributes to basolateral Cl– recycling. Metabolic 
acidosis increases KCC4 expression in type A intercalated 
cells in the OMCD, suggesting a role in the response to 
metabolic acidosis264 by facilitating basolateral Cl–/HCO3

– 
exchange, and KCC4 deletion causes development of distal 
RTA,41 suggesting KCC4 is necessary for both basal and 
acidosis-stimulated acid–base homeostasis.

Cl– Channel

Cl– entry via basolateral kAE1 recycles across the basolateral 
plasma membrane. In addition to KCC4, the Cl– channel, 
ClC-K2, is present in the basolateral plasma membrane of type 
A intercalated cells and likely contributes to this recycling.296

the stomach. HKα1 forms heterodimers with its specific 
β-subunit, HKβ. The β-subunit has only a single membrane-
spanning region and is necessary for targeting of the α-subunit 
to the plasma membrane and for transport function.155 HKα2 
was identified originally in the colon and is sometimes referred 
to as the colonic isoform. Three splice variants of HKα2 have 
been identified in the kidney. HKα2 forms heterodimers with 
the β1-subunit of Na+-K+-ATPase.

HKα1, HKα2, and HKβ are expressed throughout the 
collecting duct, with greater expression in intercalated cells 
than in principal cells.4,6,64 Functional studies suggest that 
both HKα1 and HKα2 are present in type A as well as type 
B intercalated cells.250,265,456 However, immunohistochemistry 
studies have yielded variable results with respect to the precise 
cellular distribution of the HKα1 and HKα2 isoforms. HKα1 
immunoreactivity was found in both AE1-positive (type A) 
and AE1-negative intercalated cells in both rat and rabbit 
collecting ducts,473 but in human kidneys, diffuse HKα1 
immunoreactivity was present in both intercalated and 
principal cells.215 HKα2 immunoreactivity was consistently 
apical, but in different cell types in different studies. It was 
found exclusively in the CNT cell in rabbits in one study114 
and exclusively in the OMCD principal cell in rats in another.343 
A third study found the splice variant, HKα2c, in intercalated 
cells, principal cells, and CNT cells from the CNT through 
the initial IMCD in rabbit kidney.421 In situ hybridization 
studies have shown both intercalated cell and principal cell 
expression of HKα1, HKα2, and HKβ mRNA in the rat kidney, 
although principal cell signal was less intense than intercalated 
cell signal.5,64

Multiple physiologic conditions alter H+-K+-ATPase expres-
sion and activity. Metabolic acidosis increases H+-K+-ATPase 
activity in the CCD and HKα1 and HKα2 mRNA expression 
in the OMCD, suggesting that H+-K+-ATPase contributes to 
H+ secretion.155 Specific studies have identified apical, but 
not basolateral, H+-K+-ATPase activity in both types A and B 
intercalated cells in mouse and rabbit kidneys.265,456,483 Extracel-
lular ammonia, which increases with both metabolic acidosis 
and hypokalemia, enhances apical H+-K+-ATPase–mediated 
H+ secretion in both type A and type B intercalated cells in 
the CCD.121,123

Pendrin (SLC26A4)

Pendrin is an electroneutral Cl–/HCO3
– exchanger present 

in the kidney exclusively in type B and non-A, non-B inter-
calated cells. It is found in the apical plasma membrane 
and in apical cytoplasmic vesicles in type B and non-A, 
non-B intercalated cells in the CNT, ICT, and CCD. Under 
basal conditions, pendrin is predominantly expressed in the 
apical plasma membrane in non-A, non-B intercalated cells 
and in subapical cytoplasmic vesicles in type B intercalated 
cells, and redistribution between these two subcellular sites  
is an important regulatory mechanism.441 Pendrin is regu-
lated by AngII, nitric oxide, and cAMP.393,414 In addition to 
bicarbonate secretion, pendrin also mediates an important 
role in extracellular fluid volume and blood pressure 
regulation. This appears to involve roles in both transcel-
lular Cl– reabsorption and, through luminal alkalinization 
due to HCO3

– secretion, activation of the principal cell 
epithelial Na+ transporter, ENaC108,436 and involving the 
Na+-dependent, chloride–bicarbonate exchanger (NDCBE,  
SLC4A8).237
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human kidney under basal conditions, NBCe2 mRNA was 
found in the proximal tubule by in situ hybridization, and 
protein expression was observed in subcellular fractionation 
enriched for apical brush-border proteins.135

REGULATION OF COLLECTING DUCT  
ACID–BASE TRANSPORT
The collecting duct is the final site controlling renal acid–base 
regulation. It responds quickly to physiologic conditions to 
increase acid or bicarbonate excretion as needed to maintain 
systemic acid–base homeostasis.

ACIDOSIS
The collecting duct response to metabolic acidosis includes 
adaptations in all segments of the collecting duct and the 
CNT. Increased acid secretion in the collecting duct during 
acidosis is mediated primarily by H+-ATPase. Both metabolic 
and respiratory acidosis increase apical plasma membrane 
H+-ATPase expression and activity in acid-secreting collecting 
duct intercalated cells. Redistribution of H+-ATPase from a 
subapical vesicle pool to the apical plasma membrane is the 
primary means of activation of proton secretion, and involves 
vesicular trafficking that requires soluble NSF-attachment 
protein receptor (SNARE) proteins and Rab GTPases.102,425 
In most models of metabolic acidosis, total renal H+-ATPase 
mRNA and protein expression do not change,379,425 but a 
study examining OMCD segments from acid-loaded mice 
found increased mRNA expression of several H+-ATPase 
subunits, including the B1 and a4 subunits.82

During chronic metabolic acidosis, AE1 mRNA and AE1 
protein expression in the basolateral plasma membrane in 
OMCD and CCD type A intercalated cells is increased.181,341 
In rats and mice, AE1 is present in the basolateral plasma 
membrane under basal conditions, and the subcellular 
distribution does not change with metabolic acidosis.181,341 
In rabbits fed a normal diet, AE1 is in both intracellular 
multivesicular bodies and the basolateral plasma membrane 
in type A intercalated cells. Metabolic acidosis increases the 
basolateral plasma membrane boundary length and the 
amount of AE1 immunoreactivity in the basolateral plasma 
membrane and reduces intracellular AE1.416

During metabolic acidosis, both net HCO3
– secretion and 

type B intercalated cell-mediated unidirectional HCO3
– secre-

tion decrease. This is associated with decreased pendrin 
expression in type B and non-A, non-B cells as well as 
decreased apical Cl–/HCO3

– exchange activity in type B 
intercalated cells in the CCD.124,426,475 Reduced bicarbonate 
secretion by B cells during acid loading thus contributes to 
increased net bicarbonate reabsorption.

Carbonic anhydrase activity and the expression of CA II 
and CA IV in the collecting duct are increased by metabolic 
acidosis.316 CA IV expression is upregulated in the OMCD, 
whereas CA II expression is upregulated in the CNT, CCD, 
and OMCD.

The collecting duct response to respiratory acidosis appears 
to be similar to that of metabolic acidosis. Respiratory acidosis 
stimulates structural changes in OMCD and CCD type A 
intercalated cells consistent with translocation of H+-ATPase-
bearing membrane from the apical vesicle pool to the apical 
plasma membrane.418 Respiratory acidosis also stimulates 
N-ethylmaleimide-sensitive ATPase activity, a measure of 
H-ATPase activity106,425 and bicarbonate reabsorption in isolated 

Other Anion Exchangers

Several other anion transporters, including anion exchangers 
and sodium bicarbonate cotransporters (NBCs), are present 
in the collecting duct, but their roles in acid–base homeostasis 
are less completely understood. AE2 is expressed in collect-
ing ducts, particularly in the basolateral plasma membrane 
of IMCD cells.125 Another Cl–/HCO3

– exchanger, Slc26a7, 
is found in the basolateral plasma membrane of OMCD 
intercalated cells.307 Slc26a7 mRNA and protein expression 
increases with acid loading, suggesting it may contribute 
to regulated bicarbonate reabsorption.384 AE4 (Slc4a9) is 
present in the collecting duct, but both its location and 
function are in question. Although originally thought to be 
an anion exchanger, other evidence suggests AE4 functions 
in type B intercalated cells as a NaHCO3 cotransporter.73 
Studies of the rabbit kidney have variously reported that AE4 
immunoreactivity is exclusively apical in type B intercalated 
cells,401 apical and lateral in type A intercalated cells,209 and 
exclusively lateral in type B intercalated cells.318 In both rat 
and mouse kidneys, only basolateral AE4 protein expression 
has been detected in both type A80,209 and type B intercalated 
cells.73,80,209 In the mouse, both mRNA and basolateral protein 
expression are significantly stronger in type B than in type 
A intercalated cells.80

Sodium Bicarbonate Cotransporters

Several NBCs are expressed in the collecting duct. NBC3 
(Slc4a7) is found in the apical region of OMCD interca-
lated cells and type A intercalated cells in the CCD and in 
the basolateral region of type B intercalated cells.221,320 It 
appears to contribute to intracellular pH regulation, but 
not to transepithelial bicarbonate transport.482 NBCn1, 
another SLC4A7 gene product, is an electroneutral NBC, 
and basolateral expression is found in the terminal IMCD 
and in OMCD intercalated cells.311 Finally, recent evidence 
indicates AE4 (SLC4A9), discussed earlier, functions as a 
Na+-HCO3

– cotransporter.73

NBCe2 (SLC4A5)

The electrogenic, Na+-HCO3
− cotransporter, isoform 2 (NBCe2, 

SLC4A5) appears to contribute to acid–base homeostasis, 
but its specific cellular expression remains unclear. An initial 
study suggested there was only apical expression in collecting 
duct intercalated cells in the CCD and OMCD,95 whereas a 
different study identified NBCe2 in microdissected mouse 
CNT segments.466 Genetic deletion in one study induced 
metabolic acidosis,150 whereas in a second study, NBCe2 
deletion did not alter basal acid–base homeostasis, but did 
impair the ability to respond to exogenous acid loading.466 
The mechanism through which NBCe2 contributes  
to acid–base homeostasis, given the evidence for its apical 
localization, is unclear. There is evidence that NBCe2 deletion 
leads to increased pendrin expression, which could, by 
increasing HCO3

− secretion, contribute to the acid–base 
phenotype observed.95 NBCe2 deletion is also associated with 
increased expression of the β1-subunit of H+-ATPase, which 
may serve as an adaptive response that minimizes the extent 
of the acid–base disturbance.466 However, the possibility of 
additional mechanisms through which NBCe2 contributes 
to acid–base homeostasis cannot be excluded at present.

Other studies suggest NBCe2 is present in the proximal 
tubule, not the distal nephron. In a study examining the 
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AT1 (AT1a) receptors in both principal cells and intercalated 
cells.338 In mouse OMCD and CCD, AngII in vitro increases 
H+-ATPase activity in acid-secreting intercalated cells by 
trafficking H+-ATPase to the apical plasma membrane.304,338 
In mouse OMCD, AngII stimulates H+-ATPase activity through 
a G-protein–coupled phosphokinase C pathway.338 However, 
in other studies, in vivo and in vitro AngII decreased bicarbon-
ate reabsorption in rat OMCD and in vitro AngII decreased 
H+-ATPase activity via AT1 receptors394,440; this apparent 
discrepancy has not been resolved. AngII also increases 
pendrin-dependent Cl– absorption,302 apical Cl–/HCO3

– 
exchange in type B intercalated cells,457 and pendrin protein 
expression in the apical plasma membrane in non-A, non-B 
intercalated cells in the CNT, an effect mediated through 
activation of the angiotensin type 1a receptor (Agtr1a).414

Endothelin has important effects on collecting duct 
acid–base transport that are mediated partly by nitric oxide. 
Dietary protein intake stimulates urinary acidification through 
a process involving H+-ATPase activation, mediated by 
endothelin and nitric oxide.467 Endothelin-1 (ET-1) is syn-
thesized by the collecting duct,364,383 and endothelin receptors 
A and B (ET-A and ET-B) are present in the collecting duct.212 
ET-B activation regulates both type A and type B intercalated 
cell responses to metabolic acidosis.405

The CaSR is apical in IMCD cells and in type A intercalated 
cells331 and mediates luminal Ca+2-stimulation of H+-ATPase.330 
Luminal acidification stimulated by this pathway may 
inhibit calcium precipitation and minimize development 
of nephrolithiasis.330

Activation of the vasopressin type 1A (V1a) receptor is an 
additional regulatory mechanism. The V1a receptor is 
expressed in the medullary TAL (mTAL) and throughout 
the collecting duct,70,481 with expression in both intercalated 
cells and principal cells in the CCD and only in intercalated 
cells in the OMCD.70 Metabolic acidosis increases V1a receptor 
expression in the mTAL and the OMCD in the inner 
stripe.70,389 Genetic deficiency of the V1a receptor causes 
development of type IV RTA and diminishes mineralocorticoid 
stimulation of H+-K+-ATPase and Rhcg.187

Several other hormones and drugs also alter collecting 
duct acid–base transport. Kallikrein inhibits bicarbonate 
secretion.253 Calcitonin stimulates H+-ATPase–dependent 
bicarbonate reabsorption in the rabbit CCD.365 Isoproterenol 
stimulates bicarbonate secretion by type B intercalated cells.351

PARACRINE REGULATION
Several compounds produced and/or transported in the 
proximal tubule and TAL have downstream effects that 
regulate collecting duct acid–base transport. Presumably, 
this enables these segments, which exist in an area with 
very high blood flow and thus rapid exposure to changes 
in systemic acid–base and potassium, to regulate transport 
in collecting duct segments in the outer medulla and inner 
medulla, sites of low blood flow and thus reduced exposure to 
changes in systemic acid–base and potassium homeostasis. The 
paracrine molecules most extensively studied are ammonia 
and alpha-ketoglutarate.

Ammonia, discussed in detail later regarding its role in 
net acid excretion, also appears to function as an intrarenal, 
paracrine signaling molecule that regulates collecting duct 
transport.451 It is produced primarily in the proximal tubule 
and undergoes regulated transport in both the proximal 

CCDs,262 consistent with activation of H+-ATPase mediated 
proton secretion. In addition, chronic respiratory acidosis 
increases kAE1 mRNA.94 Pendrin expression decreases during 
respiratory acidosis,98 which likely mediates decreased bicar-
bonate secretion.

ALKALOSIS
Metabolic alkalosis induces coordinated changes in acid–base 
transport throughout the collecting duct. In the OMCD of 
bicarbonate-loaded animals, bicarbonate reabsorption is 
decreased compared with control animals245 and in the IMCD, 
bicarbonate loading abolishes acid secretion.32 In the CCD, 
bicarbonate loading in animals produces net bicarbonate 
secretion.261 However, no studies have shown the development 
of HCO3

– secretion by the OMCD or the IMCD in response 
to metabolic alkalosis, and this correlates with the lack of 
pendrin-expressing type B and non-A, non-B intercalated 
cells in these segments.

The cellular response to alkalosis in OMCD and CCD type 
A cells entails essentially the reverse of processes that occur 
to stimulate acid secretion. H+-ATPase is redistributed from 
the apical plasma membrane into the apical vesicle pool, 
and basolateral AE1 immunoreactivity decreases.26,341,417 
Depending on the animal model, alkalosis increases pendrin 
expression and its apical distribution in type B and non-A, 
non-B intercalated cells and increases pendrin-mediated CCD 
bicarbonate secretion.124,426 However, pendrin expression, 
subcellular location, and functional activity are regulated by 
other factors independent of acid–base status, including 
pregnancy, aldosterone, AngII, activation of AT1a and AT1b 
receptors, nitric oxide, and cAMP,* in addition to chloride 
balance and luminal chloride delivery.321,415

HORMONAL REGULATION OF COLLECTING DUCT 
ACID–BASE TRANSPORT
In addition to extracellular pH, multiple other factors regulate 
collecting duct acid–base transport. Importantly, in vivo 
acid–base changes cause greater adaptations than equivalent 
in vitro changes, suggesting that in vivo regulatory mechanisms 
mediate a critical role in the response to acid–base distur-
bances.134 Several hormones and receptors regulate bicarbon-
ate transport in the collecting duct, particularly aldosterone 
and its analogs, and AngII.

Aldosterone is an important regulator of collecting duct 
bicarbonate transport.381 Both in vivo and in vitro mineralo-
corticoids increase OMCD bicarbonate reabsorption.381 This 
involves, at least when studied in vitro, increased H+-ATPase 
activity and apical translocation in OMCD intercalated cells, 
stimulated through a non-genomic pathway not inhibited 
by mineralocorticoid receptor blockade.474 Mineralocorticoids 
also increase CCD bicarbonate secretion; this is dependent 
on luminal chloride, mediated by pendrin, and involves 
increased pendrin mRNA and protein expression and pendrin 
redistribution from cytoplasmic vesicles to the apical plasma 
membrane in type B intercalated cells.339,413 Likely because 
of parallel stimulation of both acid and bicarbonate secretion, 
mineralocorticoid therapy usually has modest effects on 
systemic acid–base homeostasis.

AngII exerts effects on the proximal tubule, TAL, DCT 
and collecting ducts. The collecting duct expresses apical 

*References 302, 303, 393, 413, 414, 468.
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CCD equated apical endocytosis with alpha (type A) inter-
calated cells and used apical peanut lectin binding as a marker 
of beta (type B) intercalated cells. Chronic NH4Cl loading 
in vivo increased the number of intercalated cells exhibiting 
apical endocytosis in microperfused CCDs and decreased 
the number of cells that bound peanut lectin; the interpreta-
tion was that intercalated cell subtypes in the CCD could 
interconvert, with the type B intercalated cells reversing 
polarity to meet the physiologic demand for increased acid 
secretion.353 Subsequently, some studies reported that acidosis, 
lithium administration, and carbonic anhydrase inhibition 
each alter the relative numbers of intercalated cells identifiable 
as type A or type B, although none have shown cells in native 
tissue with either apical AE1, basolateral pendrin, or coexpres-
sion of these two transporters.23,85,124,317,465 Other studies of 
acid–base disturbances find regulation of the abundance 
and distribution of transport proteins specific to the A and 
B intercalated cell types and changes in cell morphology, 
but no change in the relative or absolute numbers of specific 
intercalated cell subtypes.27,341,418,419 The explanation for these 
different findings could include differences in the experi-
mental models, species examined, sensitivity and specificity 
of intercalated cell identification, and cell quantitation 
methods.

In vitro studies have implicated the extracellular matrix 
protein, hensin, and the prolyl isomerase activity of cyclophilin 
in the process of intercalated cell remodeling.354,387 In mice 
with intercalated cell-specific hensin deletion there is develop-
ment of a distal RTA, lack of type A intercalated cells, and 
an increased number of type B intercalated cells.127 Hensin’s 
effects on type A intercalated cell development appears to 
require the activation of beta-1 integrin.127

BICARBONATE GENERATION

Acid–base homeostasis requires not only reabsorption of 
filtered bicarbonate, but also the generation of new bicarbon-
ate to replace the bicarbonate used for buffering of endog-
enous and exogenous fixed acids. There are two major 
components of bicarbonate generation, titratable acid 
excretion and ammonia excretion. In addition, organic anion 
excretion is biologically important. Organic anions can be 
metabolized to form HCO3

–; accordingly, their excretion is 
physiologically equivalent to bicarbonate excretion.

TITRATABLE ACID EXCRETION

Titratable acids are urinary solutes that buffer secreted 
protons, enabling H+ excretion without substantial changes 
in urine pH. Titratable acid excretion constitutes ~40% of 
net acid excretion under basal conditions. Metabolic acidosis 
increases titratable acid excretion by as much as 50% above 
baseline159,347 (Fig. 9.5).

Multiple buffers contribute to titratable acid excretion. 
An ideal urinary buffer has a pKa lower than systemic pH, 
so that the majority of the filtered component is in the base 
form, and a pKa higher than urine pH, so that the majority 
of the urinary form is in the acid form. Phosphate is the 
predominant titratable acid and typically accounts for more 
than 50% of total titratable acid.159,478 Citrate and creatinine 
also contribute to titratable acid excretion, but to a lesser 

tubule and the TAL in response to both acid loading and 
hypokalemia. In addition to its roles in bicarbonate genera-
tion, ammonia stimulates CCD bicarbonate reabsorption in 
a concentration-dependent fashion.123 Ammonia stimulates 
type A intercalated cell acid secretion and inhibits type B 
intercalated cell bicarbonate secretion.121,123 Its stimulation 
of proton secretion involves stimulation of H+-K+-ATPase, 
not H+-ATPase, activity.122,123

The Krebs cycle intermediate, 2-oxoglutarate (alpha-
ketoglutarate), may have an important role in acid–base 
homeostasis. Changes in acid–base loading change the net 
direction of transport in the proximal tubule and the loop 
of Henle from reabsorption, seen with acid loading, to net 
secretion, seen with alkali loading.79,115,395 In the CNT and 
CCD, luminal 2-oxoglutarate enhances net bicarbonate and 
sodium chloride reabsorption, acting through its receptor, 
Oxgr1, in type B and non-A, non-B intercalated cells.395 Thus, 
2-oxoglutarate can function as a paracrine mediator enabling 
functional coordination of the proximal tubule and the TAL 
with the collecting duct.

CELLULAR ADAPTATIONS TO  
ACID–BASE PERTURBATIONS
In addition to changes in the abundance and subcellular 
distribution of membrane transporters, adaptive responses 
to some physiologic disturbances may involve changes in the 
numbers of intercalated cells. Several studies have shown 
that chronic metabolic acidosis and chronic hypokalemia 
increase intercalated cell numbers in medullary collecting 
ducts,* whereas others find no change in intercalated cell 
number in these conditions.168,181,419 Chronic administration 
of lithium and acetazolamide also increases intercalated cell 
numbers in the OMCD.23,85,398

Increases in intercalated cell numbers could result from 
intercalated cell proliferation or from principal cell prolifera-
tion followed by conversion into intercalated cells. Studies 
using proliferation markers show that metabolic acidosis, 
hypokalemia, and lithium administration are each associated 
with increased proliferation of collecting duct cells,84,297,465 
some showing increased proliferation in type A intercalated 
cells,410,465 and others showing the proliferating cells are 
principal cells.84,202,297,398 The latter studies suggested that 
principal cells and OMCD intercalated cells may interconvert 
based on observations of rare cells with immunohistochemical 
and ultrastructural characteristics of both cell types84,297,398 
and through genetic studies that irreversibly identify principal 
cells as cells that express genes under the control of the 
AQP2 promoter.202 The histone H3 K79 methyltransferase, 
Dot1L, may be involved in preventing transformation of 
principal cells into intercalated cells; Dot1L deletion decreases 
the number of principal cells and increases the number of 
collecting duct intercalated cells.479 Other studies show that 
principal cells respond to acid by producing the cytokine 
SDF1, also known as CXCL12, which then acts on adjacent 
intercalated cells via its receptor, CXCR4.355 SDF1is transcrip-
tionally regulated and is a target of the hypoxia-sensing 
transcription factor HIF1α in principal cells.355

With respect to the CCD, some studies suggested there 
may be interconversion of type A and type B intercalated 
cells. An early paper examining the rabbit isolated perfused 

*References 23, 85, 297, 398, 410, and 465.
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buffers secreted H+, forming H2PO4
–. Phosphate exists, under 

physiologically relevant conditions, in equilibrium between 
two forms: H2PO4

– and HPO4.–2 The relative amount of these 
two forms is given by
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where UPhos is the urinary concentration of total phosphate. 
Filtered phosphate, at the typical serum pH of 7.4, is ~80% 
in the form of HPO4

–2 and 20% in the form of H2PO4
–. Thus, 

at any urine pH (pHU), titratable acid excretion in the form 
of phosphate (TAPhos) is given by the formula
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These considerations indicate that titratable acid excretion 
as phosphoric acid is determined by phosphate excretion 
and by the ability to lower urine pH. Phosphate excretion 
is determined by the difference between the filtered load of 
phosphate and tubular phosphate reabsorption. Regulation 
of renal tubular phosphate transport is a complex process 
and is discussed in detail elsewhere in this text. Here, we 
review only the factors that regulate this process in response 
to acid–base disorders.

The proximal tubule is the primary site of phosphate 
reabsorption and is where metabolic acidosis and other 
acid–base disorders regulate phosphate transport. Acid loading 
decreases proximal tubule phosphate reabsorption, leading 
to increased excretion. However, absolute changes in urinary 
phosphate excretion are usually rather modest, less than a 
twofold increase. The decrease involves decreased NaPi-IIa 
protein and mRNA expression and changes in its subcellular 
distribution.15,15,156 Acid loading alters NaPi-IIa expression 
even if the acid load is completely compensated and there 
are no changes in systemic pH, suggesting that factors that 
precede changes in systemic pH regulate this response.423 
Metabolic acidosis also lowers luminal pH in the proximal 
tubule, which directly inhibits phosphate uptake.174,407 Finally, 
metabolic acidosis increases PTH release, which also inhibits 
phosphate reabsorption.

Other phosphate transporters besides NaPi-IIa, such as 
NaPi-IIc and Pit-2, are present in the proximal tubule apical 
plasma membrane. Whether NaPi-IIc changes with metabolic 
acidosis is unclear as some studies find decreased expression423 
and others do not.292 Pit-2 expression, although regulated 
by dietary phosphate availability, is not altered in metabolic 
acidosis in phosphate replete conditions, but does increase 
in response to metabolic acidosis in conditions of phosphate 
depletion.423

Acidosis-induced changes in phosphate excretion depend 
on systemic phosphate availability. In the presence of 
dietary phosphate restriction, basal phosphate excretion is 
reduced, and the increase in urinary phosphate excretion 
in response to metabolic acidosis is blunted.423 Similarly, 
changes in NaPi-IIa abundance are blunted.15 In contrast 
to NaPi-IIa, and to their response to metabolic acidosis in 

extent. Although ammonia is frequently termed a urinary 
buffer, because of its high pKa it does not contribute sub-
stantially to titratable acid excretion. The role of ammonia 
in new bicarbonate generation is considered separately later 
in the chapter. Fig. 9.6 shows the relative contributions of 
major urinary buffers to titratable acid excretion and shows 
the effect of changes in urine pH after taking into account 
the amount excreted under normal conditions and the pKa 
of each buffer.

PHOSPHATE AS A TITRATABLE ACID
Titratable acid excretion in the form of phosphate is the 
amount of HPO4

–2 that is filtered, not reabsorbed, and that 
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glomerular filtrate has a pH essentially identical to systemic 
arterial pH, essentially all filtered citrate is in the form of 
citrate−3. In contrast, only 29% of urinary citrate at a typical 
urine pH of ~6.0 is in the form of citrate−3, meaning that 
~71% has been protonated and converted to citrate−2. This 
difference in citrate−2 between filtrate and final urine enables 
citrate to serve as a titratable acid (see Fig. 9.6).

The second mechanism through which citrate contributes 
to acid–base homeostasis relates to its function as a metabolic 
substrate for the tricarboxylic acid cycle. Its complete metabo-
lism, as occurs in the proximal tubule, results in HCO3

– genera-
tion. Thus, citrate excretion, which is the difference between 
its filtration and its reabsorption, with subsequent metabolism 
that forms HCO3

–, is functionally equivalent to HCO3
– excre-

tion. Citrate excretion thereby enables base excretion without 
altering urine pH, which may be beneficial for minimization 
of pH-dependent calcium nucleation and calcium-containing 
stone growth.

Multiple factors regulate renal citrate excretion. Metabolic 
acidosis decreases and alkalosis increases citrate excretion.25 
Hypokalemia reduces citrate excretion.2,120 This effect is likely 
independent of systemic pH. The carbonic anhydrase inhibi-
tor, acetazolamide, and a high dietary intake of either NaCl 
or protein decrease citrate excretion.157,213 Lithium chloride 
administered at therapeutic doses in animal models increases 
citrate excretion,42 but studies in humans have not confirmed 
this finding.43

Renal tubular citrate transport is the primary determinant 
of citrate excretion. In humans, plasma citrate levels average 
~0.1 mM, and changes in plasma levels are not an important 
regulatory mechanism. The proximal tubule reabsorbs a 
variable proportion, typically 65%–90%, of filtered citrate, 
and reabsorption parallels the filtered load. Citrate trans-
ported into proximal tubule cells, whether across apical or 
basolateral plasma membranes, is fully metabolized, enabling 
citrate to serve as a significant component of renal oxidative 
metabolism.157 There does not appear to be significant 
transepithelial citrate transport, and there does not appear 
to be significant citrate transport in other renal sites.

Apical citrate transport is mediated primarily by the sodium– 
dicarboxylate cotransporter, NaDC1, an integral membrane 
protein highly expressed in the apical plasma membrane in 
the proximal tubule.223,294,357 This conclusion is based on the 
finding that NaDC1 expression parallels citrate reabsorption 
in metabolic acidosis,17 by the similarity of NaDC1 transport 
activity to the transport activity identified in brush border 
membrane vesicles,294,357 and by results of NaDC1 gene deletion 
studies. Specifically, NaDC1 deletion increases citrate excre-
tion, along with excretion of several other Krebs cycle 
intermediates known to be transported by NaDC1.171

However, NaDC1 may not be the only protein involved in 
filtered citrate reabsorption. Preliminary studies report the 
presence of a residual citrate reabsorption process in NaDC1-
knockout mice.392 This additional citrate transport activity 
may be the calcium-regulated transport activity that has been 
identified in cultured proximal tubule cells.171,172 At present, 
the gene and gene product responsible for this citrate 
transport activity have not been identified.

Multiple mechanisms regulate proximal tubule citrate 
transport. First, the transported citrate form is citrate−2, not 
citrate−3. Because the pKa of the citrate buffer reaction is 6.4, 
luminal acidification, resulting from increased apical H+ 

phosphate-replete animals, NaPi-IIc and Pit-2 expression 
actually increase in phosphate-restricted animals exposed to  
metabolic acidosis.423

Increased renal phosphate excretion with metabolic acidosis 
is balanced by parallel increases in extrarenal phosphate 
transport. Metabolic acidosis increases small intestinal Na+-
dependent phosphate transport, and this is associated with 
increased expression of NaPi-IIb.378 There is also increased 
phosphate release from bone in response to both acute 
and chronic metabolic acidosis.234 These extrarenal effects 
minimize the changes in systemic phosphate levels that could 
otherwise develop from the increased phosphate excretion.

OTHER URINARY BUFFERS
Creatinine, which is used typically to assess glomerular filtra-
tion, has a pKa of ~4.9 and is excreted in sufficient amounts, 
~11 mmol d−1, that it can contribute to titratable acid excre-
tion. This is particularly true in conditions when urinary pH 
is 5.5 or less.159 Uric acid, although it can function as a buffer, 
is typically excreted in such small amounts, ~4 mmol d−1,  
as to limit is role as a titratable acid. In ketoacidosis, 
β-hydroxybutyric acid and acetoacetic acid excretion increases, 
which increases titratable acid excretion. However, because 
ketoacids can be metabolized to bicarbonate, their loss in 
the urine has no net effect on acid–base homeostasis.

ORGANIC ANION EXCRETION

Multiple organic anions in the urine can contribute to 
acid–base homeostasis. At least 95 different urinary organic 
anions have been identified, and many, including hippuric, 
erythronic, threonic, tartaric, and uric acids, are excreted 
in substantial quantities.72 In general, their role in acid–base 
homeostasis is not as a titratable acid. Instead, because their 
metabolism produces bicarbonate, their excretion enables 
alkali excretion without altering urine pH.

CITRATE EXCRETION
Citrate plays an important role in both acid–base homeostasis 
and preventing calcium nephrolithiasis. The latter function 
relates to citrate’s ability to form reversible, noncovalent 
complexes with urinary and luminal calcium, thereby decreas-
ing ionized calcium and decreasing the rate of calcium 
deposition into renal stones. Citrate may also inhibit calcium 
oxalate nucleation by colloidal stabilization of early-stage 
calcium oxalate complexes.340 A complete description of 
citrate’s role in nephrolithiasis can be found elsewhere in 
this text. In this chapter we discuss citrate’s role in acid–base 
homeostasis.

Citrate has two roles in acid–base homeostasis: (1) as a 
urinary buffer contributing to titratable acid excretion, and 
(2) as a substrate in the tricarboxylic acid cycle. The two 
primary molecular forms of citrate, citrate−3 and citrate−2, 
exist in equilibrium with each other:

Citrate H Citrate− + −+ ↔3 2

The pKa of this buffer reaction is ~6.4. Other molecular 
forms, citrate−1 and citrate0, because of the pKa of the appropri-
ate buffer reactions, are at such sufficiently low concentrations 
that they appear to not be transported to a significant extent. 
Thus, at a normal physiologic pH of 7.4, ~91% of total citrate 
is in the form of citrate−3 and only ~9% is citrate−2. Because 
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urinary ammonia excretion. Selective ammonia transport 
involves integrated transport in the proximal tubule, TAL 
of the loop of Henle, and the collecting duct (Fig. 9.7).

AMMONIA CHEMISTRY
Ammonia exists in two molecular forms, NH3 and NH4

+. The 
relative amounts of each are governed by the buffer reaction: 
NH3 + H+ ↔ NH4

+. This reaction occurs essentially instan-
taneously and has a pKa under biologically relevant conditions 
of ~9.15. Accordingly, the majority of ammonia is present as 
NH4

+; at pH 7.4 only ~1.7% is present as NH3. Because most 
biological fluids exist at a pH substantially below this pKa‘, 
small changes in pH cause exponential changes in NH3 
concentration, but almost no change in NH4

+ concentration 
(Fig. 9.8).

NH3, although uncharged, has an asymmetric arrangement 
of positively charged hydrogen nuclei around a central 
nitrogen; this results in significant polarity (Fig. 9.9). As a 
consequence, NH3 has limited lipid permeability. Conse-
quently, diffusion across plasma membranes is limited, and 
NH3 transporters both accelerate NH3 transport and provide 
important regulatory control.

NH4
+ also has limited permeability across lipid bilayers in 

the absence of specific transport proteins. However, in aqueous 
solutions NH4

+ and K+ have nearly identical biophysical 
characteristics, which enables NH4

+ to be transported at the 
K+-transport site of essentially all K+ transporters.453 Several 
Na+/H+ exchanger (NHE) family members also appear to 
transport NH4

+ at the H+ binding site, resulting in Na+/NH4
+ 

exchange activity.

AMMONIA PRODUCTION
Almost all renal epithelial cells can produce ammonia, but 
the proximal tubule is the primary site for physiologically 
relevant ammoniagenesis.143 The renal isoform of glutaminase 
(KGA), also known as phosphate-dependent glutaminase 
(PDG), is involved in this process.91 The proximal tubule 
accounts for 60%–70% of total renal ammonia production 
under basal conditions and at least 70%–80% in response 
to metabolic acidosis143 (Fig. 9.10).

Although multiple pathways for ammoniagenesis are 
present in the proximal tubule (Fig. 9.11), the predominant 
pathway involves PDG.92,461 PDG is an inner mitochondrial 
membrane-bound enzyme that metabolizes glutamine to 
glutamate, producing NH4

+. Glutamate then undergoes further 
metabolism through multiple pathways. The major pathways 
involve glutamate dehydrogenase (GDH) with production 
of α-ketoglutarate (α-KG, also known as 2-oxoglutarate) and 
release of NH4

+. GDH-mediated metabolism is regulated in 
parallel with changes in total renal ammoniagenesis. Because 
glutamate is a negative regulator of PDG activity, changes in 
GDH activity, by changing mitochondrial glutamate levels, 
indirectly regulates PDG functional activity.

Glutamate can be converted back to glutamine via the 
enzyme glutamine synthetase. This reaction uses NH4

+ as 
a cosubstrate, decreasing net NH4

+ formation. Glutamine 
synthetase is expressed in the proximal tubule and in 
intercalated cells, and its expression decreases in response 
to metabolic acidosis88,226 and, in the proximal tubule, with 
hypokalemia.422 Dietary protein restriction, which decreases 
ammonia excretion, increases glutamine synthetase expression, 
likely resulting in increased ammonia recycling and thereby 

secretion, directly increases luminal citrate−2 concentration, 
which increases citrate reabsorption. Because many conditions 
stimulate luminal acidification, this provides a mechanism 
to increase filtered citrate reabsorption without altering the 
number or activity of citrate transporters. Second, metabolic 
acidosis increases apical citrate transport capacity,190 most 
likely by increasing NaDC-1 expression.17 Both hypokalemia 
and starvation decrease citrate excretion, likely through 
stimulation of proximal tubule citrate transport.236,472 Several 
cellular signaling proteins regulate NaDC1. One is the cal-
cineurin inhibitor target protein, cyclophilin,33 which likely 
mediates the effects of calcineurin inhibitors to increase 
citrate reabsorption.375 Others include protein kinase C, 
sodium–hydrogen exchanger regulating factor 2, serum and 
glucocorticoid-inducible kinase, and protein kinase B.40,295 
Finally, recent studies have implicated the proximal tubule 
basolateral bicarbonate transporter, NBCe1, as a critical 
determinant of NaDC1 expression.293

Basolateral citrate transport in the proximal tubule has 
different characteristics than apical transport. Uptake is 
pH-independent, Na+-dependent, and electroneutral, appears 
to involve 3 Na+ and 1 citrate–,157,191 and appears to be mediated 
by NaDC3.59 Approximately 20% of proximal tubule citrate 
uptake appears to be mediated by basolateral uptake. However, 
because the proximal tubule does not secrete citrate,  
basolateral citrate uptake does not regulate renal citrate 
excretion.

OTHER ORGANIC ANIONS
Humans excrete 26–52 mEq d−1 of organic anions other 
than citrate. Because organic anions can be metabolized to 
bicarbonate, organic anion excretion is functionally equivalent 
to alkali excretion and thereby can contribute to acid–base 
regulation. The extent of change in these organic anions with 
acid–base disturbances is not clear. Some studies show acid or 
alkali loading does not alter urinary organic anion excretion,235 
whereas other studies show alkali loading increases and acid 
loading decreases organic anion excretion177 

Quantitatively, there are important species-dependent 
differences in the magnitude of organic anion excretion.  
In humans, basal organic anion excretion averages 0.3– 
0.7 mEq kg−1 d−1,235 whereas in the rat organic anion excretion 
is 2–8 mEq kg−1 d−1.56,333 Studies in the dog report 1–2 mEq kg−1 
d−1 290 and in the rabbit average 4 mEq kg−1 d−1.333 This 
species-dependent variation may in part reflect differences 
in intestinal organic anion absorption333 or in the intestinal 
biome.

AMMONIA METABOLISM

Renal ammonia metabolism and transport is a predominant 
mechanism of the renal response to most acid–base disorders 
(see Fig. 9.5). Ammonia metabolism involves integrated 
function of multiple portions of the kidney. Only a minimal 
amount of urinary ammonia derives from glomerular filtra-
tion, making urinary ammonia excretion unique among the 
major compounds present in the urine. Instead, the kidney 
produces ammonia, which is then selectively transported 
either into the urine or the renal vein, where it is transported 
to the systemic circulation. Importantly, renal vein ammonia 
content exceeds arterial content, indicating the kidney is a 
net producer of ammonia, even when there is significant 
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that alter ammonia excretion, is an important component 
of renal ammonia metabolism.

α-KG can be metabolized through α-KG dehydrogenase 
and succinate dehydrogenase to form oxaloacetic acid (OAA). 
OAA can serve as a substrate for phosphoenolpyruvate 
carboxykinase (PEPCK) to form phosphoenolpyruvate (PEP), 
which can be used as a substrate for gluconeogenesis. 

diminishing net ammoniagenesis. Proximal tubule-specific 
glutamine synthetase deletion blunts the decrease in ammonia 
excretion in response to dietary protein restriction.227 Thus, 
glutamine synthetase–mediated ammonia recycling, which 
exhibits regulation counter to that of PDG in conditions 
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extract less than 3% of the glutamine present in arterial blood 
flow to the kidneys. Acute metabolic acidosis induces a rapid, 
~twofold increase in plasma glutamine levels; this results pri-
marily from increased skeletal muscle and hepatic glutamine 
release.390 In parallel, renal glutamine uptake increases to 
as much as 20% of delivered glutamine.182,390 With chronic 
metabolic acidosis, renal extraction can increase to as much 
as 50% of delivered glutamine.182 Because glutamine uptake 
can exceed filtered glutamine, the presence of and ability 
to increase basolateral glutamine uptake is an important 
component of the regulation of ammoniagenesis.

Filtered glutamine is almost completely reabsorbed in 
the PCT.366 Multiple glutamine transporters are expressed 
in the apical membrane in the proximal tubule, including 
the Na+-dependent neutral amino acid transporters B0AT1 
(SLC6A19) and B0AT3 (SLC6A18). Under basal conditions, 
luminal glutamine reabsorbed in the proximal tubule not 
used for ammoniagenesis can be transported across the 
basolateral plasma membrane. This appears to involve 
LAT2-4F2hc (SLC7A8-SLC3A2) and Y+LAT1-4F2hc (SLC7A7-
SLC3A2).29,308,337 LAT2-4F2hc and Y+LAT1-4F2hc are obligatory 
amino acid exchangers, and the amino acid transported 
into the cell likely exits via basolateral TAT1 (Slc16a10), a 
facilitated aromatic amino acid transporter.29,325,326

Basolateral glutamine uptake into proximal tubule cells 
appears to occur through the Na+-coupled, neutral amino 
acid transporter, SN1 (SLC38A3, also known as SNAT3).196 
Under basal conditions, basolateral SN1 is detectable only 
in the S3 proximal tubule segments, conditions that increase 
ammoniagenesis, such as metabolic acidosis and hypokalemia, 
increase S3 segment expression and induce expression in 
the S2 proximal tubule segment.62,269

Because the initial enzyme involved in ammonia, PDG, is 
a mitochondrial enzyme, glutamine movement across the 
mitochondrial membrane is necessary. This process involves 
a specific transporter-mediated mechanism, is trans-stimulated 
and cis-inhibited by alanine, and is stimulated by metabolic 
acidosis.348 The gene and the gene product that mediate this 
activity are unknown at present.

AMMONIA TRANSPORT
Ammonia produced in the proximal tubule is secreted 
preferentially into the tubule lumen. Preferential apical 
secretion is due to multiple factors, including NHE3-mediated 
Na+/NH4

+ exchange and luminal acidification, which facilitates 
“trapping” of secreted NH3 as NH4

+.275,368 However, a recent 
study examining the effect of proximal tubule NHE3 deletion 
on acid–base homeostasis found no alteration in renal 
ammonia excretion.238

The proximal tubule also can reabsorb luminal ammonia; 
this appears to occur primarily in the late proximal tubule.160 
These portions of the proximal tubule express glutamine 
synthetase, which catalyzes the reaction of NH4

+ with glutamate 
to form glutamine.57 Metabolic acidosis converts late proximal 
tubule ammonia transport from net reabsorption to net 
secretion160; the molecular mechanisms that underlie this 
conversion involve decreased glutamine synthetase–mediated 
NH4

+ metabolism.88,329

The TAL reabsorbs luminal ammonia. The apical Na+-K+-
2Cl– cotransporter, NKCC2, mediates the majority of ammonia 
reabsorption.19 Metabolic acidosis increases both TAL 
ammonia reabsorption and NKCC2 expression.20 Intracellular 
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Fig. 9.10  Ammonia production in various renal segments. Ammonia 
production rates in different renal components measured in microdis-
sected components from rats on control diets and after inducing 
metabolic acidosis. All segments tested produced ammonia. Metabolic 
acidosis increases total renal ammoniagenesis, but only through 
increased production in proximal tubule segments (S1, S2, and S3). 
Rates (pmol/mm) were calculated from measured ammonia production 
rates and mean length per segment as described in Good and Burg.143 
The size of the pie graph is proportional to total renal ammoniagenesis 
rates. CCD, Cortical collecting duct; CTAL, cortical thick ascending 
limb of Henle loop; DCT, distal convoluted tubule; DTL, descending 
thin limb of Henle loop; IMCD, inner medullary collecting duct; MTAL, 
medullary thick ascending limb of Henle loop; OMCD, outer medullary 
collecting duct. 

Conditions that increase ammonia increase flux through 
this pathway and stimulate renal gluconeogenesis. Alterna-
tively, PEP can be converted to pyruvate in an ATP-dependent 
reaction by pyruvate kinase. Pyruvate can then enter the 
TCA cycle, where its metabolism leads to ATP generation. 
The net result is that complete glutamine metabolism results 
in production of 2 NH4

+ and 2 HCO3
– molecules per glutamine 

molecule in association with a variable extent of glucose 
production. Conversion of PEP to pyruvate with subsequent 
entry into the TCA cycle results in more ATP production 
than utilization of PEP for gluconeogenesis.458

GLUTAMINE TRANSPORT IN AMMONIAGENESIS
Glutamine is the primary substrate for renal ammoniagenesis. 
Under normal acid–base balance conditions, the kidneys 
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by the medullary TAL results in ammonia delivery to the 
distal tubule accounting for only ~20%–40% of final urinary 
ammonia content.104,159 Thus, tubule segments farther down-
stream secrete the majority of ammonia excreted by the  
kidneys.

There is likely to be a small component of ammonia 
secretion in the regions of the distal tubule prior to the CCD 
(i.e., the DCT, CNT, and ICT). Studies in the rat show 
ammonia secretion in the micropuncturable distal tubule 
could account for ~10%–15% of ammonia excretion.367,471

Collecting duct ammonia secretion involves the integrated 
function of several proteins (Fig. 9.12). Several studies of 
the CCD, OMCD, and the IMCD have shown that collecting 
duct ammonia secretion involves parallel NH3 and H+ trans-
port, with little-to-no transepithelial NH4

+ permeability.104,206 
H+ secretion likely involves both H+-ATPase and H+-K+-ATPase. 
Carbonic anhydrase is necessary for ammonia secretion, 
probably through a role in supplying cytosolic H+ for secre-
tion.430 Transepithelial ammonia secretion involves both 
basolateral uptake and apical secretion, and specific proteins 
are involved in each process.

The primary basolateral ammonia transporters involved 
in ammonia secretion appear to differ depending on the 

NH4
+ can dissociate into NH3 and H+, resulting in intracellular 

acidification. One major mechanism of ammonia exit across 
the basolateral plasma membrane involves basolateral NH4

+ 
transport involves NHE4-mediated Na+/NH4

+ exchange 
activity.50,461 In addition, NH4

+ transported into the cell by 
NKCC2 can dissociate into NH3 and H+. NH3 appears to exit 
across the basolateral plasma membrane via an unidentified 
mechanism. Basolateral HCO3

− entry via the electroneutral 
sodium–bicarbonate cotransporter, isoform 1 (NBCn1, 
SLC4A7), enables buffering of the released H+, preventing 
development of progressive intracellular acidosis, and facilitat-
ing continued ammonia transport.189,233

Some of the ammonia absorbed by the medullary TAL 
undergoes recycling into the thin descending limb of the 
loop of Henle. This results in counter current amplification 
of medullary interstitial ammonia concentration. Ammonia 
recycling predominantly involves NH3 transport, with a smaller 
component of NH4

+ transport.118

The net effect of ammonia absorption by the TAL of 
the loop of Henle and passive ammonia secretion into the 
thin descending limb of the loop of Henle is development 
of an axial ammonia concentration gradient that parallels 
the hypertonicity gradient. Moreover, ammonia absorption 
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of CCD and OMCD from acid-loaded mice examined with 
in vitro microperfusion, Rhcg deletion decreased apical NH3 
transport by ~65%.37 A significant component of the remaining 
NH3 permeability may involve diffusive NH3 transport.166 
Additionally, some studies have raised the possibility that, at 
least in response to dietary K+ restriction, the colonic isoform 
of H+-K+-ATPase, HKα2, secretes NH4

+.282

A substantial component of collecting duct ammonia 
secretion appears to involve cytosolic HCO3

− production by 
CA II. Studies using microperfused collecting duct segments 
show that inhibiting CA-II essentially abolishes ammonia 
secretion.430 Presumably, CA II–mediated acceleration of the 
reaction

CO H O H CO H HCOCA II
2 2 2 3 3+ ← → +↔− + −

provides the H+ needed for the apical H+ secretion. The 
HCO3

− is transported across the basolateral plasma membrane, 
in most cases likely by a basolateral Cl−/HCO3

− exchanger. 
This results either in the generation of “new” HCO3

− or, if 
cytosolic NH3 resulted from basolateral NH3 uptake, buffering 
of the H+ released from NH4

+ as a result of the decrease in 
peritubular NH3 concentration.

collecting duct location. In the CCD and OMCD, the Rhesus 
glycoproteins, Rhbg (SLC42A2) and Rhcg (SLC42A3), appear 
to be the primary transport mechanisms. A hyperpolarization-
activated cyclic nucleotide-gated HCN2 channel may also 
enable basolateral NH4

+ uptake.71 In the IMCD basolateral 
Na+-K+-ATPase contributes to basolateral NH4

+ uptake.428,429,438 
In contrast, in the CCD inhibiting Na+-K+-ATPase does not 
alter ammonia secretion, suggesting either that it is uninvolved 
in ammonia secretion in this region of the collecting duct 
or that other transport mechanisms compensate when it is 
inhibited.207 Another possible NH4

+ transport mechanism 
involves NKCC1. Basolateral NKCC1, which can transport 
NH4

+ at the K+ binding site, is present in both OMCD inter-
calated cells and IMCD cells.136,193 However, inhibiting NKCC1 
does not alter OMCD ammonia secretion, suggesting either 
NKCC1 does not contribute to transepithelial ammonia 
secretion or that alternative transport mechanisms compensate 
in its absence.430 There may also be a component of NH3-
gradient driven, diffusive NH3 uptake, at least as has been 
identified in cultured IMCD cells.165

Apical ammonia secretion appears to occur only by NH3 
movement. The primary protein involved is Rhcg. In studies 
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intramitochondrial α-ketoglutarate (α-KG) concentration, 
which contributes to increased GDH activity.360 Decreased 
α-KG accelerates GDH activity by relieving α-KG–mediated 
competitive inhibition of the enzymatic reaction and by 
inhibiting the reverse reaction.349,350 Changes in mRNA 
expression occur through changes in mRNA stability, not 
transcription rate.192

Phosphoenolpyruvate Carboxykinase (PEPCK)

Renal PEPCK is a cytosolic enzyme that is the product of the 
PCK1 gene. In the kidney, as in extrarenal sites, including liver, 
adipose tissue, and small intestine, PEPCK is a key enzyme in 
gluconeogenesis through its role in conversion of oxaloacetate 
into PEP and CO2. It also mediates an important role in 
the renal response to metabolic acidosis,58 coincident with 
increased renal gluconeogenesis. The adaptive increase in 
PEPCK activity and protein expression result from increased 
protein synthesis and mRNA expression.90 In contrast to PDG 
and GDH, the increased PEPCK mRNA expression appears 
to result from increased gene transcription.169

γ-GT

γ-GT accounts for phosphate-independent glutaminase activity 
identified in many early enzymatic studies of renal ammo-
niagenesis. However, γ-GT is expressed primarily in the 
proximal straight tubule (PST),91 and micropuncture studies 
suggest that glutamine is completely reabsorbed in the PCT, 
making PST ammoniagenesis via γ-GT unlikely to contribute 
significantly to renal ammoniagenesis.

NHE3

Multiple lines of evidence suggest that the apical Na+/H+ 
exchanger, NHE3, secretes NH4

+ through binding of NH4
+ 

at the H+ binding site. These data include evidence that 
proximal tubule brush border membrane vesicles exhibit 
NH4

+/Na+ exchange activity;204 that combining a low luminal 
Na+ concentration with Na+/H+ exchange inhibitor, amiloride, 
decreases ammonia secretion;274 and that the Na+/H+ exchange 
inhibitor, EIPA, blunts ammonia secretion when alternative 
secretory pathways are blocked.368 Against a role of NHE3 
in ammonia secretion, however, is that proximal tubule–
specific NHE3 deletion does not alter either basal or acidosis-
stimulated ammonia excretion.238

Changes in NHE3 expression and activity during metabolic 
acidosis may be an important component of ammonia regula-
tion and may be regulated by AngII and ET-1. Specific studies 
show that NHE3 expression and activity parallel changes 
in ammonia secretion in response to chronic metabolic 
acidosis, changes in extracellular potassium and exposure 
to AngII.16,110,276,280 In S2 and S3 segments, chronic metabolic 
acidosis increases AT1 receptor–mediated stimulation of 
NHE3.277,278,281 ET-1 expression increases during metabolic 
acidosis and subsequent activation of the ET-B receptor 
increases NHE3 expression and renal ammonia excretion.222

NHE3 is also present in the apical plasma membrane of 
the TAL. However, because NHE3 secretes NH4,+ and the 
TAL reabsorbs NH4,+ NHE3 appears unlikely to mediate an 
important role in loop of Henle ammonia transport.

POTASSIUM CHANNELS
At a molecular level, K+ and NH4

+ have nearly identical 
biophysical characteristics. This enables essentially all K+ 

The absence or presence of carbonic anhydrase activity 
at the apical membrane also impacts collecting duct ammonia 
secretion. In the absence of luminal carbonic anhydrase, H+ 
secretion increases the luminal [H+] above equilibrium 
because of relatively slow spontaneous dehydration of H2CO3 
to CO2 and H2O. This is termed a luminal “disequilibrium 
pH.” This increased luminal acidification shifts the H+ + NH3 
↔ NH4

+ reaction toward NH4
+, thereby decreasing luminal 

[NH3]. The decreased luminal [NH3] increases the gradient 
for NH3 secretion and increases net ammonia secretion. A 
luminal disequilibrium pH has been found and shown to 
accelerate ammonia secretion in the rat OMCD and terminal 
IMCD119,432 and in the rabbit CCD and OMCDo,207,376,377 but 
not in the rabbit OMCDi.376

SPECIFIC PROTEINS INVOLVED IN RENAL  
AMMONIA METABOLISM
Phosphate-Dependent Glutaminase

PDG is the initial enzymatic step in renal ammoniagenesis. 
It is located in mitochondria and catalyzes the reaction, 
l-glutamine + H2O → l-glutamate + NH4

+. In the kidney, 
PDG activity is found primarily in the proximal tubule, 
although a lesser degree of activity is found in essentially all 
renal epithelial cells.91,197,477 The physiologic role of this activity 
outside of the proximal tubule is unclear. Some studies have 
found that metabolic acidosis increases PDG activity in the 
DTL, mTAL in the outer stripe, and DCT,197 whereas others 
have found no change in activity in sites other than the 
proximal tubule.477 Quantitative analyses suggest that the 
proximal tubule is the primary site of ammonia production, 
and accounts for the majority of the increase in ammonia-
genesis with metabolic acidosis.92,461

Multiple PDG isoforms exist. In humans, the gene for the 
kidney-type isoform gives rise to at least two transcripts, human 
kidney-type glutaminase (KGA) and the glutaminase C splice 
variant (GAC).255 A separate gene gives rise to a liver-type 
glutaminase isoform (LGA). The KGA protein is expressed 
ubiquitously in the kidney, including the renal proximal 
tubule, and is the source of the majority of renal PDG.

Metabolic acidosis increases proximal tubule PDG activity; 
these increases derive from multiple mechanisms. There is 
increased protein expression, and this appears to be tran-
scriptionally mediated.396,397 The increase in PDG mRNA 
results from mRNA stabilization, not increased transcription 
rates.185 A second regulatory mechanism likely involves changes 
in intra-mitochondrial glutamate. Glutamate is a competitive 
inhibitor of PDG,360 and decreases in intra-mitochondrial 
glutamate concentration, which occur during metabolic 
acidosis as a consequence of increased glutamate dehydro-
genase activity, increase PDG activity.3

Glutamate Dehydrogenase (GDH)

GDH is a mitochondrial enzyme that catalyzes the reaction, 
l-glutamate + H2O + NAD+ (or NADP+) → α-KG–2 + NH4

+ + 
NADH (or NADPH) + H+. Two GDH isoforms exist and are 
products of two different genes; GLUD1 is widely expressed, 
including in the kidney, whereas GLUD2 appears to be a 
neural and testicular-specific isoform.257,361

Metabolic acidosis stimulates renal GDH activity,476 both 
by altering its affinity for glutamate and by increasing protein 
and mRNA (GLUD1) expression.3,90,93 Acidosis also decreases 
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Aquaporins

H2O and NH3 have a similar molecular size and charge 
distribution. This has led to several studies examining whether 
aquaporin water channels transport NH3. These studies have 
demonstrated that some, but not all, aquaporin-family 
members can transport ammonia. Table 9.1 summarizes the 
results of these studies. With the exception of AQP8, discussed 
later, experimental evidence regarding the role of these 
proteins in renal ammonia metabolism is not available.

Substantial evidence, but not without a degree of contro-
versy, indicates that AQP8 contributes to renal ammonia 
metabolism. It is found in intracellular sites in the proximal 
tubule, CCD, and OMCD in the kidney, but not the plasma 
membrane.111 The majority of ammonia generation occurs 
inside mitochondria in the proximal tubule. Thus, ammonia 
must be transported from mitochondria to cytoplasm. Several 
studies using heterologous expression show AQP8 can 
transport ammonia132,175,243,344 and it is able to complement 
ammonia transport defects in yeast lacking endogenous 
ammonia transporters.188 In cultured proximal tubule cells, 
AQP8 is located in the inner mitochondrial membrane and 
AQP8 knockdown decreases ammonia secretion.268 In vivo, 
metabolic acidosis increases AQP8 expression.268 All of these 
findings suggest AQP8 has an important role in proximal 
tubule mitochondrial ammonia transport. However, studies 
examining mice with AQP8 gene deletion found normal 
ammonia excretion, under basal conditions and following 
acute or chronic acid loading.480

CARBONIC ANHYDRASE
Carbonic anhydrase, in addition to its role in bicarbonate 
reabsorption, also contributes to ammonia secretion. Direct 
studies have shown that carbonic anhydrase inhibition, 
presumably through effects on CA II, blocks OMCD ammonia 
secretion.430 Fig. 9.12 shows the putative role of cytoplasmic 
CA II in facilitating transepithelial ammonia secretion.

CA IV, although functioning to increase bicarbonate 
reabsorption, likely decreases collecting duct ammonia 
secretion because it prevents a luminal disequilibrium pH. 
Apical CA IV expression has been demonstrated in the 

transporters to also transport NH4
+, albeit at transport rates 

that are often 10%–20% of that observed for K+.453 The 
primary evidence that apical K+ channels contribute to 
proximal tubule ammonia transport comes from in vitro 
microperfusion studies showing that barium, a nonspecific 
K+ channel inhibitor, inhibits proximal tubule ammonia 
transport.368 Multiple K+ channels are present in the apical 
plasma membrane of the proximal tubule, including KCNA10, 
TWIK-1, and KCNQ1; it is not known currently which of 
these mediates ammonia transport. In the TAL, K+ channels 
can contribute to luminal NH4

+ uptake when apical Na+-K+-
2Cl– cotransport is inhibited.19 However, NKCC2 inhibitors 
completely inhibit TAL ammonia transport, suggesting that 
apical K+ channels are unlikely to mediate a quantitatively 
important role in TAL ammonia transport.142

Na+-K+-2Cl– Cotransport

NKCC1 (SLC12A2), also known as Na+-K+-2Cl– cotransporter, 
isoform 1, is present in the basolateral plasma membrane 
of intercalated cells in the OMCD and IMCD and in IMCD 
cells.83,136,193 However pharmacologic inhibitors do not alter 
either OMCD ammonia secretion or IMCD basolateral 
ammonia uptake.429,430 Thus, NKCC1 appears unlikely to 
mediate a substantial role in ammonia secretion.

NKCC2 (SLC12A1), also known as Na+-K+-2Cl− cotrans-
porter, isoform 2, is a kidney-specific isoform expressed in 
the apical plasma membrane of the TAL and is the major 
mechanism for ammonia reabsorption in the TAL of the 
loop of Henle.142 Luminal NH4

+ competes for binding with 
K+ to the K+-transport site, enabling alterations in luminal 
K+ in hypokalemia and in hyperkalemia to alter net NH4

+ 
transport and leading to alterations in medullary interstitial 
ammonia concentration in conditions of altered potassium 
homeostasis. Metabolic acidosis increases NKCC2 expression, 
which likely contributes to the increased ammonia reabsorp-
tion observed.20,138 Acidosis-induced increases in glucocorticoid 
levels appear to mediate increased NKCC2 expression and 
activity.21

Na+-K+-ATPase

Na+-K+-ATPase is present in the basolateral plasma mem-
brane of essentially all renal epithelial cells. NH4

+ binds to 
and is transported at the K+-binding site, enabling Na+ for 
NH4

+ exchange.218,434 In the IMCD, Na+-K+-ATPase-mediated 
basolateral NH4

+ uptake is critical for IMCD ammonia 
and acid secretion.218,434 Decreases in interstitial K+ levels 
during hypokalemia facilitate increased basolateral NH4

+ 
uptake by Na+-K+-ATPase, and contribute to increased NH4

+ 
secretion rates.431 In the CCD, in contrast, basolateral Na+-
K+-ATPase does not appear to contribute to CCD ammonia  
secretion.207

H+-K+-ATPase

H+-K+-ATPase proteins are members of the P-type ATPase 
family and transport NH4

+. The majority of evidence suggests 
NH4

+ is transported at the K+ binding site, such that these 
proteins mediate H+/NH4

+ exchange. Thus, H+-K+-ATPase is 
unlikely to contribute to collecting duct ammonia secretion. 
However, potassium deficiency increases expression of the 
colonic H+-K+-ATPase and it has been postulated that this 
mediates increased NH4

+ secretion via transport at the H+ 
binding site.282

Table 9.1  Ammonia Transport by Aquaporins

Aquaporin Finding Citation

AQP1 NH3 transport 132, 285
No transport 175

AQP2 No transport 132
AQP3 NH3 transport 132

Both NH3 and NH4
+ transport 175

AQP4 No transport 132, 273
AQP5 No transport 132, 273
AQP6 NH3 transport 132
AQP7 NH3 transport 132
AQP8 NH3 transport 132, 344

Both NH3 and NH4
+ transport 175

Transport present, NH3 vs. 
NH4

+ not differentiated
243

AQP9 NH3 transport 132
NH3 and NH4

+ transport 175
AQP0 No transport 132
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excretion are needed, whereas greater degrees of adaptation 
require Rhbg expression.

A number of studies have addressed the issue as to whether 
Rhbg transports NH3, NH4

+, or both, and have resulted in 
conflicting results. Table 9.2 summarizes these studies. The 
more recent studies suggest that Rhbg can transport both 
NH3 and NH4

+. The molecular mechanism through which 
NH4

+ is transported has not been identified, but is likely to 
be a form of NH3-H+ cotransport rather than direct transport 
of the molecular species NH4

+. Importantly, the electrochemi-
cal gradient across the basolateral plasma membrane is such 
that both electroneutral NH3 transport and electrogenic NH4

+ 
transport modes will result in ammonia transport from the 
interstitium into the cell cytoplasm.462

Rhcg/RhCG

Rhcg is expressed in the kidney exclusively in epithelial cells of 
distal segments.107,161,358,359,420 Rhcg expression is prominent in 
the CNT, ICT, CCD, OMCD, and IMCD, weakly expressed in 
late DCT cells, and exhibits both apical and basolateral expres-
sion.161,199,358,359 Rhcg expression differs among renal epithelial 
cell types. In general, type A intercalated cells express higher 
levels of Rhcg than do principal cells. Rhcg is not detectable 
by immunohistochemistry in type B intercalated cells. In the 
CNT, non-A, non-B intercalated cells express apical Rhcg but 
have very little or no basolateral Rhcg immunolabel. IMCD 
cells do not express detectable Rhcg.

Rhcg has an important role in renal ammonia excretion 
in a wide variety of conditions, including basal acid–base 
homeostasis, metabolic acidosis, hypokalemia, and several 
other conditions. Gene deletion studies show that the absence 
of Rhcg impairs basal ammonia excretion.37,224 Metabolic 
acidosis, hypokalemia, and high dietary protein intake increase 
Rhcg expression, and Rhcg expression is necessary for the 

rabbit CCD type A intercalated cell, in the rabbit OMCD 
and IMCD,356 in the human CCD and OMCD,246 but not in 
the rat collecting duct.53 This pattern is inconsistent with 
evidence of luminal disequilibrium pH in the rat CCD and 
OMCD,119,208 but is consistent with the evidence of luminal 
disequilibrium pH in the rabbit CCD and OMCD outer stripe  
segments.376,377

Rh GLYCOPROTEINS
Rh glycoproteins are mammalian orthologs of Mep/AMT 
proteins, ammonia transporter family proteins present in 
yeast, plants, bacteria, and many other organisms. Three 
mammalian Rh glycoproteins are known: Rh A glycoprotein 
(RhAG/Rhag), Rh B glycoprotein (RhBG/Rhbg), and Rh 
C glycoprotein (RhCG/Rhcg).

Rhag/RhAG (SLC42A1)

Rhag is an essential component of the erythrocyte “Rhesus 
complex,” which consists of Rhag in association with RhD 
and RhCE subunits in what appears to be a 1 : 1:1 stoichio-
metric ratio.154 Rhag transports ammonia in the form of NH3, 
whereas RhD and RhCE do not.254,470 In humans, RhAG 
deficiency leads to Rhnull disease, which is characterized by 
hemolytic anemia, spherocytosis, and lack of erythrocyte 
expression of RhAG, RhD, and RhCE.180,469 Rhag protein is 
present in erythrocytes and in erythrocyte precursor cells 
present in the bone marrow and in rodent spleen, but does 
not appear to be expressed in nonerythroid tissues. In 
particular, Rhag is not found in the kidney, except in residual 
erythrocytes.450,455

Rhbg/RhBG (SLC42A2)

Rhbg in the kidney is found exclusively in distal epithelial 
cell populations, with low-level basolateral expression in the 
DCT, and higher-level basolateral expression in the CNT, 
CCD, OMCD, and IMCD.162,322,420 The CNT and the collecting 
duct have heterogeneous epithelial cell populations; type A 
and non-A, non-B intercalated cells, principal cells, and CNT 
cells express Rhbg, but expression is greater in intercalated 
cells. Type B intercalated cells do not express detectable 
Rhbg immunolabel. Although an initial study detected Rhbg 
mRNA but not Rhbg protein in the human kidney,51 subse-
quent studies identified Rhbg protein expression in a pattern 
nearly identical to that observed in the studies of the rat and 
mouse kidney.162

The majority of evidence indicates that Rhbg contributes 
significantly to renal ammonia excretion during basal condi-
tions and conditions that increase ammonia excretion. 
Intercalated cell-specific Rhbg deletion, while not altering 
ammonia excretion, induces adaptive changes in other 
enzymes involved in ammonia metabolism that appear to 
compensate for its absence, indicating a role for Rhbg under 
basal conditions.36 Both metabolic acidosis and hypokalemia, 
common conditions associated with increased ammonia 
excretion, increase Rhbg protein expression, and genetic 
deletion of Rhbg from intercalated cells impairs changes in 
ammonia excretion in response to these stimuli.35,36 However, 
a study that used a different method of acid loading, which 
produced less stimulation of ammonia excretion, found no 
effect of Rhbg deletion.76 This suggests that other mechanisms 
can compensate for the lack of Rhbg, such as those identified 
by Bishop et al,36 if only modest increases in ammonia 

Table 9.2  NH3 and NH4
+ Transport 

Characteristics of Rhbg and Rhcg

Electroneutral Electrogenic

Citation
NH3 
Transport

CH3NH2 
transport

NH4
+ 

Transport
CH3NH3

+ 
Transport

Rhbg Absent Present 287
Present Absent 248

Present Absent 493
Present Absent 252
Present Present Present 283

Absent Present Present Present 286
Present 131
Present Present 65

Rhcg Present Present 24
Present Absent 493
Present Absent 252
Present Absent 258
Present Absent 37
Present Absent 271

Present Absent 154
Present Absent 48
Present 131
Absent Present 65
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gous expression in Xenopus oocytes show all Rh glycoproteins 
can transport CO2.131,273 However, the physiologic role of 
Rhbg- or Rhcg-mediated CO2 transport in the kidney is not 
clear. Intercalated cells use cytoplasmic CO2 to generate, 
through a CA II-catalyzed process, the intracellular H+ used 
for urinary acidification. Several studies using Rhbg and/or 
Rhcg deletion show that Rhbg and Rhcg expression are not 
necessary for urine acidification.† However, these studies 
cannot exclude the possibility of either altered intrarenal 
CO2 concentrations, which enable diffusive CO2 movement 
in the absence of Rhbg and Rhcg, or adaptive changes in 
other CO2 transport mechanisms.

SULFATIDES

Sulfatides, highly charged anionic glycosphingolipids, appear 
to have an important role in renal ammonia metabolism. 
Sulfatides can reversibly bind NH4

+. They are expressed 
throughout the kidney, but levels are highest in the outer 
and inner medulla and metabolic acidosis increases medullary 
interstitial sulfatide content.380 Sulfatides appear to have an 
important role in maintaining the high inner medullary 
ammonia and increase in urinary acid elimination that develop 
during metabolic acidosis. Disruption of renal sulfatide 
synthesis, by a genetic approach along the entire renal tubule, 
led to lower urinary pH accompanied by lower ammonium 
excretion.380 After acid loading, mice deficient in renal 
sulfatide synthesis showed impaired ammonia excretion, 
decreased ammonia accumulation in the papilla, and chronic 
hyperchloremic metabolic acidosis.380 Thus, sulfatides, likely 
through their ability to reversibly bind interstitial NH4

+, have 
an important role in renal ammonia, handling, urinary 
acidification, and acid–base homeostasis.

ACID–BASE SENSORS

Several studies have begun to elucidate the molecular 
mechanisms through which the kidney recognizes altered 
systemic pH. Candidate molecular sensors have included 
acid-/alkali-sensing receptors, tyrosine kinases, and bicarbonate- 
stimulated adenylyl cyclase.

ACID-/ALKALI-SENSING RECEPTORS

GPR4
Several G-protein–coupled receptors are sensitive to extracel-
lular pH, which results in pH-dependent intracellular cAMP 
or IP3 production.249 Of these, GPR4 has been studied most 
extensively. It is expressed in the kidney, and GPR4 deletion 
results in mild metabolic acidosis, less acidic urine, and 
decreased ability to excrete an acid load.386 In acid-loaded 
mice, GPR4 deletion blunted the ability to increase expression 
of the intercalated cell basolateral protein AE1, and it blunted 
the acidosis-induced increase in type A and decrease in type 
B cells that were detectable in the CCD.385 Which renal cells 
express GPR4 has not been determined, but a preliminary 
report suggests that GPR4 is expressed in renal interstitial 
cells, not tubule epithelial cells.267

normal increase in ammonia excretion.* In contrast to high 
dietary protein intake, during dietary protein restriction Rhcg 
expression is not needed for the decreased ammonia excretion 
that occurs.225 With reduced renal mass there is increased 
single-nephron ammonia excretion, and this increase involves 
increased polarization of Rhcg to the apical and basolateral 
plasma membrane.200 Cyclosporine A can induce renal tubular 
acidosis, and this involves altered Rhcg expression.241 
Aldosterone and chronic lithium administration increase 
renal ammonia excretion, and both are associated with 
increased Rhcg expression.187,454 Finally, the critical role of 
Rhcg in collecting duct ammonia secretion has been shown 
in studies using in vitro microperfusion that show that Rhcg 
deletion, at least in CCD and OMCD from mice with chronic 
metabolic acidosis, impairs transepithelial ammonia secretion 
and impairs both apical and basolateral plasma membrane 
NH3 transport.37,48

Rhcg expression appears to be regulated through a 
variety of mechanisms. There are changes in total protein 
expression in a variety of conditions, as detailed earlier. 
In metabolic acidosis, this increase is not associated with 
changes in steady-state mRNA expression, indicating at least 
a component of posttranscriptional regulation.358 During a 
high protein diet there is a transient increase in Rhcg mRNA 
expression, indicating that there can also be a component 
of transcriptional regulation.47 In addition, Rhcg is found 
in both the apical and basolateral plasma membrane and 
in subapical cytoplasmic vesicles, and changes in subcellular 
distribution and expression are a prominent component of 
the response to metabolic acidosis, hypokalemia, and reduced 
renal mass.35,163,200,359

Rhcg may regulate collecting duct ammonia secretion in 
part through effects on H+-ATPase expression. Recent studies 
show that Rhcg and H+-ATPase are located within the same 
cellular protein complex and that Rhcg may modulate H+-
ATPase activity and expression.49 However, H+-ATPase does 
not appear to affect Rhcg function. This mechanism may 
help to coordinate ammonia and proton secretion beyond 
physicochemical driving forces.

Multiple studies have addressed the molecular form of 
ammonia that Rhcg transports. Table 9.2 summarizes the 
results of these studies. Essentially all studies have found that 
Rhcg transports ammonia in the form of NH3. This selective 
transport of NH3 is critical for Rhcg to facilitate ammonia 
secretion across the apical plasma membrane in the collecting 
duct. Under normal conditions, the high luminal NH4

+ 
concentrations present throughout the collecting duct in 
combination with intracellular electronegativity relative to 
the luminal fluid result in a substantial electrochemical 
gradient for electrogenic NH4

+ transport from the lumen to 
the cytoplasm. Thus, if Rhcg were an electrogenic NH4

+ 
transporter, it would facilitate collecting duct NH4

+ reabsorp-
tion, and would be highly unlikely to contribute to collecting 
duct ammonia secretion.

CO2 Transport by Rh Glycoproteins

Rhesus glycoproteins can transport molecules other than 
ammonia, specifically CO2. Quantitative studies using human 
erythrocytes deficient in RhAG show that the absence of 
RhAG decreases CO2 transport.112,113 Studies using heterolo-

*References 37, 47, 224, 230, 358, and 359. †References 36, 37, 76, 224, 229, 231.
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pH.369 Circadian changes in NHE3 expression have been 
identified, particularly in the TAL in the outer medulla,291 
and are likely mediated by Clock and BMAL1 genes.342 There 
are also circadian changes in ENaC expression,332 which by 
altering luminal electronegativity may alter voltage-sensitive 
H+ secretion and urine acidification. Diurnal variation in 
net acid excretion is altered in uric acid stone formers and 
may contribute to the pathogenesis of nephrolithiasis in this 
condition.63
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BOARD REVIEW QUESTIONS

1.	 Proximal tubule bicarbonate reabsorption increases in 
response to acidotic conditions. This effect occurs as a 
direct effect of
	a.	 Changes in luminal fluid composition
	b.	 Changes in intracellular pH
	c.	 Changes in peritubular HCO3

− and Pco2 but not pH
	d.	 Changes in proximal tubule cellular composition
	e.	 Changes in extracellular K+, which then alter proximal 

tubule bicarbonate reabsorption
Answer: c
Rationale: Studies using “out of equilibrium” solutions, 

which enabled separate evaluation of the roles of pH, bicar-
bonate, and Pco2, show that peritubular pH does not have 
a direct effect on proximal tubule bicarbonate reabsorption, 
whereas peritubular bicarbonate and CO2 do. Moreover, the 
effect of peritubular bicarbonate and CO2 on bicarbonate 
reabsorption is dissociated from the effects on intracellular 
pH. The effect of peritubular bicarbonate and CO2 appears 
to be mediated through the basolateral membrane protein, 
receptor protein tyrosine kinase gamma. Changes in the 
luminal fluid are not a major regulatory mechanism, and 
with decreases in the luminal bicarbonate, as occur in meta-
bolic acidosis, a decrease bicarbonate reabsorption may 
indirectly stimulate peritubular bicarbonate backleak. Whereas 
there is increasing evidence for changes in the collecting 
duct cellular composition in acid–base conditions, this does 
not occur in the proximal tubule. Acid–base alterations in 
proximal tubule bicarbonate reabsorption are independent 
of changes in extracellular potassium concentration.

2.	 Citrate excretion is regulated primarily through:
	a.	 Changes in filtered load that result from changes in 

serum citrate levels
	b.	 Changes in proximal tubule citrate reabsorption
	c.	 Changes in loop of Henle citrate reabsorption
	d.	 Changes in collecting duct citrate reabsorption
	e.	 Changes in collecting duct citrate secretion.
Answer: b
Rationale: Citrate excretion is regulated almost entirely 

by changes in proximal tubule citrate reabsorption. Changes 
that occur in response to acid–base and electrolyte disorders 
are independent of plasma citrate concentrations and of 
filtered citrate load. There is no known regulation of citrate 
reabsorption in segments distal to the proximal tubule.

3.	 The regulation of renal ammonia handling involves
	a.	 Changes only in filtered ammonia load
	b.	 Changes only in proximal tubule ammonia generation
	c.	 Ammonia transport that involves only diffusive NH3 

movement and trapping
	d.	 Specific integral membrane proteins that transport 

NH3 or NH4
+

	e.	 Changes in ammonia recycling and glutamine regenera-
tion in the loop of Henle

Answer: d
Rationale: A major advance in the understanding of 

ammonia metabolism has been the identification that specific 
integral membrane proteins transport NH3 or NH4

+. Examples 
of these proteins include NHE3 in the proximal tubule, and 
NKCC2 and NHE4 in the thick ascending limb of the loop 
of Henle, and the ammonia transporter family members, 
Rhbg and Rhcg, in the collecting duct. This model has now 
essentially replaced the previous model of diffusion equilib-
rium for NH3 and NH4

+ trapping. In contrast to other urinary 
solutes, very little of urinary ammonia derives directly from 
arterial delivery; intrarenal ammonia generation is the primary 
source of urinary ammonia excretion. Changes in plasma 
ammonia levels, and thereby of filtered load for ammonia, 
are not a regulatory mechanism altering renal ammonia 
excretion. Although proximal tubule ammonia generation 
is involved in response to acid–base and electrolyte disorders, 
it is not the only regulatory mechanism, as changes in the 
expression and regulation of ammonia transporting proteins 
are also critical components of the response. Although there 
are changes in ammonia recycling and glutamine regenera-
tion, which occurs via the enzyme glutamine synthetase, this 
occurs in the proximal tubule, and not in the loop of Henle.

4.	 Transport of gas molecules, CO2, and NH3, that have critical 
roles in the maintenance of acid–base homeostasis across 
plasma membranes involves
	a.	 Diffusive movement only
	b.	 Interaction with specific lipid molecule components 

of the lipid bilayer
	c.	 Peritubular transport only
	d.	 Transport by integral membrane proteins with no 

selectivity between different gas molecules
	e.	 Transport by integral membrane proteins that have 

varying specificity for different gas molecules.
Answer: e
Rationale: Members both of the aquaporin family and the 

Rhesus glycoproteins family transport both CO2 and NH3. 
Different members have different selectivity for CO2 or NH3, 
in some cases transporting one, but not the other. Although 
there is a component of diffusive movement of both CO2 and 
NH3, increasing evidence indicates that transporter-mediated 
movement is a critical component of acid–base regulation. 
There is no evidence that interaction of CO2 or NH3 with 
specific bilayer phospholipids is a critical component of their 
transmembrane movement. There currently is no evidence of 
peritubular CO2 or NH3 transport in acid–base homeostasis.
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KEY POINTS

•	 Nephron segments and vasculature in the renal medulla are arranged in complex but 
specific anatomic relationships, both in terms of which segment leads to the next segment 
and in terms of which segments are adjacent to one another, that play an important role in 
the concentrating and diluting process. The recently discovered interstitial nodal spaces in 
the inner medulla may participate in this three-dimensional architecture.

•	 The urinary concentrating mechanism is dependent on two independent processes: 	
(1) generation of a hypertonic medullary interstitium by concentration of NaCl and urea via 
countercurrent multiplication processes; and (2) osmotic equilibration of the tubule fluid 
within the medullary collecting ducts with the hypertonic medullary interstitium under the 
control of vasopressin.

•	 Vasopressin and the type 2 vasopressin receptor (V2R) play a central role in the urinary 
concentrating mechanism. V2R activation stimulates NaCl reabsorption by the thick ascending 
limbs of Henle, urea transport in terminal portions of the inner medullary collecting duct 
(IMCD), and accumulation of the water channel, AQP2, on the apical plasma membrane of 
collecting duct principal cells.

•	 Vasopressin binding to V2R stimulates adenylyl cyclase, predominantly isoform 6, to increase 
cytosolic cyclic adenosine monophosphate (cAMP) levels as well as intracellular calcium. This 
stimulates AQP2 accumulation at the apical plasma membrane by inducing depolymerization 
of the actin cytoskeleton, and by protein phosphorylation, with S256 being an essential site.

•	 Vasopressin stimulates phosphorylation of the urea transporters (UTs), UT-A1 (at serines 486 
and 499), and UT-A3, and their apical plasma membrane accumulation in the inner 
medullary collecting duct (IMCD) through two cAMP-dependent pathways: protein kinase A 
(PKA) and Epac (exchange protein activated by cAMP). This leads to increased urea 
permeability in the IMCD, which facilitates urea reabsorption, increasing medullary 
interstitial osmolality and the osmotic gradient promoting water reabsorption through AQP2.

•	 Urea is lost from the inner medullary interstitium, largely via the vasa recta, but urea 
recycling pathways play a major role in limiting this loss.

•	 Metformin, an AMP-activated kinase (AMPK) activator, increases UT-A1 and AQP2 
phosphorylation and urine-concentrating ability in rodents. Thus, drugs that activate AMPK may 
be a future therapy for nephrogenic diabetes insipidus.

•	 Controversy persists as to the nature of the mechanism that generates the inner medullary 
osmolality, particularly the NaCl gradient, because there is no active NaCl transport in the thin 
ascending limb. Several recent and ingenious hypotheses have been advanced that depend on 
the peristalsis of the renal pelvis and the compressibility of the hyaluronan matrix that constitutes 
the medullary interstitial matrix as integral components of the concentrating mechanism.



	 CHAPTER 10 — Urine Concentration and Dilution 	 275

vasculature (vasa recta) are arranged in complex but specific 
anatomic relationships, both in terms of which segments 
connect to which segments and their three-dimensional 
configuration. Thus, it is necessary to consider the paral-
lel interactions between nephron segments that occur as 
a result of its looped or hairpin structure. Fig. 10.2 illus-
trates the regional architecture of the renal medulla and  
medullary rays.4

Fig. 10.3 shows a schematic representation of the mam-
malian nephron with the localization of major water chan-
nels (aquaporins; AQPs), urea transporters (UTs), and ion 
transporters important to the urinary concentrating process. 
Fig. 10.4 shows which of these transporters and channels are 
molecular targets for regulated vasopressin action, either in 
abundance or activity, and thus likely to play a role in urine 

INDEPENDENT REGULATION OF WATER 
AND SALT EXCRETION

The kidney is responsible for numerous homeostatic functions. 
For example, body fluid tonicity is tightly controlled by the 
regulation of water excretion, extracellular fluid volume is 
controlled by regulation of NaCl excretion, systemic acid–base 
balance is controlled by regulation of net acid excretion, 
systemic K+ balance is controlled by regulation of K+ excretion, 
and body nitrogen balance1 is maintained through regulation 
of urea excretion.

The independent regulation of water and solute excretion 
is essential for the homeostatic functions of the kidney  
to be performed simultaneously. This means that in the 
absence of changes in solute intake or in the metabolic 
production of waste solutes, the kidney is able to excrete 
different volumes of water upon changes in water intake. 
This ability to excrete the appropriate amount of water without 
marked perturbations in solute excretion (without disturbing 
the other homeostatic functions of the kidney) is dependent 
on renal concentrating and diluting mechanisms and forms 
the basis of this chapter.

Renal water excretion is tightly regulated by the peptide 
hormone arginine vasopressin (AVP; also named antidiuretic 
hormone, ADH). Under normal circumstances, the circulating 
vasopressin level is determined by osmoreceptors in the 
hypothalamus that trigger increases in vasopressin secretion 
(by the posterior pituitary gland) when the osmolality of the 
blood rises above a threshold value, about 292 mOsm/kg 
H2O (reviewed by Sands et al.2). This mechanism can be 
modulated when other inputs to the hypothalamus (e.g., 
arterial underfilling, severe fatigue, or physical stress) override 
the osmotic mechanism. Upon an increase in plasma osmolal-
ity, vasopressin is secreted from the posterior pituitary gland 
into the peripheral plasma. The kidney responds to the 
variable vasopressin levels by varying urine flow (i.e., water 
excretion). For example, during extreme antidiuresis (high 
vasopressin), water excretion is greater than 100-fold lower 
than during major water diuresis (low vasopressin). These 
major changes in water excretion are obtained without 
substantial changes in steady-state solute excretion (Fig. 10.1). 
This phenomenon is dependent on the kidney’s ability to 
concentrate and dilute the urine. During low circulating 
vasopressin levels, urine osmolality is less than that of plasma 
(290 mOsm/kg H2O): the diluting function of the kidney. 
In contrast, when the circulating vasopressin level is high, 
urine osmolality is much higher than that of plasma: the 
concentrating function of the kidney.

ORGANIZATION OF STRUCTURES  
IN THE KIDNEY RELEVANT TO  
URINARY CONCENTRATING AND 
DILUTING PROCESS

The kidney’s ability to vary water excretion over a wide 
physiologic range, without altering steady-state solute 
excretion, cannot be simply explained as a consequence 
of the sequential transport processes along the nephron.3 
The independent regulation of water and sodium excretion 
occurs in the renal medulla, where the nephron segments and 
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Fig. 10.1  Steady-state renal response to varying rates of vasopressin 
infusion in conscious rats. A water load (4% of body weight) was 
maintained throughout the experiments to suppress endogenous 
vasopressin secretion. Although the urine flow rate was markedly 
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bend at various levels of the inner medulla. Long-looped 
nephrons also contain a thin ascending limb, a segment that 
is not present in short-looped nephrons. Thin ascending 
limbs are found only in the inner medulla. The inner-outer 
medullary border is defined by the transition from thin to 
thick ascending limbs. Thus, the outer medulla contains only 
thick ascending limbs, regardless of the type of loop. The 
long-looped nephrons bend at various levels of the inner 
medulla from the inner-outer medullary border to the papil-
lary tip. Thus, progressively fewer loops of Henle extend to 
deeper levels of the inner medulla. Some mammalian kidneys, 
such as human kidneys, also contain cortical nephrons, which 
are nephrons whose loops of Henle do not reach into the 
medulla.

The loops of Henle receive tubular fluid from the proximal 
convoluted tubules. Tubular fluid exits the thick ascending 
limbs of both long- and short-looped nephrons, and from 
cortical nephrons in species that have them, and flows into 
distal convoluted tubules. Thus, the descending and ascending 
limbs of the loops of Henle have a countercurrent flow 
configuration and are composed of several different nephron 
segments (see Fig. 10.2). The descending portion of the 
loop of Henle consists of the S2 proximal straight tubule in 
the medullary ray, the S3 proximal straight tubule (or pars 
recta) in the outer stripe of the outer medulla, and the thin 
descending limb in the inner stripe of the outer medulla 
and the inner medulla. The descending thin limb of short-
looped nephrons differs structurally and functionally from 
the descending thin limb of long-looped nephrons.6,7

The location of the descending thin limb of short-looped 
nephrons within the outer medulla is illustrated in Fig. 10.5 
(labeled in green).8 The descending thin limbs of short-looped 
nephrons surround the vascular bundles in the outer medulla 
and tend to be organized in a ring-like pattern (see Fig. 10.5, 
inset). Thin descending limbs of long-looped nephrons in 
the outer medulla differ morphologically and functionally 
from thin descending limbs of long-looped nephrons in the 
inner medulla.9–12 The histologic transition from the outer 
medullary to the inner medullary type of thin descending 
limbs of long-looped nephrons is gradual and often occurs 
at some distance into the inner medulla, rather than strictly 
at the inner-outer medullary border as is the case for the 
transition between thin and thick ascending limbs.

Pannabecker and coworkers used immunohistochemical 
labeling and computer-assisted reconstruction to provide new 
detail about the functional architecture of the rat inner 
medulla.13–15 Fig. 10.6 shows a computerized reconstruction 
of the inner medullary portion of several long-looped 
nephrons from rats that are labeled using antibodies to the 
water channel aquaporin-1 (AQP1, shown in red) and the 
chloride channel ClC-K1 (shown in green) (reviewed by 
Pannabecker et al.13–16). AQP1 is a marker of thin descending 
limbs of long-looped nephrons in the outer medulla, and it 
is detected in thin descending limbs of long-looped nephrons 
in the inner medulla for a variable distance. However, AQP1 
was not found in the thin descending limbs of the loops of 
Henle that turn within the upper millimeter of the inner 
medulla. Correspondingly, Zhai and colleagues determined 
that AQP1 was not detectable along the entire length of thin 
descending limbs of short-looped rat nephrons.17 In contrast, 
the upper 40% of thin descending limbs that turn below the 
first millimeter express AQP1, whereas the lower 60% do 

concentration. The functions of several of the transporters and 
channels shown in Fig. 10.3 have been evaluated in mice using 
gene deletion techniques (reviewed by Fenton et al.5). The 
phenotypes of these mice have been informative with regard 
to the role of these proteins and their nephron segments in 
the urinary concentrating and diluting mechanisms.

RENAL TUBULE

LOOPS OF HENLE
The kidney generally contains two populations of nephrons, 
long-looped and short-looped, which merge to form a 
common collecting duct system (see Fig. 10.2). Both types 
of nephrons have loops of Henle that are arranged in a 
folded or hairpin configuration. Short-looped nephrons 
generally have glomeruli that are located more superficially 
in the cortex and have loops that bend in the outer medulla. 
Long-looped nephrons generally have glomeruli that are 
located more deeply within the cortex and have loops that 
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Fig. 10.2  Mammalian renal structure. Major regions of the kidney are 
shown on the left. Configurations of a long-looped and a short-looped 
nephron are depicted. The major portions of the nephron are proximal 
tubules (medium blue), thin limbs of loops of Henle (single line), thick 
ascending limbs of loops of Henle (green), distal convoluted tubules 
(lavender), and the collecting duct system (yellow). Modified from Knepper 
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Andreoli TE, Fanestil DD, Hoffman JF, Schultz SG, eds. Physiology of 
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but not demonstrated experimentally, that urine concentration 
would be improved by the presence of a urea-Na+ or urea-Cl– 
cotransporter in the AQP1-null portion of the thin descending 
limb.19 These deep AQP1-null, prebend segments and thin 
ascending limbs lie equally near the collecting ducts.18 
However, the distal 30% of thin ascending limbs of the longest 
loops of Henle lie distant from collecting ducts.18 Urea perme-
ability is lower in the upper portion of thin descending limbs 
than in the lower portion or in thin ascending limbs in 
Munich-Wistar rats.20 Because phloretin does not inhibit urea 

not. ClC-K1 is a marker of the thin ascending limb-type 
epithelium. It is first detected just before the bend of the 
loops of Henle, consistent with several morphologic studies 
demonstrating that the descending limb to ascending limb 
transition occurs before the loop bend. A substantial portion 
of the inner medullary thin descending limb of long-looped 
nephrons did not express either AQP1 or ClC-K1, as indicated 
in gray in Fig. 10.6.

The deepest portions of descending thin limbs have low 
water permeability and reduced AQP1.18 It has been proposed, 
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distinguished by the position of the thin ascending limb at 
the base of the inner medulla and by differing loop length 
(Fig. 10.7). Group 1 loops have thin ascending limbs that 
are interposed between collecting ducts; group 2 loops have 
thin ascending limbs that are adjacent to just one collecting 
duct; and group 3 loops have thin ascending limbs that lie 
more than 0.5 tubule diameters from a collecting duct. As 
the collecting ducts coalesce and the shorter loops of Henle 

permeability, urea transport is not mediated by the UT-A2 
urea transporter in these segments.20 Two novel variants of 
UT-A2, UT-A2c, and UT-A2d, and a variant of the sodium-
glucose cotransporter 1, SGLT1a, are expressed in the lower 
portion of thin descending and thin ascending limb segments, 
and may mediate urea transport.21

Pannabecker and Dantzler22 identified three population 
groups of loops of Henle in Munich-Wistar rats that can be 
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predominantly present at the periphery of these clusters and 
appear to form an asymmetric ring around each collecting 
duct cluster, whereas the thin ascending limbs are distributed 
relatively uniformly among the collecting ducts and thin  
descending limbs.27,31

In the rat, each collecting duct is surrounded by approxi-
mately four ascending vasa recta.32 One or two thin ascending 
limbs lie between each ascending vasa recta, and opposite 
to the collecting duct.32 Pannabecker and colleagues hypoth-
esized that descending and ascending thin limbs enter and 
exit collecting duct clusters in a manner that is important 
for the generation and maintenance of the osmolality gradient 
within the inner medulla.18 These structures form an inter-
stitial nodal space that runs axially through the inner medulla 
and that may carry water, urea, and NaCl.32 These anatomic 
relationships may facilitate the preferential mixing of solutes 
and fluid within the interstitial nodal space.33 In humans, 
interstitial nodal spaces are relatively infrequent.30

Kidney-Specific Chloride Channel 1 (ClC-K1)

ClC-K1 localizes to both the apical and basolateral plasma 
membranes of thin ascending limbs.34 Additionally, ClC-K1 
mRNA has been detected in both the thick ascending limb 
and distal convoluted tubule.35 In isolated perfused tubules, 
the chloride conductance of thin ascending limbs is increased 
by vasopressin exposure: either as a result of increased unit 
conductance or altered cellular localization of ClC-K1 chloride 
channels.36 Microperfusion studies of ClC-K1– null mice 
(Clcnk1–/–) determined that there was drastically reduced 
transepithelial chloride transport in the thin ascending limbs 
of knockout mice.37 Clcnk1–/– mice had significantly greater 
urine volume and lower urine osmolality compared with 
controls, and even after water deprivation or vasopressin 
administration, knockout mice were unable to concentrate 
their urine. This observed polyuria was due to water diuresis 
and not osmotic diuresis. Inner medullary concentrations 
of Na+ and Cl– from Clcnk1–/– mice were approximately half 
those of controls, resulting in a significantly reduced osmolality 
of the papilla. These studies demonstrate that ClC-K1 is 
necessary for maintenance of maximal osmolality in the inner 
medullary tissue. The findings in the Clcnk1–/– mice empha-
size the importance of rapid chloride exit (and presumably 
sodium exit) from thin ascending limbs in the inner medullary 
concentrating process and provide support for the “passive 
mechanism” (see later).

Na-K-2Cl Cotransporter Type 2 (NKCC2) and 
Na+-H+-Exchanger Isoform Type 3 (NHE3)

NKCC2 and NHE3 are the major apical transporters mediating 
Na+ entry in the thick ascending limb.38–41 However, knockout 
of NKCC2 or NHE3 results in drastically different effects on 
the urinary concentrating mechanism.42,43 Total NHE3 
knockout mice have a marked reduction in proximal tubule 
fluid absorption, with a compensatory decrease in glomerular 
filtration rate owing to an intact tubuloglomerular feedback 
mechanism.44 On ad libitum water intake, total NHE3 knockout 
mice manifest a moderate increase in water intake associated 
with lower urinary osmolality.45 In addition, renal tubule-
selective NHE3 knockout mice have only small increases in 
fluid intake and urinary flow under basal conditons and a 
minor urinary concentrating defect.46 In contrast, NKCC2 
knockout mice die before weaning due to renal fluid wasting 

disappear, the originating portions of the longer thin ascend-
ing limbs run alongside the collecting ducts for a substantial 
distance.22

Detailed studies of inner medullary structure, both by 
Kriz and colleagues23–26 and more recently by Pannabecker 
and colleagues,16,19,22,27–30 found that the inner medullary 
collecting ducts in the inner medullary base (initial inner 
medullary collecting ducts) form clusters that coalesce along 
the cortico-medullary axis. The thin descending limbs are 

Fig. 10.5  Triple immunolabeling of rat renal medulla showing localiza-
tion of UT-A2 (green), marking late thin descending limbs from 
short-looped nephrons, von Willebrand factor (blue) marking endothelial 
cells of vasa recta, and aquaporin-1 (red) marking thin descending 
limbs from outer medullary long-looped nephrons and early short-looped 
nephrons. Inset shows a cross-section of a vascular bundle demonstrat-
ing that UT-A2–positive thin descending limbs from short-looped 
nephrons surround the vascular bundles in the deep part of the outer 
medulla. IM, Inner medulla; IS, inner stripe of outer medulla; OS, outer 
stripe of outer medulla: VBa, vascular bundles in outer part of inner 
stripe; VBb, vascular bundles in inner part of inner stripe. Reproduced 
with permission from Wade JB, Lee AJ, Liu J, et al. UT-A2. A 55 kDa 
urea transporter protein in thin descending limb of Henle loop whose 
abundance is regulated by vasopressin. Am J Physiol Renal Physiol. 
2002;278:F52–F62.
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ROMK abundance in thick ascending limbs, thus contributing 
to vasopressin’s long-term effect to increase NaCl transport 
in this segment.54,55 The majority of ROMK knockout mice 
die before weaning due to hydronephrosis and severe dehydra-
tion.56 Although 5% of these mice survive the perinatal period, 
adult mice manifest polydipsia, polyuria, impaired urinary 
concentrating ability, hypernatremia, and reduced blood 
pressure, consistent with the known role of ROMK in active 
NaCl absorption in the thick ascending limb. From these 
animals, a line of mice has been derived that has a greater 
survival rate and no hydronephrosis in adult animals; yet the 
urine concentrating defect persists.

DISTAL TUBULE SEGMENTS IN  
THE CORTICAL LABYRINTH
After tubular fluid exits the loop of Henle through the cortical 
thick ascending limb, it enters the distal convoluted tubule, 
which is located in the cortical labyrinth. In most mammalian 
species, several distal tubules merge to form a connecting 
tubule arcade.57 The connecting tubule cells express both 
the vasopressin-regulated water channel, aquaporin-2 (AQP2), 
and the type 2 vasopressin receptor (V2R),58 suggesting that 

and dehydration,43 highlighting the essential role of NKCC2 
in the urinary concentrating mechanism.

Why does the deletion of NKCC2 result in such a severe 
phenotype, when the deletion of NHE3, a transporter 
responsible for reabsorption of far more Na+, results in a 
viable mouse capable of maintaining extracellular fluid 
volume? The answer appears to be in the special role that 
NKCC2 plays in the macula densa in the mediation of 
tubuloglomerular feedback. Tubuloglomerular feedback 
allows NHE3 knockout mice to maintain a relatively normal 
distal delivery through a decrease in glomerular filtration 
rate, whereas NKCC2 mice cannot compensate in this manner 
because the transporter is necessary for tubuloglomerular 
feedback to occur.47,48

Renal Outer Medullary Potassium Channel 
(ROMK, Kir 1.1)

ROMK is an ATP-sensitive inwardly rectifier potassium channel 
that localizes to the thick ascending limb, distal convoluted 
tubule, connecting tubule, and collecting duct system, where 
it is predominantly associated with the apical plasma 
membrane.49–53 Chronic vasopressin treatment increases 
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Fig. 10.6  Computer-assisted reconstruction of loops of Henle from rat inner medulla showing expression of aquaporin-1 (AQP1; red) and 
ClC-K1 (green); gray regions (B-crystallin) express undetectable levels of AQP1 and ClC-K1. Loops are oriented along the corticopapillary axis, 
with the left edge of each image nearer the base of the inner medulla. (A) Thin limbs that have their bends within the first millimeter beyond the 
outer-inner medullary boundary. Descending segments lack detectable AQP1. ClC-K1 is expressed continuously along the prebend segment 
and the thin ascending limb. (B) Loops that have their bends beyond the first millimeter of the inner medulla. AQP1 is expressed along the initial 
40% of each thin descending limb and is absent from the remainder of each loop. ClC-K1 is expressed continuously along the prebend segment 
and the thin ascending limb. Boxed area is enlarged in (C). (C) Enlargement of near-bend regions of four thin limbs from box in (B). ClC-K1 
expression, corresponding to thin descending limb prebend segment, begins, on average, 165 µm before the loop bend (arrows). Scale bars, 
500 µm (A) and (B) and 100 µm (C). Reproduced with permission from: Pannabecker TL, Dantzler WH, Layton HE, et al. Role of three-dimensional 
architecture in the urine concentrating mechanism of the rat renal inner medulla. Am J Physiol Renal Physiol. 2008;295:F1271–F1285.
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Fig. 10.7  Spatial relationships between thin descending limbs (red tubules), thin ascending limbs (green tubules), and collecting ducts (dark blue 
tubules). Thin ascending limbs were categorized into three groups related to their lateral proximity to collecting ducts. Members of each group 
are shown in a transverse section located at the base of the inner medulla: (A) group 1; (B) group 2; and (C) group 3. In (A), (B), and (C), open red 
figures represent aquaporin-1 (AQP1)-null thin descending limbs, solid red figures represent AQP1-expressing thin descending limbs, white outlined 
figures represent thin ascending limbs not associated with the collecting duct cluster, and light blue figures represent collecting ducts not associated 
with the collecting duct cluster. Two prebend segments from group 1 are included in (A). One thin ascending limb from each of groups 2 and 3 
(B) and (C) extends below the region of reconstruction, and their thin descending limbs were therefore not reconstructed. (A′), (B′), and (C′) show 
thin descending limbs and collecting ducts; (A″), (B″), and (C″) show thin ascending limbs and collecting ducts. Gray tubules in (A′), (B′), and (C′) 
represent AQP1-null thin descending limbs. Scale bars, 100 µm. Reproduced with permission from Pannabecker TL, Dantzler WH. Three-dimensional 
lateral and vertical relationships of inner medullary loops of Henle and collecting ducts. Am J Physiol Renal Physiol. 2004;287:F767–F774.
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vasa recta (ascending vasa recta are never formed directly 
from descending vasa recta in a loop-like structure). Inner 
medullary ascending vasa recta traverse the inner stripe of 
the outer medulla in close physical association with the 
descending vasa recta in vascular bundles.23 In many animal 
species, thin descending limbs of short-looped nephrons 
surround the vascular bundles, as shown in Fig. 10.5. Here 
the thin descending limb segments are labeled with an 
antibody to the UT-A2 urea transporter,8 suggesting a route 
for urea recycling from the vasa recta to the thin descending 
limbs of short-looped nephrons. The outer medullary capillary 
plexus is drained by vasa recta that ascend through the outer 
stripe of the outer medulla, separate from the descending 
vasa recta.26 Recent computer-assisted digital tracing of the 
mouse kidney combined with AQP1 immunohistochemistry 
shows that the arrangement of tubules and vessels in the 
vascular bundles is important for providing a pathway for 
lateral osmolality heterogeneity for urine concentration.76

The counterflow arrangement of the vasa recta in the 
medulla promotes countercurrent exchange of solutes and 
water, which is facilitated by the presence of AQP177,78 and 
UT-B UTs79–81 in the endothelial cells of the descending 
portion of the vasa recta. In rats, UT-B is expressed in both 
the outer medullary and inner medullary descending vasa 
recta.81,82 In humans, UT-B is also expressed in the descending 
vasa recta, but its expression decreases with depth in the 
inner medulla.30

Countercurrent exchange provides a means of reducing 
the effective blood flow to the medulla while maintaining a 
high absolute perfusion rate.83 The low effective blood flow 
that results from countercurrent exchange is thought to be 
important for the preservation of solute concentration 
gradients in the medullary tissue (see later).

In contrast to the medulla, the cortical labyrinth has a 
high effective blood flow. The rapid vascular perfusion to 
this region promotes the rapid return of solutes and water 
reabsorbed from the nephron to the general circulation. 
The rapid perfusion is thought to maintain the interstitial 
concentrations of most solutes at levels close to those in the 
peripheral plasma. The medullary rays of the cortex have a 
capillary plexus that is considerably sparser than that of the 
cortical labyrinth. Consequently, the effective blood flow to 
the medullary rays has been postulated to be lower than that 
of the cortical labyrinth.3

MEDULLARY INTERSTITIUM

The renal medullary interstitium connects the tubules and 
vasculature.84 It is a complex space that includes the medul-
lary interstitial cells, microfibrils, extracellular matrix, and 
fluid.31,84–86 The interstitium is relatively small in volume 
in the outer medulla and the outer portion of the inner 
medulla, which may be important in limiting the diffusion of 
solutes upward along the medullary axis.3,27,84 In contrast, the 
interstitial space is much larger in the inner half of the inner 
medulla.3,27,84 Within this region, it consists of a gelatinous 
matrix containing large amounts of highly polymerized hyal-
uronic acid, consisting of alternating N-acetyl-D-glucosamine 
and D-glucuronate moieties.87 Theories have been proposed 
in which the hyaluronic acid interstitial matrix plays a 
direct role in the generation of an inner medullary osmotic 
gradient through its ability to store and transduce energy 

the arcades are sites of vasopressin-regulated water reabsorp-
tion, similar to collecting ducts (see later). Tubular fluid 
exits the connecting tubules within the arcades and enters 
the initial collecting tubules, located in the superficial cortex, 
and then into the cortical collecting ducts. In most rodent 
species that have been studied, several nephrons merge to 
form a single cortical collecting duct.6,59

COLLECTING DUCT SYSTEM
The collecting duct system spans all regions of the kidney, 
starting in the cortex and running to the tip of the inner 
medulla (see Fig. 10.2). The collecting ducts are the major 
site of vasopressin-regulated water and urea transport. The 
transport of water and urea is crucial to the urine-concentrating 
mechanism, and these are discussed in detail later in this 
chapter. The collecting ducts are arranged in parallel to the 
loops of Henle in the medullary rays, outer medulla, and 
inner medulla. Like the loops of Henle, several morphologi-
cally and functionally discrete segments are contained within 
the collecting duct system. In general, the collecting ducts 
descend straight through the medullary rays and outer 
medulla without joining with other collecting ducts. However, 
several collecting ducts merge as they descend within the 
inner medulla, resulting in a progressive reduction in the 
number of inner medullary collecting ducts from the inner-
outer medullary border to the papillary tip.59 The tapered 
structure of the renal papilla results from the reduction in 
collecting duct number, accompanied by a progressive reduc-
tion in the number of loops of Henle, reaching the deepest 
levels of the inner medulla.

The epithelial sodium channel (ENaC) is localized to the 
late distal convoluted tubule, connecting tubule, initial col-
lecting tubule, and throughout the collecting duct.60,61 
Vasopressin treatment increases the protein abundance of 
the beta- and gamma-subunits of ENaC.62–64 Acute vasopressin 
exposure also increases Na+ reabsorption in the cortical 
collecting duct by increasing apical Na+ entry via ENaC,65–67 
due to adenylyl cyclase (AC) 6–dependent stimulation of 
ENaC open probability and apical membrane channel 
number.68 Deletion of any of the ENaC subunits results in a 
severe phenotype with neonatal death.69–72 Alpha ENaC 
deletion from the collecting ducts alone, leaving intact ENaC 
expression in the connecting tubule and nonrenal tissues, 
results in viable mice that have little or no difficulty in 
maintaining salt and fluid homeostasis.73 In contrast, alpha 
ENaC deletion from the connecting tubule and collecting 
duct together results in a mouse model with increased urine 
volume and decreased urine osmolality,74 indicating that alpha 
ENaC expression within the connecting tubule and collecting 
duct is crucial for sodium and water homeostasis.

VASCULATURE

For detailed description of the renal vasculature, see Chapter 
2 (Anatomy of the Kidney). The major blood vessels that 
carry blood into and out of the renal medulla are named 
the vasa recta. Blood enters the descending vasa recta from 
the efferent arterioles of juxtamedullary nephrons and sup-
plies it to the capillary plexuses at each level of the medulla. 
The outer medullary capillary plexus is denser and better 
perfused than the plexus in the inner medulla.75 Blood from 
the inner medullary capillary plexus feeds into the ascending 
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VASOPRESSIN AND THE TYPE 2 
VASOPRESSIN RECEPTOR

The small peptide hormone vasopressin and the V2R play a 
central role in the urinary concentrating mechanism. V2R 
activation stimulates NaCl reabsorption by the thick ascending 
limbs of Henle, urea transport in terminal portions of the 
inner medullary collecting duct, and accumulation of a water 
channel, AQP2, on the plasma membrane of collecting duct 
principal cells. These events permit the collecting duct luminal 
fluid to equilibrate osmotically with the surrounding inter-
stitium in the kidney, resulting in water reabsorption and 
urine concentration. Dysfunction of this reabsorption 
mechanism in the collecting duct results in the production 
of large amounts of dilute urine, up to 18 L/d, a disease 
known as diabetes insipidus. In the following we address how 
the V2R and AQP2 interact via intracellular signaling pathways 
to regulate collecting duct water reabsorption and urine 
concentration.

from the smooth muscle contractions of the renal pelvis  
(see later).87

RENAL PELVIS

Urine exits the collecting duct system through the ducts of 
Bellini at the papillary tip and enters the renal pelvis (Fig. 
10.8). The renal pelvis (or calyx in multipapillate kidneys) 
is a complex intrarenal urinary space that surrounds the 
papilla. The renal pelvis has portions that extend into the 
outer medulla, which are called fornices and secondary 
pouches. Although a transitional epithelium lines most of 
the pelvic space, the renal parenchyma is separated from 
the pelvic space by a simple cuboidal epithelium.88 In humans, 
the UT-B urea transporter is expressed within this papillary 
surface epithelium.30 It has been proposed that water and 
solute transport could occur across this epithelium, thereby 
modifying the composition of the renal medullary interstitial 
fluid.89 There are two smooth muscle layers within the renal 
pelvic (calyceal) wall.90 Contractions of these smooth muscle 
layers generate powerful peristaltic waves that appear to 
displace the renal papilla downward with a “milking” action.91 
These peristaltic waves may intermittently propel urine along 
the collecting ducts. The contractions compress all structures 
within the renal inner medulla, including the interstitium, 
loops of Henle, vasa recta, and collecting ducts.92 Theories 
have been proposed whereby these contractions furnish part 
of the energy for concentrating solutes, and hence concentrat-
ing urine, within the inner medulla (see later).87

Pelvic
space

Pelvic
wall

Ureter
To

bladder
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Fig. 10.8  Pattern of urine flow in papillary collecting ducts and renal 
pelvis. Urine exits the papillary collecting ducts (ducts of Bellini) at 
the tip of the renal papilla and is carried to the urinary bladder by the 
ureter. Under some circumstances, a fraction of the urine may reflux 
backward in the pelvic space and contact the outer surface of the 
renal papilla. Solute and water exchange across the papillary surface 
epithelium has been postulated (see text). 

Clinical Relevance
Nephrogenic Diabetes Insipidus
Nephrogenic diabetes insipidus (NDI) results from the 
inability of the kidney to respond to vasopressin and 
produce a concentrated urine. Congenital NDI results 
from mutations in the V2R in 90% of families (in which 
the mutation is known) and in AQP2 in most of the 
other 10% (reviewed in Sands and Bichet469). Acquired 
forms of NDI occur much more frequently and arise as 
a consequence of drug treatments, electrolyte distur-
bances, and urinary tract obstruction. In most manifesta-
tions of acquired NDI, dysregulation of AQP2, either 
in terms of protein abundance or in AQP2 membrane 
targeting, plays a fundamental role in the development 
of polyuria.470,471 Downregulation of AQP2 observed in 
acquired NDI is most likely the primary cause of the 
NDI, rather than being a secondary event (e.g., as a 
consequence of the increased urine production or 
reduction in interstitial osmolality). For example, in 
models of hypokalemic and lithium-induced NDI, the 
changes in AQP2 expression in the kidney cortex are 
identical to those seen in the inner medulla,472–474 which 
indicates that interstitial tonicity is not a major factor. 
Moreover, washout of the medullary osmotic gradient 
for 1 or 5 days using the loop diuretic furosemide has 
no effect on AQP2 expression,474,475 which indicates that 
high urine flow in itself is not responsible for the reduced 
AQP2 expression in experimental NDI. Studies investigat-
ing the molecular physiology and signaling pathways 
regulating water and urea transport have identified 
several novel therapeutic possibilities for treating NDI 
(reviewed in Sands and Klein403).

VASOPRESSIN

The ADH of most mammals is a nine–amino acid peptide, 
vasopressin. Secretion of vasopressin from the posterior 
pituitary is stimulated by an increase in plasma osmolality, 
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the loop of Henle through to the collecting duct principal 
cells.98–102 When vasopressin binds to the V2R, AC activity is 
stimulated and cytosolic cAMP levels increase.103 This ulti-
mately leads to an accumulation of AQP2 in the apical plasma 
membrane of collecting duct principal cells, thus increasing 
transepithelial water permeability and facilitating osmotically 
driven water reabsorption (Fig. 10.9). Intracellular calcium 
is also increased by vasopressin via a mechanism involving 
calmodulin104; this is also involved in the regulated trafficking 
of AQP2.105,106 A critical role of the V2R for urinary concentra-
tion has been demonstrated in two mouse models of X-linked 
nephrogenic diabetes insipidus (XNDI). Upon constitutive 
deletion,107 male mutant mice (V2R–/y) die within 7 days after 
birth, with 3-day-old mice displaying severe hypernatremia, 

but also by a reduction in plasma volume (reviewed in Sands 
et al.2). Vasopressin activates regulatory systems necessary to 
retain water and restore osmolality to normal.93 The effects 
of vasopressin occur through the stimulation of receptors 
that are located on different cell types.94,95 Here we focus on 
the V2R activation of a cyclic adenosine monophosphate 
(cAMP) pathway in renal epithelial cells for modulation of 
collecting duct water transport.

TYPE 2 VASOPRESSIN RECEPTOR

The V2R is a seven transmembrane–spanning domain receptor 
that couples to heterotrimeric G proteins (GPCRs).96,97 In 
the kidney it is expressed from the thick ascending limb of 
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Fig. 10.9  Key events that contribute to the regulation of aquaporin-2 (AQP2) trafficking. The canonical pathway involves interaction of vasopressin 
with the type 2 receptor (V2R) on the basolateral surface of the principal cell. This increases cyclic adenosine monophosphate (cAMP) formation 
after Gαs stimulation of adenylyl cyclase (AC). Phosphorylation of AQP2 occurs initially on residue S256, via protein kinase A (PKA) activation. 
After vasopressin stimulation, residue S261 on AQP2 is dephosphorylated, and residue S264 and S269 phosphorylation is increased. During 
exocytosis AQP2 interacts with soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) proteins and their regulatory 
proteins such as Munc18-2, and these interactions may be regulated by phosphorylation. At the cell surface, phosphorylated AQP2 is present 
in endocytosis-resistant domains, and its interaction with heat shock protein/heat shock cognate 70 (hsp/hsc70), which is required for clathrin-
mediated endocytosis, is inhibited. The myeloid and lymphocyte protein (MAL) also is involved in AQP2 endocytosis by an as-yet-unknown 
mechanism. Endocytosis of AQP2 is also facilitated by protein kinase C (PKC) activation (but possibly not by direct phosphorylation of AQP2), 
as well as by activation of dopamine (DA, D1), prostaglandin E2 (PGE2), and PGE2 receptor type 3 (EP3). However, constitutive exocytosis of 
AQP2 occurs without vasopressin stimulation and does not require AQP2 phosphorylation on residue S256. Accumulation of AQP2 at the 
plasma membrane is increased by inhibiting clathrin-mediated endocytosis. AQP2 phosphorylation can also be increased by stimulating the 
cyclic guanosine monophosphate/protein kinase G (cGMP/PKG) pathways using, for example, nitric oxide (NO). Extracellular hypertonicity 
activates the mitogen-activated protein (MAP) kinase pathway, and c-Jun N-terminal kinase (JNK), extracellular signal–regulated kinase (ERK), 
and p38 MAP kinase activities are all required for AQP2 surface accumulation after acute hypertonic shock. Finally, AQP2 trafficking involves 
the actin cytoskeleton, and actin depolymerization results in cell surface accumulation of AQP2 without the need for vasopressin stimulation. 
ATP, Adenosine triphosphate; GC, guanylyl cyclase; GTP, guanosine triphosphate; SNAP23, synaptosomal-associated protein 23; VAMP-2, 
vesicle-associated membrane protein 2. 
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water is reabsorbed from the tubule fluid and large volumes 
of hypotonic urine are produced. In contrast, high circulating 
levels of vasopressin increase the permeability of the apical 
membrane of the thick ascending limb to NaCl, leading to 
an increase in the osmolality of the peritubular interstitium 
(due to countercurrent multiplication) and increasing the 
water permeability of the collecting ducts to very high levels. 
Combined, this results in water being rapidly reabsorbed 
from the cortical and outer medullary portions of the col-
lecting duct system via AQP water channels,137–139 resulting 
in the production of a small volume of hypertonic urine, 
with osmolality approaching that of the inner medullary 
interstitium.

The late distal tubule (the late distal convoluted tubule, 
the connecting tubule, and the initial collecting tubule) is 
the earliest site along the renal tubule where water absorption 
increases during antidiuresis (Fig. 10.10).140 Although the 

drastically increased serum Na+ and Cl– levels, and significantly 
lower urine osmolality. In mice with conditional deletion of 
the V2R,108,109 adult mice display all of the characteristic 
symptoms of XNDI,110,111 including polyuria, polydipsia, and 
resistance to the antidiuretic actions of vasopressin.

The function of the V2R depends on interaction with GPCRs 
and β-arrestin. Upon vasopressin binding, the V2R assumes 
an active configuration and the bound heterotrimeric G 
protein, Gs, dissociates into Gsα and Gsβγ subunits.103 This 
G protein is localized on the basolateral plasma membrane 
of the thick ascending limb of Henle, distal convoluted tubule, 
and collecting duct principal cells.112,113 AC is stimulated by 
activated Gsα, and cAMP levels are increased. The predomi-
nant AC isoform in the kidney is AC-6,114 and knockout mice 
lacking the AC-6 isoform have significant nephrogenic diabetes 
insipidus (NDI).115,116 After vasopressin binding,117 the V2R 
is internalized, delivered to, and degraded in lysosomes, thus 
terminating the response. Many accessory proteins are 
involved in V2R downregulation, including inhibitory Gi 
proteins,103,118,119 proteins involved in clathrin-mediated 
endocytosis,120,121 and proteins of the so-called retromer 
complex.122,123 Destruction of cAMP by cytosolic phosphodi-
esterases is also associated with limiting V2R responses,124 but 
cAMP levels in vasopressin target cells remain elevated for 
a considerable time after stimulation, and the V2R continues 
to signal from endosomes after internalization.122

A critical step in V2R internalization is the binding of 
β-arrestin to the V2R,125 which is triggered by phosphorylation 
of the V2R by kinases, including G-protein–coupled receptor 
kinases (GRKs).126 Following β-arrestin–dependent ubiquitina-
tion of the V2R.127 arrestin-receptor complexes recruit the 
clathrin adaptor protein AP-2,119 and the complex is then 
internalized via clathrin-mediated endocytosis.120,128,129 Arrestins 
also uncouple GPCRs from GPCRs, producing a desensitized 
receptor.130 Restoration of prestimulation levels of V2R at the 
cell surface requires several hours.131–133 The majority of the 
V2R that is internalized with vasopressin enters a lysosomal 
degradation compartment.127,134,135 Delivery of both the ligand 
and receptor to lysosomes may be required to terminate the 
physiologic response to vasopressin.136 Restoration of pre-
stimulation levels of the V2R at the cell surface partly requires 
new protein synthesis.134

VASOPRESSIN-REGULATED  
WATER TRANSPORT

COLLECTING DUCT WATER ABSORPTION AND 
OSMOTIC EQUILIBRATION

The urinary concentrating mechanism is dependent on  
two independent processes: (1) generation of a hypertonic 
medullary interstitium by concentration of NaCl and urea 
via countercurrent processes, and (2) osmotic equilibration 
of the tubule fluid within the medullary collecting ducts with 
the hypertonic medullary interstitium. As discussed, vasopres-
sin is essential for determining the degree of water excretion 
because it increases NaCl reabsorption via the thick ascending 
limb and thus the hypertonicity of the medullary interstitium 
and it regulates collecting duct water permeability. When 
circulating vasopressin levels are low the water permeability 
of the collecting ducts is also extremely low; relatively little 
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Fig. 10.10  Typical osmolalities (in mOsm/kg H2O) found in various 
vascular (left) and renal tubule (right) sites in rat kidneys. Fluid in the 
proximal tubule is always isosmotic with plasma (290 mOsm/kg H2O). 
Fluid emerging from the loop of Henle (entering the early distal tubule) 
is always hypotonic. Osmolality in the late distal tubule increases to 
plasma level only during antidiuresis. Final urine is hypertonic when 
the circulating vasopressin level is high, and hypotonic when the 
vasopressin level is low. A high osmolality is always maintained in the 
loop of Henle and vasa recta. During antidiuresis, osmolalities in all 
inner medullary structures are nearly equal. Osmolalities are somewhat 
attenuated in the loop and vasa recta during water diuresis (not shown). 
Based on micropuncture studies; see text. AVP, Vasopressin; IMCD, 
inner medullary collecting duct. 
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collecting ducts is low but not zero.148,149 Consequently, some 
water is reabsorbed by the collecting ducts during water 
diuresis, driven by the small transepithelial osmolality gradient. 
The majority of this water reabsorption occurs in the terminal 
inner medullary collecting ducts, where the transepithelial 
osmolality gradient is highest. In fact, more water is absorbed 
from the terminal inner medullary collecting ducts during 
water diuresis than during antidiuresis, owing to a much 
greater transepithelial osmolality gradient.144,145,150

AQUAPORIN-2: THE VASOPRESSIN-SENSITIVE 
COLLECTING DUCT WATER CHANNEL

The first water channel, AQP1 was identified in 1991 by Peter 
Agre and his associates.151–154 AQP1 is expressed in proximal 
tubules and thin descending limbs of long-loop neph-
rons10,155,156 but not short-loop nephrons.17 AQP2, cloned in 
1993, is the vasopressin-regulated water channel in kidney 
collecting duct principal cells.157 Vasopressin stimulation of 
the collecting duct results in the accumulation of AQP2 on 
the plasma membrane of principal cells (Fig. 10.11). This 
involves the recycling of AQP2 between intracellular vesicles 
and the cell surface.137,158–164 However, aquaporin-3 (AQP3) 
and aquaporin-4 (AQP4), both of which are found in the 

distal convoluted tubule does not express any water channels, 
it does express the V2R and vasopressin regulates NaCl 
transport in this segment via increasing activity of the Na-Cl 
cotransport protein, NCC.141,142 In contrast, the connecting 
tubule and the cortical collecting duct express the V2R and 
the vasopressin-regulated water channel AQP2.143 Thus, it is 
likely that the connecting tubule and the cortical collecting 
duct segments are the earliest sites of distal tubular osmotic 
equilibration.

The volume of water absorption in the connecting segment 
and initial collecting tubule required to raise tubule fluid 
to isotonicity is considerably greater than the additional 
amount required to concentrate the urine above the osmolality 
of plasma in the medullary portion of the collecting duct 
system.3 Consequently, during antidiuresis, most of the water 
reabsorbed from the collecting duct system enters the cortical 
labyrinth, where the effective blood flow is high enough to 
return the reabsorbed water to the general circulation without 
diluting the interstitium. In contrast, if such a large volume 
of water was reabsorbed along the medullary collecting ducts, 
it would have a significant dilution effect on the medullary 
interstitium and thus impair concentrating ability).144,145

During water diuresis, a modest corticomedullary osmolality 
gradient persists,146,147 and the water permeability of the 
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Fig. 10.11  Increased plasma membrane expression of AQP2 in principal cells of AVP-deficient Brattleboro rat kidney inner medullary collecting 
duct injected with vasopressin for 15 minutes. Kidneys were then fixed, sectioned and immunostained using anti-AQP2 antibodies. Under 
control conditions (A), AQP2 has a cytosolic distribution in principal cells. After perfusion with AVP (B), AQP2 shows an increased apical localization 
in principal cells (arrows). A weaker basolateral localization of AQP2 in principal cells is also visible in this section. The lower two panels show 
the effect of AVP on AQP2 distribution by immunogold electron microscopy. Tubules were perfused with 4 nM DDAVP for 60 minutes. The left 
panel (pre-AVP) shows the apical region of a principal cell, with gold particles (detecting AQP2) distributed on cytoplasmic vesicles, as well as 
a few on the apical plasma membrane (arrows). After AVP treatment, the number of gold particles on the apical plasma membrane is greatly 
increased (arrows), and the number of labeled cytoplasmic vesicles (arrowheads) is decreased. L, Tubule lumen. Scale bar, 5 µm. (Lower panels 
adapted from Nielsen S, Chou CL, Marples D, et al. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of 
aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A. 1995;92:1013–1017.)



	 CHAPTER 10 — Urine Concentration and Dilution 	 287

BASOLATERAL AQUAPORINS IN  
PRINCIPAL CELLS

The presence of AQP3 and/or AQP4 renders the basolateral 
plasma membranes of collecting duct principal cells consti-
tutively permeable to water.202,203 AQP3 expression is pre-
dominant in the cortex and decreases toward the inner 
medulla, with the reverse pattern for AQP4 (see Fig. 10.12), 
which is most abundant in the inner medulla.166,203 The 
abundances of AQP3 and AQP4 can be increased by the 
long-term action of vasopressin.202–204 AQP2 is also localized 
in the basolateral plasma membrane of these cells in some 
regions of the collecting duct.175,177,205–208 Basolateral expression 
of AQP2 is greatly increased by vasopressin209,210 or long-term 
(6 days) aldosterone.207,211,212 A proportion of basolateral AQP2 
likely represents a transient step in an indirect apical targeting 
pathway for the AQP2 protein.213,214

AQUAPORIN KNOCKOUT MICE

The physiological roles of various AQPs in the urinary 
concentrating mechanism have been uncovered by the use 
of various genetically modified mouse models.

AQUAPORIN-1 KNOCKOUT MICE
AQP1 knockout mice have increased urine volume and 
reduced urinary osmolality that does not increase in response 
to water deprivation.215 Proximal tubule fluid absorption is 
markedly impaired in AQP1 knockout mice, but distal delivery 
of water and NaCl is not impaired due to a reduction in 
glomerular filtration rate via the tubular–glomerular feedback 
mechanism.216 The osmotic water permeability of isolated 
perfused thin descending limbs from AQP1 knockout mice 
was markedly reduced compared with control animals.217 
As rapid water absorption from long-loop thin descending 
limbs is essential for countercurrent multiplication processes 
in the outer medulla, the reduced water reabsorption 
is one factor responsible for the concentrating defect in 
AQP1 knockout mice. Descending vasa recta, a second 
renal medullary site of AQP1 expression, also displayed a 
marked reduction in osmotic water permeability in AQP1 
knockout mice,77,78 and thus countercurrent exchange 
processes are also likely to be impaired in AQP1 knockout 
mice. The results from studies in these mice show that AQP1 
in the renal medulla is essential for the urine-concentrating  
mechanism.

AQUAPORIN-2 KNOCKOUT MICE
A number of different genetic models have been generated to 
assess the role of AQP2 in the urinary concentrating mecha-
nism, including inducible and nephron-specific models of 
AQP2 deletion, models where essential phosphorylation sites 
in AQP2 are modified, and models of autosomal dominant 
NDI.192,218–226 The major phenotype in these models is severe 
polyuria; however, with free-access to water, plasma concentra-
tions of electrolytes, urea, and creatinine are not different in 
knockout mice compared to controls. In contrast, a mouse 
model with connecting tubule-specific AQP2 deletion227 has 
indicated a role of the connecting tubule in regulating body 
water balance under basal conditions, but not for maximal 
concentration of the urine during antidiuresis. Taken together, 
these mouse models confirm that AQP2 is responsible for the 

basolateral membrane of principal cells,165,166 are also regulated 
at the expression, and possibly functional level, by vasopressin 
and/or dehydration.166–169

OVERVIEW OF VASOPRESSIN-REGULATED  
AQP2 TRAFFICKING IN COLLECTING DUCT 
PRINCIPAL CELLS

The vasopressin-induced change from a low-to-high perme-
ability state of collecting duct principal cells, and vice versa, 
involves the reversible redistribution of AQP2 from cytoplasmic 
vesicles to the apical plasma membrane. Early freeze-fracture 
electron microscopy studies using amphibian urinary bladder 
and skin suggested that clusters of water channels are located 
on intracellular vesicles that fuse with the apical plasma 
membrane upon vasopressin stimulation. The water channels 
are internalized back into the cell by endocytosis after 
vasopressin washout.170–174 Antibodies against AQP2 demon-
strated that it is located in the apical plasma membrane of 
collecting duct principal cells, as well as in intracellular 
vesicles.157,175,176 In vitro and in vivo studies correlated the 
vasopressin-stimulated increase in collecting duct water 
permeability and urinary concentration with relocalization 
of AQP2 from intracellular vesicles to the plasma membrane 
of principal cells (see Fig. 10.11).176–179 This relocation was 
reversible upon vasopressin washout and in animals either 
infused with a V2R antagonist or subjected to water loading 
to reduce circulating vasopressin levels.180–182 One unexpected 
observation from initial studies was that significant amounts 
of AQP2 were present on principal cell basolateral membranes 
in some kidney regions, and that this staining tended to 
increase after vasopressin treatment. Recent studies have 
suggested that basolateral AQP2 is not only a potential pathway 
for water transport across the basolateral membrane, but 
may also have a role in cell migration and tubulogenesis due 
to interaction with β1 integrin.183,184

Some of the internalized AQP2 that accumulates in 
endosomes after vasopressin withdrawal follows a complex 
intracellular pathway before reinsertion into the plasma 
membrane.164,185–187 Unlike the V2R,134 de novo protein syn-
thesis is not required for sequential responses to vasopressin 
stimulation.188 A significant amount of AQP2 also accumulates 
in multivesicular bodies (MVBs).180,189 This pool of AQP2 can 
then be directed to lysosomes for degradation, be transferred 
to a recycling compartment, or be directly transported to the 
cell surface via transport vesicles that derive from the MVBs. 
The fate of internalized AQP2 seems to be at least in part 
regulated by ubiquitylation.190,193 Under certain conditions 
AQP2 can also be degraded in autophagosomes.194,195

Some of the MVBs can fuse with the apical membrane of 
principal cells and release small nanovesicles known as 
exosomes into the tubule lumen. These exosomes contain 
a variety of different proteins,196 including AQP2 on their 
limiting membranes,197,198 in addition to AQP2 mRNA and 
many other mRNAs and microRNAs within their lumen.199,200 
AQP2 protein can be detected in urine, and the amount 
increases in conditions of antidiuresis, when more AQP2 is 
present in the apical membrane of principal cells. The physi-
ologic relevance of this urinary excretion of AQP2 remains 
unknown, but the amount of exosomal AQP2 can be increased 
by vasopressin and urinary alkalinization,201 and a role in 
cell-cell communication has been proposed.200
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has been generated by the use of various in vitro or ex vivo 
experimental systems.154,178,188,231–250 In the following sections, 
we discuss the various mechanisms of AQP2 trafficking that are 
continually evolving in parallel with new discoveries related to 
the targeting and trafficking of membrane proteins in general.

AQUAPORIN-2 RECYCLING
Clathrin-coated pits are critical for the internalization of 
both AQP2 and the V2R,119,120,128,251,252 with inhibition of 
clathrin-mediated endocytosis causing AQP2 plasma mem-
brane accumulation (Fig. 10.13).159,185,186,251,253–256 Although 
caveolae have been proposed as an alternative endocytotic 
pathway for AQP2 in cultured cells,257 caveolae and caveolin 
are not present on the apical pole of principal cells in 
vivo.258,259 After internalization, AQP2 enters a subapical 
recycling compartment distinct from organelles such as the 
Golgi, the trans-Golgi network (TGN), and lysosomes,188,260,261 
but it likely recycles via the classic endosomal recycling 
compartments186,262,263 with the vacuolar protein sorting–
associated protein 35 (Vps35) playing an important role.264

ROLE OF THE CYTOSKELETON IN  
AQUAPORIN-2 TRAFFICKING
The cytoskeleton and soluble N-ethylmaleimide-sensitive factor 
attachment protein receptor (SNARE) complex play important 
roles in multiple aspects of vesicle trafficking, including 
exocytosis, endocytosis, and vesicle docking and fusion.265–273 
Thus, it is no surprise that they are important for AQP2 
trafficking.

Actin associates directly with AQP2274–276 or AQP2-containing 
vesicles277 and upon vasopressin-mediated depolymerization, 
AQP2 accumulates in the plasma membrane.278–281 Apical 
fluid shear stress also depolymerizes the apical actin cyto-
skeleton and causes AQP2 membrane accumulation.282,283 A 

majority of transcellular water reabsorption in the connecting 
tubule and collecting duct system.

AQUAPORIN-3 AND AQUAPORIN-4  
KNOCKOUT MICE
The osmotic water permeability of the basolateral membrane 
of cortical collecting duct cells from AQP3 knockout mice 
is reduced by greater than threefold compared with wild 
type control mice.228 Consequently, AQP3 knockout mice are 
markedly polyuric (10-fold greater daily urine volume than 
controls), but they can slightly increase their urine osmolality 
after either water deprivation or vasopressin treatment.3 AQP4 
knockout mice have a fourfold decrease in inner medullary 
collecting duct osmotic water permeability, indicating that 
AQP4 is responsible for the majority of water movement across 
the basolateral membrane in this segment.229,230 Despite this 
reduced inner medullary collecting duct water permeability, 
AQP4 knockout mice have no difference in urine osmolality. 
However, after 36 hours of water deprivation, AQP4 knockout 
mice have a significantly reduced maximal urine osmolality 
that cannot be further increased by AVP administration. This 
modest decrease in urinary concentrating ability in AQP4 
knockout mice, compared with the profound concentrating 
defect in AQP3 knockout mice, is likely due to the normal 
distribution of water transport along the collecting duct,3 
with much greater osmotic reabsorption of water in the 
cortical portion of the collecting duct system (where AQP3 
is predominant), than in the medullary collecting ducts 
(where AQP4 is the predominant basolateral water channel).

MECHANISMS OF AQUAPORIN-2 TRAFFICKING

A wealth of information regarding the regulated trafficking, 
function, structure, and water transport capacity of AQP2 
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Fig. 10.12  Localization of aquaporins in the outer medullary collecting duct (outer stripe) of rat kidney. Images show sections immunostained 
in (A) for aquaporin-4 (AQP4) (red) and (B) for aquaporin-2 (AQP2) (green). The merged image in (C) shows that AQP2 is largely apical in this 
region, but both AQP2 and AQP4 are present on basolateral membranes. Intercalated cells are not stained with either antibody and appear as 
darker gaps among the other cells. In (C), nuclei are stained with 4′,6-diamidino-2-phenylindole (DAPI). Scale bar, 10 µm. 
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and depolymerization of microtubules partially inhibits 
vasopressin-induced water permeability in target epithelia298–300 
and apical localization of AQP2.176,249,301,302 A role of micro-
tubules in the basolateral to apical transcytosis of AQP2 has 
also been suggested.214 Together, the data on microtubules 
indicate that they are predominantly responsible for long-
range trafficking of AQP2 vesicles toward the plasma 
membrane and localization of AQP2 inside the cell after 
internalization, but that the final steps of vesicle approach 
and fusion are microtubule independent.303

A variety of SNARE proteins are associated with AQP2-
containing vesicles or colocalize with AQP2 in collecting 
duct cells, including VAMP-2 (vesicle-associated membrane 
protein 2, synaptobrevin-2), VAMP-3 (cellubrevin), VAMP-8, 
SNAP23 (synaptosomal-associated protein 23), the ATPase 
Hrs-2, syntaxin 3, syntaxin 4, syntaxin 7, syntaxin 12, and 
syntaxin 13.277,304–310 Of these, VAMP-2, VAMP-3, syntaxin 3, 

role for A-kinase anchoring protein 220 (AKAP220) and Rho 
GTPases in modulating the actin effects on AQP2 have been 
proposed.280,284–288 AQP2 also complexes with various other 
actin-associated proteins including myosins,277,281,289–291 Rab 
proteins,262,292 members of the ERM (ezrin-radixin-moesin) 
family,293,294 and the signal-induced proliferation–associated 
gene 1 (SPA-1).288 Although the mechanisms behind actin 
depolymerization and AQP2 trafficking are not clear (see 
Fig. 10.14), only vasopressin induces significant actin depo-
lymerization in cells expressing AQP2,283 suggesting a novel 
mechanism of protein trafficking in which the channel protein 
itself critically regulates local actin reorganization to initiate 
its movement.275 The integrin-linked kinase (ILK) is also 
important in orchestrating cytoskeletal organization during 
AQP2 recycling and entry into the exocytotic pathway.295,296

Dynein and dynactin, a protein complex linking microtu-
bules and vesicles, are associated with AQP2-bearing vesicles297 
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Fig. 10.13  Methyl-β-cyclodextrin (MBCD) stimulates aquaporin-2 (AQP2) membrane accumulation in LLC-PK1 cells (A) to (D) and collecting 
duct principal cells in situ (E) and (F). Immunofluorescence staining for AQP2 in LLC-PK1 cells expressing wild type AQP2 (A) to (C) or a mutant 
in which the S256 residue has been replaced by alanine (S256A) (D). Under baseline conditions, wild type AQP2 is located mainly on intracellular 
vesicles, often concentrated in the perinuclear region of the cell (A). After vasopressin (AVP) treatment, wild type AQP2 relocates to the plasma 
membrane (B). When endocytosis is inhibited by application of the cholesterol-depleting drug MBCD, both wild type and S256A AQP2 accumulate 
at the cell surface in the absence of AVP (C) and (D). This result shows that both wild type AQP2 and S256A AQP2 are constitutively recycling 
between intracellular vesicles and the plasma membrane, and that inhibiting endocytosis with MBCD is sufficient to cause membrane accumulation, 
even in the absence of S256 phosphorylation of AQP2. In collecting duct principal cells (inner stripe of outer medulla) in situ, AQP2 is located 
on vesicles scattered throughout the cytoplasm after perfusion of intact kidneys in vitro (E). However, after perfusion of kidneys for 60 minutes 
with 5 mmol/L MBCD, increased apical plasma membrane expression of AQP2 is seen (F). This finding indicates that AQP2 is constitutively 
recycling through the apical plasma membrane in principal cells in situ, and that membrane accumulation can be induced by blocking endocytosis 
(with MBCD) even in the absence of vasopressin. Con, Control; WT, wild type. 
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work focused on the involvement of S256 phosphorylation 
in AQP2 trafficking, with the current consensus being that 
S256 phosphorylation is necessary for vasopressin-induced 
cell-surface accumulation of AQP2222,330–334 (Fig. 10.15). The 
importance of this site is highlighted by a mutation (S254L), 
which destroys the PKA phosphorylation site at S256 resulting 
in NDI in humans.334,335 The roles of S261, S264, and S269 
(threonine in humans) are slowly being uncovered.328 All 
three phosphorylated forms are localized to some degree in 
the plasma membrane in vivo.169,189,336,337 Vasopressin decreases 
the abundance of pS261, whereas AMP-activated kinase 
(AMPK) activation increases the levels.338 However, this site 
alone is not required for AQP2 trafficking.339,340 Interestingly, 
activation of AMPK with metformin increases AQP2 phos-
phorylation in general,341 whereas levels of phosphorylation 
are significantly attenuated under acidic conditions.342 The 
pS269 form of AQP2 is exclusively detected in the apical 
plasma membrane, and a regulatory role of this phosphoryla-
tion site directly in the plasma membrane for inhibiting 
AQP2 endocytosis has been shown.*

and SNAP23 are the ones that have been functionally shown 
to be important for AQP2 trafficking.306,309,311 Interaction of 
AQP2 and the SNARE complex may be mediated by the 
protein snapin312 and/or by the angiotensin-converting 
enzyme 2 homolog collectrin, which has been implicated in 
salt-sensitive hypertension.313

ESSENTIAL ROLE OF AQUAPORIN-2 
PHOSPHORYLATION
The rise in intracellular cAMP following V2R stimulation is 
important for modulating the abundance of AQP2 by modula-
tion of AQP2 gene transcription.242,314 cAMP also plays a role 
in AQP2 trafficking by affecting the phosphorylation status 
of AQP2,262,315–317 with phosphatase inhibitors increasing cell 
surface accumulation of AQP2.318,319 However, V2R-mediated 
increases in cAMP are not absolutely necessary for receptor-
mediated AQP2 membrane targeting and alternative pathways 
to increase AQP2 membrane targeting exist.320–323

AQP2 contains several phosphorylation sites for protein 
kinases,138,324–326 several of which are important for AQP2 
trafficking alongside AQP2 ubiquitylation.190–193 Whether any 
of the phosphorylation sites are important for modulation 
of AQP2 unit water permeability is controversial.327–329 Early 
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Fig. 10.14  Aquaporin-2 (AQP2) follows a transcytotic pathway before apical membrane delivery. From vesicles in the perinuclear region (PNR), 
probably originating from the trans-Golgi network, AQP2 can be delivered to the basolateral plasma membrane before reaching the apical 
surface of epithelial cells. From there, it is retrieved by clathrin-mediated endocytosis into Rab5-positive endosomes (green), which move in a 
microtubule (MT)-dependent manner to the PNR and ultimately to Rab11-positive apical recycling endosomes (AREs; purple). These Rab11-
positive vesicles are involved in recycling AQP2 constitutively to and from the apical plasma membrane. The endocytotic branch of this recycling 
pathway is inhibited by the methyl-β-cyclodextrin treatment shown in Fig. 10.13, resulting in cell surface accumulation of AQP2. The physiologic 
stimulus, vasopressin (AVP), increases apical AQP2 expression in two ways. It increases exocytosis from the Rab11 compartment and also 
inhibits clathrin-mediated endocytosis of AQP2 from the apical plasma membrane. The delivery of AQP2 to the basolateral membrane of 
collecting duct principal cells may be important for collecting duct tubulogenesis,183 whereas apical AQP2 is necessary for urine concentration. 
From Yui N, Lu HA, Chen Y, et al. Basolateral targeting and microtubule-dependent transcytosis of the aquaporin-2 water channel. Am J Physiol 
Cell Physiol. 2013;304:C38–C48.

*References 169, 189, 191, 336, 337, and 343.
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show that maximal urine-concentrating ability is decreased 
in protein-deprived or malnourished humans (and other 
mammals), and that urea infusion restores urine-concentrating 
ability (reviewed in Sands and Layton357). Urine-concentrating 
defects have been demonstrated in UT-A1/A3,358 UT-A2,359 
UT-B,360–362 and UT-A2/UT-B knockout mice.363 Thus, an effect 
due to urea or UTs must be part of the mechanism by which 
the inner medulla concentrates urine.

Two urea transporter genes have been cloned in mammals: 
the UT-A (Slc14A2) gene encodes 6 protein and 9 cDNA 
isoforms (reviewed in Sands and Layton357), and the UT-B 
(Slc14A1) gene encodes 2 protein isoforms.364 The UT-A gene, 
which has been cloned from rodents and humans, has two 
promoter elements: one upstream of exon 1 and a second 
that is located within intron 12 and drives the transcription 
of UT-A2 and UT-A2b (see references 365–368; also reviewed 
in Sands and Layton357). UT-B, which is also the Kidd blood 
group antigen in humans, has been cloned from humans 
and rodents369 (also reviewed by Sands and Layton357).

UT-A promoter I contains a tonicity enhancer (TonE) 
element and hyperosmolality increases its activity.366,370 UT-A1 is 
expressed in the terminal inner medullary collecting duct and 
is detected in the apical plasma membrane.367,371,372 UT-A3 is 
also expressed in the terminal inner medullary collecting duct; 
it is primarily detected in the basolateral plasma membrane 
but has been detected in the apical plasma membrane.373–375 
UT-A2 is expressed in thin descending limbs.8,371,372,376 UT-B 
is expressed in descending vasa recta and red blood cells 
(reviewed by Sands and Layton357) (Fig. 10.16).

Vasopressin increases the phosphorylation and the apical 
plasma membrane accumulation of UT-A1 and of UT-A3 
in rat inner medullary collecting ducts.375,377 UT-A1 is phos-
phorylated by vasopressin at serines 486 and 499.325,378 Both 
phospho-S486-UT-A1 and phospho-S499-UT-A1 are expressed 
predominantly in the apical plasma membrane in vasopressin-
treated rat inner medullary collecting ducts.379,380 The site in 
UT-A3 that is phosphorylated by vasopressin has not been 
determined, except that neither of the two PKA consensus sites 
is involved.381 Vasopressin stimulates urea transport, UT-A1 
phosphorylation, and apical plasma membrane accumula-
tion through two cAMP-dependent pathways: PKA and Epac 
(exchange protein activated by cAMP).382 Epac increases 
UT-A1 phosphorylation but not at either serine 486 or 499.380

UT-A1 is dephosphorylated by multiple phosphatases, 
including calyculin and calcineurin.383 14-3-3 proteins bind 

ROLE OF PHOSPHORYLATION IN EXOCYTOSIS AND 
ENDOCYTOSIS OF AQUAPORIN-2
Although S256 phosphorylation is necessary for vasopressin-
induced cell-surface accumulation of AQP2, the role that 
phosphorylation plays in AQP2 exocytosis is complex. An 
AQP2 S256A mutant accumulates on the plasma membrane 
upon inhibition of endocytosis (see Fig. 10.13),253 suggesting 
that the exocytotic pathway is intact under these conditions. 
Vasopressin also increases exocytosis of vesicles in AQP2-
expressing cells whether or not AQP2 is phosphorylated at 
S256.344 Thus, although vasopressin-induced accumulation 
of AQP2 at the cell surface requires S256 phosphorylation, 
and AQP2 is present in “endocytosis-resistant” membrane 
domains after vasopressin treatment,253,345,346 exocytotic inser-
tion of AQP2 into the plasma membrane is probably inde-
pendent of this phosphorylation event. Furthermore, the 
regulated endocytosis of AQP2 may not be dependent on 
its phosphorylation state.347 For example, prostaglandin E2 
(PGE2)348 can induce AQP2 internalization independent of 
S256 phosphorylation, but other studies indicate that the 
effects of PGE2 on AQP2 and urine concentration depend 
on which PGE2 receptor it acts upon.109,250,344,349–351

Accumulating evidence suggests that phosphorylation-
mediated interaction of AQP2 with other regulatory proteins 
is important for modulating cell-surface accumulation of 
AQP2. For example, AQP2 phosphorylation modifies its 
interaction with key proteins of the vesicle docking/fusion 
apparatus or endocytotic machinery, including heat shock 
cognate/heat shock protein 70 (hsc/hsp70)345,352 dynamin 
and clathrin,340,352 annexin 2,169 the myelin and lymphocyte 
protein (MAL),353 or 14-3-3ζ.354

VASOPRESSIN-REGULATED UREA 
TRANSPORT IN THE INNER MEDULLA

UREA TRANSPORTER PROTEINS

Urea plays a central role in the urinary concentrating 
mechanism. Urea importance has been appreciated since 
1934, when Gamble and colleagues initially described “an 
economy of water in renal function referable to urea,”355 
findings which were recently confirmed and advanced in 
UT-A1/A3 knockout mice356 (discussed later). Many studies 
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Fig. 10.15  Immunofluorescence staining showing aquaporin-2 (AQP2) expressed in LLC-PK1 cells. Under control (CON) conditions (A), AQP2 
is located on perinuclear and more diffusely distributed intracellular vesicles, with very little plasma membrane staining. After vasopressin (AVP) 
treatment for 10 minutes, AQP2 accumulates on the plasma membrane of cells expressing wild type (WT) AQP2 (B) but remains mainly on 
intracellular vesicles after vasopressin treatment of cells expressing AQP2-S256A, a mutation that prevents protein kinase A–mediated phos-
phorylation of this critical amino acid (C). 
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Genetic knockout of PKCα in mice results in a urine-
concentrating defect.395,398,399 PKCα knockout mice have 
reduced levels of UT-A1 protein abundance395 and UT-A1 
sialylation.400 PKCα activation increases UT-A1 sialylation and 
UT-A1 accumulation in the apical plasma membrane, an 
effect mediated by Src kinase.400 PKCα also enhances UT-A3 
sialylation, an effect mediated by ST6GalI.401

Metformin, an AMPK activator, increases UT-A1 and AQP2 
phosphorylation in inner medullary collecting duct suspen-
sions, urea and water transport in perfused terminal inner 
medullary collecting ducts, and urine-concentrating ability 
in two rodent models of congenital NDI: tolvaptan-treated 
rats and V2R knockout mice.341,402 Thus, drugs that activate 
AMPK may be a future therapy for NDI.341,402,403

UREA TRANSPORTER KNOCKOUT MICE

UT-A1/A3 KNOCKOUT MICE
A mouse model where the two inner medullary collecting duct 
UTs, UT-A1 and UT-A3, are deleted (UT-A1/A3–/– mice) have a 
complete absence of phloretin-sensitive and vasopressin-regulated 
urea transport in the inner medullary collecting duct.358,404–406 
These UT-A1/A3–/– mice fed a normal or high protein diet have 

to phosphorylated serine or threonine residues and regulate 
protein function. UT-A1 and 14-3-3γ bind, and PKA activation 
enhances this binding.384 14-3-3γ increases UT-A1 ubiquitina-
tion and degradation by interacting with the E3 ubiquitin 
ligase, MDM2, and decreases urea transport.384 Thus, UT-A1 
phosphorylation is increased by PKA, and UT-A1 degradation 
is enhanced by subsequent binding to 14-3-3γ, potentially 
providing a negative feedback mechanism to return UT-A1 
function to its basal state following vasopressin stimulation.384 
Although data showing these opposite effects of vasopressin/
PKA are established, the physiologic significance remains to 
be determined.

Hyperosmolality increases urea permeability in rat termi-
nal inner medullary collecting ducts, even in the absence 
of vasopressin,385–387 suggesting that it is an independent 
activator of urea transport. Hyperosmolality stimulates 
urea permeability via activation of PKCα and intracellular 
calcium,388–391 whereas vasopressin stimulates urea perme-
ability via increases in cAMP.392 Hyperosmolality increases the 
phosphorylation and the plasma membrane accumulation 
of both UT-A1 and UT-A3,375,377,393,394 similar to the effect 
of vasopressin. UT-A1 is phosphorylated by PKCα at serine  
494.390,395–397
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Fig. 10.16  Localization of urea transporters. UT-A1 is localized to the terminal portion of the inner medullary collecting duct, whereas UT-A2 
is localized to the thin descending limbs of Henle loop in the inner stripe of outer medulla (A). Higher magnification shows that both UT-A2 (B) 
and UT-A1 (C) are predominantly intracellular. UT-A3 is localized to the terminal portion of the inner medullary collecting duct (D) and is both 
intracellular and in the basolateral membrane domains (F). UT-B is expressed in the descending vasa recta (G), where it is localized to the 
basolateral and apical regions (E). Adapted from Fenton RA, Knepper MA. Urea and renal function in the 21st century: insights from knockout mice. 
J Am Soc Nephrol. 2007;18: 679–688.
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above basal levels.411 Surprisingly, urine-concentrating ability 
was restored to wild type levels in the UT-A1 only mice.411

UT-B AND UT-A2 KNOCKOUT MICE
UT-B knockout mice have a reduced urine-concentrating 
ability that is similar to humans lacking UT-B (reviewed by 
Fenton and Knepper406 and Klein et al.412). In humans, UT-B 
is the Kidd blood group antigen, and people lacking the 
Kidd antigen are unable to concentrate their urine above 
800 mOsm/kg H2O, even following overnight water depriva-
tion and exogenous vasopressin administration.413

Mice lacking UT-A2 also have reduction in urine- 
concentrating ability (reviewed in Fenton and Knepper406 and 
Klein et al.412). The urine-concentrating defect is thought to 
result from impairment of urea recycling (reviewed in Fenton 
and Knepper406 and Klein et al.412). Because UT-B knockout 
may also interfere with urea recycling, a mouse lacking both 
UT-B and UT-A2 was generated.363 Unexpectedly, UT-A2 dele-
tion appeared to partially correct the concentrating defect in 
mice lacking only UT-B.363 These results suggest that rather 
than playing a role in maintaining urea concentration during 
the normal steady state, UT-A2 may function to move urea 
during the acute transition from diuresis to antidiuresis.363

MICE LACKING ALL UREA TRANSPORTERS
Mice lacking all UTs have a 3.5-fold increase in urine output, 
produce dilute urine, and have reduced blood pressure.414 
The all-UT knockout mice do not increase urine osmolality 
or urea following water restriction, acute urea loading, or a 
high protein intake.414 The all-UT knockout mice do not 
exhibit physiological abnormalities in extrarenal tissues.414

a significantly greater fluid intake and urine flow, resulting in a 
decreased urine osmolality, compared with wild type mice.358,407 
Under these dietary conditions, after an 18-hour water restriction, 
UT-A1/A3–/– mice are unable to reduce their urine flow to levels 
below those observed under basal conditions, resulting in volume 
depletion and loss of body weight. In contrast, on a low-protein 
diet (4%), UT-A1/A3–/– mice do not show a substantial degree 
of polyuria and can reduce their urine volume to a similar 
level as control mice after water restriction. On a low-protein 
diet, hepatic urea production is low and urea delivery to the 
inner medullary collecting duct is predicted to be low, thus 
rendering collecting duct urea transport largely immaterial 
to water balance. Thus, the concentrating defect in UT-A1/
A3–/– mice is due to a urea-dependent osmotic diuresis, results 
that are compatible with a model of urea handling proposed 
in the 1950s by Berliner and colleagues.83

UT-A1/A3–/– mice have also been exploited to study the 
“passive mechanism for urine concentration models” proposed 
in 1972 by Kokko and Rector and by Stephenson for concen-
tration of Na+ and Cl– in the inner medulla in the absence of 
active transport408,409 (see later). In these models, the passive 
electrochemical gradient that drives Na+ and Cl– to exit from 
the thin ascending limb is indirectly dependent on rapid 
reabsorption of urea from the inner medullary collecting duct. 
However, despite a profound decrease in inner medulla urea 
accumulation in UT-A1/A3–/– mice, three independent studies 
failed to demonstrate the predicted decline in Na+ and Cl– 
concentrations in the inner medulla.355,358,405,406 Based on these 
results alone, the passive concentrating model in the form 
originally proposed does not appear to be the only mechanism 
by which NaCl is concentrated in the inner medulla. However, 
mathematical modeling analysis of these same data concluded 
that the results found in the UT-A1/A3–/– mice are consistent 
with what one would predict for the passive mechanism.410 
Thus, the issue remains unresolved at present.

Another hypothesis regarding urea and the urinary con-
centrating mechanism was described over 80 years ago as “an 
economy of water in renal function referable to urea” and 
affectionately known as the Gamble phenomenon.355 Gamble 
described that (1) the water requirement for excretion of urea 
is less than for excretion of an osmotically equivalent amount 
of NaCl, and (2) less water is required for the excretion of 
urea and NaCl together than the water needed to excrete 
an osmotically equivalent amount of either urea or NaCl 
alone. In UT-A1/A3–/– mice, both elements of the Gamble 
phenomenon were absent, indicating that inner medullary 
collecting duct UTs play an essential role.356 When wild type 
mice were given progressively increasing amounts of urea or 
NaCl in the diet, both substances induced osmotic diuresis, 
but at different excretion levels (6000 µosmol/day for urea; 
3500 µosmol/day for NaCl). Mice were unable to increase 
urinary NaCl concentrations above 420 mM. Thus, the second 
component of the Gamble phenomenon derives from the fact 
that both urea and NaCl excretion are saturable, presumably 
resulting from an ability to exceed the respective reabsorptive 
capacity for urea and NaCl, rather than a specific interaction 
of urea transport and NaCl transport at an epithelial level.

A mouse lacking UT-A3 but expressing UT-A1 was created by 
transgenic restoration of UT-A1 into the UT-A1/A3–/– knockout 
mouse in order to determine the effect of UT-A1 alone.411 
Basal urea permeability in the inner medullary collecting 
duct of the UT-A1-only mouse was normal, but unlike wild 
type mice, vasopressin did not stimulate urea permeability 

Clinical Relevance
Urearetics
In recent years, urea transporter inhibitors have been 
developed as potential novel diuretics (reviewed in refer-
ences 476 through 478). Dimethylthiourea (DMTU), a 
urea analog, inhibits UT-A1 and UT-B, results in a sustained 
and reversible reduction in urine osmolality, an increase 
in urine volume, and mild hypokalemia in rats.479,480 Other 
thiourea analogs are being investigated for selective 
inhibition of UT-A1 or UT-B.479 Another class of inhibi-
tors, an indole thiazole or γ-sultambenzosulfonamide, 
is selective for UT-A and results in diuresis with more 
urea than salt excretion in rats, even when the rats were 
given dDAVP.481 Another potential class of inhibitors are 
2,7-distributed fluorenones, the most potent of which 
inhibited UT-A1 and UT-B with an IC50 of 1 µM.482 A 
fourth class are thienoquinolins that inhibit both UT-A 
and UT-B, PU-14, results in a diuresis in rats.483,484 The 
thienoquinolin PU-48 results in a diuresis in both wild 
type and UT-B knockout mice, indicating that its effect 
was to inhibit UT-A, and inhibits urea permeability in 
perfused rat inner medullary collecting ducts.485 Because 
the diuresis induced by PU-48 did not change serum 
sodium, chloride, or potassium levels, it supports the 
hypothesis that an agent that targets UT-A1, which is 
expressed in the last portion of the inner medullary 
collecting duct, may have less risk for side effects, such 
as hypokalemia, than conventional diuretics that act in 
more proximal portions of the nephron.485



294	 Section I — Normal Structure and Function

countercurrent exchange of urea between the two structures.83 
In the ascending vasa recta, aided by the extremely high 
(>40 × 10–5 cm/sec) permeability to urea, the concentration 
of urea exiting the inner medulla is similar to the concentra-
tion of urea in the descending vasa recta.79,416 This minimizes 
the washout of urea from the inner medulla. However, 
countercurrent exchange cannot completely eliminate loss 
of urea from the inner medullary interstitium, because the 
volume flow rate of blood in the ascending vasa recta exceeds 
that in the descending vasa recta.418 During antidiuresis, water 
is added to the vasa recta from both inner medullary collecting 
ducts and descending limbs, resulting in a higher volume 
flow rate and an increased mass flow rate of urea. This ensures 
that the inner medullary vasculature continually removes 
urea from the inner medulla. Quantitatively, the most 
important loss of urea from the inner medullary interstitium 
is thought to occur via the vasa recta,419 but urea recycling 
pathways play a major role in limiting the loss of urea from 
the inner medulla. Three major urea recycling pathways are 
described later in this section, and an overview of these is 
shown in Fig. 10.20).

1.  Recycling of Urea Through the Ascending 
Limbs, Distal Tubules, and Collecting Ducts

Urea that escapes the inner medulla in the ascending limbs 
of the long loops of Henle is carried back through the thick 
ascending limbs, distal convoluted tubules, and early portions 
of the collecting duct system by the flow of tubule fluid.420 
When it reaches the urea-permeable part of the inner medul-
lary collecting ducts, it passively exits into the inner medullary 
interstitium and starts the cycle again.

2.  Recycling of Urea Through the Vasa Recta, 
Short Loops of Henle, and Collecting Ducts

The delivery of urea to the superficial distal tubule exceeds 
the delivery out of the superficial proximal tubule.420–422 This 

ACCUMULATION OF UREA IN RENAL  
INNER MEDULLA
Urea accumulation within the inner medulla is partly depen-
dent on variable urea permeabilities along the collecting 
duct system (Fig. 10.17). Within the collecting duct system, 
only the terminal inner medullary collecting duct possesses 
high urea permeability,415 which can be further increased by 
vasopressin.148,416,417 UT-A1 and UT-A3 UTs are localized to 
the apical and basolateral plasma membranes of the inner 
medullary collecting duct cells and are responsible for the 
high urea permeability of the terminal portion of the inner 
medullary collecting duct. The mechanisms of urea accumula-
tion in the renal medulla are depicted in Fig. 10.18. Accumula-
tion of urea is predominantly a result of passive urea 
reabsorption from the inner medullary collecting duct. 
Tubular fluid entering the collecting duct system in the renal 
cortex has a relatively low urea concentration. However, 
during antidiuresis, water is osmotically reabsorbed from the 
urea-impermeable parts of the collecting duct system in the 
cortex and outer medulla, causing a progressive increase in 
the luminal urea concentration along the connecting tubules, 
cortical collecting ducts, and outer medullary collecting ducts. 
Thus, when the tubule fluid reaches the highly urea permeable 
terminal inner medullary collecting duct (due to the presence 
of UTs), urea rapidly exits from the lumen to the inner 
medullary interstitium, where it is “trapped” by countercurrent 
urea exchange between descending and ascending flows in 
both the vasa recta and loops of Henle. Under steady-state 
conditions, and in the continued presence of vasopressin, 
urea nearly equilibrates across the inner medullary collecting 
duct epithelium and thus osmotically balances the urea in 
the collecting duct lumen, preventing possible instances of 
osmotic diuresis (Fig. 10.19).

The descending and ascending vasa recta are in close 
association with each other in the inner medulla, facilitating 
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Fig. 10.17  Urea permeabilities of mammalian renal tubule segments. The width of each segment in the diagram is distorted to be proportional 
to the urea permeability of that segment. Numbers in parentheses are measured values for the permeability coefficient (×10–5 cm/sec). Values 
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duct; IMCDt, terminal inner medullary collecting duct; LDL, thin descending limb of long-looped nephron; MTAL, medullary thick ascending 
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implies that net urea addition occurs somewhere along the 
short loops of Henle. One possible mechanism is that the 
urea leaving the inner medulla in the vasa recta is transferred 
to the descending limbs of the short loops of Henle421 and 
is subsequently carried through the superficial distal tubules 
back to the urea-permeable part of the inner medullary 
collecting ducts, where it passively exits, completing the 
recycling pathway. The close physical association between 
the vasa recta and the descending limbs of the short loops 
in the vascular bundles of the inner stripe of the outer medulla 
would facilitate this transfer of urea from the vasa recta to 
the short loops of Henle.26,423 Furthermore, the existence of 
a facilitative UT, UT-A2, in the thin descending limb of short 
loops of Henle8,371 provides further support for this mecha-
nism. However, as discussed earlier, recent studies on UT-A2 
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Fig. 10.18  Schematic representation of the mammalian collecting 
duct system showing principal sites of water absorption and urea 
absorption. Water is absorbed in the early part of the collecting duct 
system, driven by an osmotic gradient. Because urea permeabilities 
of cortical collecting duct, outer medullary collecting duct, and initial 
inner medullary collecting duct are very low, the water absorption 
concentrates urea in the lumen of these segments. When the tubule 
fluid reaches the terminal inner medullary collecting duct, which is 
highly permeable to urea, urea rapidly exits from the lumen. This urea 
is trapped in the inner medulla as a result of countercurrent exchange. 
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MECHANISMS OF TUBULE FLUID DILUTION

Micropuncture studies in rats show that the fluid in the early 
distal tubule is hypotonic, due mainly to a reduction in luminal 
NaCl concentration relative to that in the proximal tubule.430 
The low luminal NaCl concentration could result either from 
active NaCl reabsorption from the loop of Henle or from 
water secretion into the loop of Henle. Micropuncture 
measurements in rats, performed using inulin as a volume 
marker, demonstrate net water reabsorption from the super-
ficial loops of Henle during antidiuresis, thereby ruling out 
water secretion as a potential mechanism of tubule fluid 
dilution.420 Thus, one can conclude that luminal dilution 
occurs because of NaCl reabsorption from the loops of Henle, 
in excess of water reabsorption. Classic studies of isolated 
perfused rabbit thick ascending limbs established the mecha-
nism of tubule fluid dilution.431,432 NaCl is rapidly reabsorbed 
by active transport, which lowers the luminal osmolality and 
NaCl concentration to levels below those in the peritubular 
fluid. The osmotic water permeability of the thick ascending 
limb is very low, which prevents dissipation of the trans-
epithelial osmolality gradient by water flux.

The tubule fluid remains hypotonic throughout the distal 
tubule and collecting duct system during water diuresis, aided 
by the low osmotic water permeability of the collecting ducts 
when circulating levels of vasopressin are low. Even though 
the tubule fluid remains hypotonic in the collecting duct 
system, the solute composition of the tubule fluid is modified 
within the collecting duct, mainly by Na+ absorption and K+ 
secretion. Active NaCl reabsorption from the collecting duct 
results in a further dilution of the collecting duct fluid, beyond 
that achieved in the thick ascending limbs.429

MECHANISM OF TUBULE FLUID CONCENTRATION

When circulating vasopressin levels are high, net water 
absorption occurs between the late distal tubule and the 
collecting ducts.420 Because water is absorbed in excess of 
solutes, with a resulting rise in osmolality along the collecting 
ducts toward the papillary tip,433 it can be concluded that 
collecting duct fluid is concentrated chiefly by water absorp-
tion, rather than by solute addition.

An axial osmolality gradient in the renal medullary tissue, 
with the highest degree of hypertonicity at the papillary tip, 
provides the osmotic driving force for water absorption along 
the collecting ducts. This osmolality gradient was initially 
reported by Wirz and colleagues.434 In a classic study, they 
demonstrated, in antidiuretic rats, the existence of a continu-
ously increasing osmolality gradient along the outer and 
inner medulla, with the highest osmolality in the deepest 
part of the inner medulla, the papillary tip. In addition, 
within the medulla the osmolality of the collecting ducts was 
as high as in the loops of Henle and the osmolality of vasa 
recta blood, sampled from near the papillary tip, was virtually 
equal to that of the final urine.434 Taken together these results 
demonstrate that the high tissue osmolality was not simply 
a manifestation of a high osmolality in a single structure, 
namely, the collecting duct. Micropuncture studies by Gott-
schalk and Mylle428 based on the superficial and thus accessible 
tubules and vessels confirmed that the osmolality of the fluid 
in the loops of Henle, the vasa recta, and the collecting ducts 
is approximately the same (see Fig. 10.10); thus, these studies 

knockout mice and UT-A2/UT-B knockout mice have raised 
doubts about the importance of this pathway.5,359

3.  Urea Recycling Between Ascending and 
Descending Limbs of the Loops of Henle

The urea permeability of thick ascending limbs from the 
inner stripe of the outer medulla is low.424,425 However, the 
urea permeability of thick ascending limbs from the outer 
stripe of the outer medulla and the medullary rays is relatively 
high.424,426 Based on this, a urea recycling pathway has been 
proposed in which urea is reabsorbed from thick ascending 
limbs and is secreted into neighboring proximal straight 
tubules, forming a recycling pathway between the ascending 
limb and descending limbs of the loop of Henle.3,419 Urea 
recycling from the thick ascending limbs and the proximal 
straight tubules is facilitated by the parallel relationship of 
these two structures in the outer stripe of the outer medulla 
and in the medullary rays. This transfer of urea is also likely 
to depend on a relatively attenuated effective blood flow in 
these regions. Urea secretion into the proximal straight 
tubules can occur by passive diffusion,426 active transport,427 
or a combination of both. Urea presumably enters the 
proximal straight tubules of both short- and long-looped 
nephrons. The urea that enters the short-looped nephrons 
will be carried back to the inner medulla by the flow of 
tubule fluid through the superficial distal tubules and cortical 
collecting ducts, reentering the inner medullary interstitium 
by reabsorption from the terminal inner medullary collecting 
duct. The urea that enters proximal straight tubules of long-
looped nephrons returns to the inner medulla directly 
through the descending limbs of the loops of Henle.419

URINE CONCENTRATION AND  
DILUTION PROCESSES ALONG  
THE MAMMALIAN NEPHRON

SITES OF URINE CONCENTRATION  
AND DILUTION

Micropuncture studies of the mammalian nephron have 
determined the major sites of tubule fluid concentration 
and dilution (see Fig. 10.10). Regardless of whether the kidney 
is diluting or concentrating the urine, proximal tubule fluid 
is always isosmotic with plasma.428 Whereas early distal con-
voluted tubule fluid is always hypotonic, the earliest nephron 
segment where significant differences in tubule fluid osmolal-
ity can be detected is the late distal tubule. During water 
diuresis, the fluid in the distal tubule fluid remains hypotonic. 
During antidiuresis, the fluid in the distal tubule becomes 
isosmotic with plasma, and the osmolality between the end 
of the late distal tubule and the inner medullary collecting 
ducts rises to a level greater than that of plasma. Thus, the 
conclusion from micropuncture studies is that the loop of 
Henle is the major site of dilution of tubule fluid, and that 
dilution processes in the loop occur regardless of whether 
the final urine is dilute or concentrated. Further dilution of 
the tubule fluid can occur in the collecting ducts during 
water diuresis.429 In contrast, the chief site of urine concentra-
tion is beyond the distal tubule (i.e., in the collecting duct 
system). The mechanisms of urinary dilution and of urinary 
concentration are discussed in the subsequent sections.



	 CHAPTER 10 — Urine Concentration and Dilution 	 297

tubes joined by a hairpin turn as proposed by Kuhn and 
Ryffle. Thus, the loops of Henle were proposed as the source 
of the outer medullary gradient, and that gradient was 
hypothesized to draw water out of water-permeable collecting 
ducts. In 1959, Kuhn and Ramel439 used a mathematical model 
to show that active transport of NaCl from thick ascending 

support the hypothesis that the collecting duct fluid is 
concentrated by osmotic equilibration with a hypertonic 
medullary interstitium. Furthermore, in vitro studies dem-
onstrated that collecting ducts have a high water permeability 
in the presence of vasopressin,99,416 as is required for osmotic 
equilibration. The mechanism by which the corticomedullary 
osmolality gradient is generated is considered later.

Although the final axial osmolality gradient within the 
renal medulla is due to the combined gradients of several 
individual solutes, as initially demonstrated using tissue slice 
analysis by Ullrich and Jarausch,435 the principal solutes 
responsible for the osmolality gradient are NaCl and urea 
(Fig. 10.21). The increase in the NaCl concentration gradient 
along the corticomedullary axis occurs predominantly in the 
outer medulla, with only a small increase in the inner medulla. 
In contrast, the increase in urea concentration occurs pre-
dominantly in the inner medulla, with little or no increase 
in the initial outer medulla. The mechanisms for generating 
the NaCl gradient in the outer medulla and urea accumulation 
in the inner medulla are discussed later.

GENERATION OF THE AXIAL NaCl GRADIENT IN THE 
RENAL OUTER MEDULLA
In both diuresis and antidiuresis, an osmolality gradient is 
maintained along the corticomedullary axis of the outer 
medulla (see Fig. 10.21).436 That gradient arises mostly from an 
accumulation of NaCl and is generated by the concentrating 
mechanism of the outer medulla. Because the axial osmolal-
ity gradient is present in both diuresis and antidiuresis (in 
which the outer medullary collecting duct is water-permeable 
to varying degrees), the accumulation of NaCl in the outer 
medulla cannot depend on a sustained osmolality difference 
across the collecting duct epithelium. Thus, the concentrat-
ing mechanism must depend on the loops of Henle, on 
the vasculature, and on their interactions within the outer 
medulla. Moreover, a mass balance of water and NaCl must be 
maintained. Thus, for example, concentrated fluid that flows 
into the inner medulla must be balanced by dilute fluid that, 
in the presence of vasopressin, is absorbed from the cortical 
collecting duct, dilutes the cortical interstitial fluid, enters 
the cortical vasculature, and thus participates in maintaining 
an appropriate systemic level of blood plasma osmolality.

It has long been believed that the osmolality gradient of 
the outer medulla is generated by means of countercurrent 
multiplication of a single effect (“Vervielf\:a:ltigung des 
Einzeleffektes”). In this paradigm, proposed by Kuhn and 
Ryffle in 1942,437 osmotic pressure is raised along parallel 
but opposing flows in nearby tubes that are made contiguous 
by a hairpin turn (Fig. 10.22); a transfer of solute from one 
tubule to another (i.e., a single effect) would augment 
(multiply), or reinforce, the osmotic pressure in the parallel 
flows. Thus, by means of the countercurrent configuration, 
a small transverse osmotic difference would be multiplied 
into a relatively large difference along the axes of flow. In 
support of this paradigm, Kuhn and Ryffle provided both a 
mathematical model and an apparatus that exemplified 
countercurrent multiplication.

As anatomic and physiologic understanding of the renal 
medulla increased, the countercurrent multiplication para-
digm was reinterpreted and modified. In 1951, Hargitay and 
Kuhn438 put the paradigm in the context of specific renal 
tubules. The loop of Henle was identified with the parallel 
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Fig. 10.21  Data from rat kidney in an antidiuretic state. Osmolality, 
urea concentration, and sodium concentration plus its anion are shown 
(scale at right), in addition to the loop of Henle and collecting duct 
populations (scale at left). Loop of Henle and collecting duct populations 
decrease in inner medulla because collecting ducts merge and loops 
turn back. The osmolality gradient is larger in the outer medulla and 
papilla than in the outer part of the inner medulla. The gradient is 
largest in the papilla, where the osmolality and concentration profiles 
appear to increase exponentially. The shape of the sodium profile has 
been corroborated by electron microprobe measurements.486 IC, Inner 
cortex; IM, outer part (base) of inner medulla; OM, outer medulla; P, 
papilla or inner part (tip) of inner medulla; U, urine. Figure based on 
published data. Curves connecting data points are natural cubic splines, 
computed by standard algorithms.487 Dashed curve segments are 
interpolations without supporting measurements. Tubule populations 
in papilla are from Hans et al.488 tubule populations in outer medulla 
are based on estimates in Knepper et al.59 Concentrations and osmolali-
ties are from tissue slices and urine samples collected 4.5 hours after 
onset of vasopressin infusion at 15 µU/min per 100 g body weight. 
Data are from Fig. 5 in Atherton et al.489 and Figs. 1, 3, 9 in Hai and 
Thomas436; slice locations were given in Wade et al.8 The osmolality 
reported in the inner cortex seems high relative to the reported plasma 
concentration of 314 mOsm/kg H2O. The osmolality and concentration 
profiles, as drawn in the study by Hai and Thomas,436 apparently do 
not take into account relative distances between tissue sample sites. 
(From Sands JM, Layton HE. The urine-concentrating mechanism and 
urea transporters. In: Alpern RJ, Caplan MJ, Moe OW, eds. The Kidney: 
Physiology and Pathophysiology, ed 5. San Diego: Academic Press; 
2013:1463–1510.)
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without accompanying water, from the thick ascending limbs 
of short- and long-looped nephrons. The tubular fluid of 
the thick limbs that enters the cortex is diluted well below 
plasma osmolality, and thus the requirement of mass balance 
is met. In rats and mice, the thick limbs are localized near 
the collecting ducts442; mathematical models suggest that at 
a given level of the outer medulla, the interstitial osmolal-
ity will be higher near the collecting ducts than near the 
vascular bundles.443,444 This higher osmolality will facilitate 
water withdrawal from the descending limbs of long loops 
and from collecting ducts. Descending vasa recta are 
thought to be found only in the vascular bundles. Thus, 
the ascending vasa recta will act as the collectors of any NaCl 
that is absorbed from the loops of Henle and water that is 
absorbed from the descending limbs of long loops and from  
collecting ducts.

The countercurrent configuration of the ascending vasa 
recta, relative to the descending limbs and collecting ducts, 
is likely to participate in sustaining the axial gradient: as 
ascending vasa recta fluid ascends toward the cortex, its 
osmolality will exceed that in the descending limbs of long 
loops and in the collecting ducts. Thus, ascending vasa recta 
fluid will be progressively diluted as that fluid contributes 
to the concentrating of fluid in descending limbs of long 
loops and in collecting ducts, by giving up NaCl to, and 
absorbing water from, the interstitium (Fig. 10.23).

The previous summary appears to account for the elevation 
of osmolality in the outer medulla without invoking a role for 
countercurrent multiplication. However, a question remains: 
why does the osmolality gradient increase along the outer 

limbs could serve as the single effect. Subsequent physiologic 
experiments confirmed the active NaCl transport and the 
osmotic absorption of water from collecting ducts.420,431–433 
Experiments indicating high water permeability in hamster 
descending limbs of short loops440 and in descending limbs 
of long loops9,10,12 suggested that the accumulation of NaCl 
from thick limbs concentrated descending limb tubular fluid 
by osmotic water withdrawal, rather than by NaCl addition 
(see Fig. 10.22).

In more recent years, as anatomic details of the medulla 
emerged, it has become necessary to refine the paradigm of 
countercurrent multiplication to provide an accurate repre-
sentation of the means by which the gradient is generated 
in the mammalian outer medulla. In particular, the descending 
limbs of short loops have been shown to be anatomically 
separated from ascending limbs, with inner stripe portions 
of short loops near (or within) the vascular bundles and 
thick limbs near the collecting ducts.23,441 This configuration 
is not consistent with direct interactions between counterflow-
ing limbs. Furthermore, in short-looped rat nephrons, Wade 
et al.8 found that AQP1 is not expressed in portions of 
descending limb segments in the distal inner stripe. Zhai 
et al.17 found that AQP1 is not expressed in descending limbs 
of short loops in the inner stripes of mice, rats, and humans. 
The absence of AQP1 suggests that the assumption of high 
water permeability in descending limbs of short loops merits 
further experimental study.

From these considerations, it seems reasonable to 
hypothesize that the outer medullary osmolality gradient 
arises principally from vigorous active transport of NaCl, 
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Fig. 10.22  (A) Countercurrent multiplication by means of NaCl transfer from an ascending flow to a descending flow. (B) Countercurrent 
multiplication by means of water withdrawal from a descending flow. NaCl transport from the ascending flow into the interstitium raises interstitial 
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that a tubule is impermeable to water; thin lines indicate high permeability to water. (From Layton AT, Layton HE. Countercurrent multiplication 
may not explain the axial osmolality gradient in the outer medulla of the rat kidney. Am J Physiol Renal Physiol. 2011; 301:F1047-F1056.)
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to the active transport of NaCl from the thick ascending limbs 
and the water permeability of the collecting ducts, two other 
factors play a significant role in determining the osmolality of 
the final urine. One important determinant is the delivery rate 
of NaCl and water to the loop of Henle, which sets an upper 
limit on the amount of NaCl actively reabsorbed by the thick 
ascending limb to drive the outer medullary concentrating 
mechanism. Another important determinant is the volume 
of tubular fluid delivered to the medullary collecting duct, 
which has an underappreciated effect on the concentrating 
process. Too much fluid delivery saturates water reabsorption 
processes along the medullary collecting ducts, leading to 
interstitial dilution due to rapid osmotic water transport. In 
contrast, too little fluid delivery to the medullary collecting 
ducts, even in the absence of vasopressin, results in sustained 
osmotic equilibration across the collecting duct epithelium 
owing to the nonzero osmotic water permeability of the inner 
medullary collecting duct.144,148,149

AN UNRESOLVED QUESTION: CONCENTRATION OF 
NaCl IN THE RENAL INNER MEDULLA
Tissue slice studies demonstrate that the corticomedullary 
osmolality gradient is made up largely of a NaCl gradient in 
the outer medulla and a urea gradient in the inner medulla 
(see Fig. 10.21). Accordingly, in the previous sections we 
have emphasized the processes that concentrate NaCl in 
the outer medulla and the processes responsible for urea 
accumulation in the inner medulla (passive urea absorption 
from the inner medullary collecting duct plus countercur-
rent exchange of urea via diffusion). The concentrating 

medulla as a function of increasing medullary depth? The 
answer likely lies in the local balance of NaCl absorption 
from thick limbs and water absorption from descending 
limbs of long loops and from collecting ducts. At deeper 
medullary levels, the rate of NaCl absorption from thick 
limbs may be higher than at shallow levels, owing to a higher 
Na-K-ATPase activity at deeper levels445 and to a saturation 
of transport proteins by the higher NaCl concentration in 
thick limb tubular fluid before dilution. Moreover, because 
of the water already absorbed in the upper outer medulla, 
the load of water presented to the thick limbs deep in the 
outer medulla by descending limbs of long loops and by the 
collecting ducts is much reduced.

A caveat is in order: our understanding of the outer medulla 
is mostly based on information obtained from heavily studied 
laboratory animals, especially rats and mice. Outer medullary 
function and structure are likely to vary substantially in other 
species. For example, the human kidney has limited con-
centrating capability (relative to many other mammals) and 
only about one seventh of the loops of Henle are long446; 
the mountain beaver (Aplodontia rufa) has mostly cortical 
loops of Henle and essentially no inner medulla.447 It seems 
likely that the outer medullary structure in these species 
differ substantially from that in rats and mice. Finally, it 
should be acknowledged that the paradigm formulated above 
is similar to that proposed by Berliner et al. in 1958.83

DETERMINANTS OF CONCENTRATING ABILITY
The overall concentrating ability of the kidney arises from 
interactions among several differing components. In addition 

Isotonic
fluid

OS

IS

Dilute
fluid

Slightly
hypertonic fluid

Isotonic
fluid

water NaCI Water NaCI water NaCI

NaCI

NaCI

NaCI

NaCI

NaCI

NaCI

Loop of Henle AVR CD

In
te

rs
ti

ti
al

 o
sm

o
la

lit
y 

g
ra

d
ie

n
t

water

water

water

water

Fig. 10.23  Outer medullary concentrating mechanism based on NaCl addition to the interstitium but without water absorption from descending 
limbs of short loops. Arrows indicate water (cyan) and NaCl (yellow) transepithelial transport; arrow widths suggest relative transport magnitudes. 
Isotonic fluid is considered to have the same osmolality as blood plasma. Flow entering the AVR is assumed to arise from a descending vas 
rectum that is in, or near, a vascular bundle. Outflow from the collecting duct enters the inner medullary collecting duct. Tubular fluid flow 
direction is indicated by blue arrows; increasing osmolality is indicated by darkening shades of blue. Thick black lines indicate that a tubule 
is impermeable to water; thin lines indicate high permeability to water. AVR, Ascending vas rectum; CD, collecting duct; IS, inner stripe;  
OS, outer stripe. (From Layton AT, Layton HE. Countercurrent multiplication may not explain the axial osmolality gradient in the outer medulla of the 
rat kidney. Am J Physiol Renal Physiol. 2011; 301:F1047-F1056.)



300	 Section I — Normal Structure and Function

Layton and colleagues reevaluated the passive mechanism 
by incorporating measured loop NaCl, urea, and water perme-
abilities into a mathematical model.19,452,453 These studies 
suggest that water absorption from descending limbs is not 
a requirement for the passive mechanism to generate an 
osmolality gradient, and that the urea-permeable loops of 
Henle can serve as a highly effective countercurrent urea 
exchanger. However, the model was able to fully account for 
the high urine osmolalities attained by some animals.

2.  Concentrating Mechanism Driven by  
External Solute

Jen and Stevenson454 proposed that the concentrating 
mechanism of the inner medulla depends on a solute other 
than NaCl and urea. By means of a mathematical model, 
they demonstrated, in principle, that the continuous addition 
of small amounts of an unspecified, but osmotically active, 
solute to the inner medullary interstitium could produce a 
substantial axial osmolality gradient. Such a solute would 
have to be generated in the inner medulla by a chemical 
reaction that produces more osmotically active particles than 
it consumes. The mechanism of concentration is similar to 
that driven by urea in the “passive” models proposed by 
Kokko and Rector and by Stephenson408,409: the thin descend-
ing limbs in the inner medulla are assumed impermeable 
to the solute (thus it is an “external” solute), and as a result, 
water is withdrawn from the descending limbs and the 
concentration of NaCl is raised in descending limb tubular 
fluid. Beginning at the loop bend, elevated NaCl concentra-
tion within the loop will result in a substantial NaCl efflux 
that will dilute the ascending flow and that is sufficient to 
generate the axial gradient.

The feasibility of this mechanism was subsequently con-
firmed by Thomas and Wexler455 in the context of a more 
detailed mathematical model. In further modeling studies, 
Thomas,456 and Hervy and Thomas457 proposed that lactate, 
generated by anaerobic glycolysis (the predominant means 
of ATP generation in the inner medulla), could serve as the 
solute. Two lactate ions are generated per glucose consumed:

glucose lactate- H→ + +2 2

However, as pointed out by Knepper et al.,87 the net generation 
of osmotically active particles depends on which buffering 
anions are titrated by the protons. If the protons titrate 
bicarbonate, there may be a net removal of osmotically active 
particles; if instead the protons titrate other buffers (e.g., 
phosphate or NH3), there will be a net generation of osmoti-
cally active particles. Mathematical models developed by 
Zhang and Edwards458 and by Chen et al.459 predicted that 
vascular countercurrent exchange would tend to restrict 
significant glucose availability into the outer medulla and 
the upper inner medulla, thus limiting the rate of lactate 
generation in the deep inner medulla where the highest 
osmolalities are found.

3.  Hyaluronan as a Mechano-osmotic Transducer

In the mechano-osmotic induction hypothesis,87,460 in which 
energy from the peristaltic contractions of the renal pelvic 
wall is used to concentrate solutes in the descending limbs 
and collecting ducts by water withdrawal, or, alternatively, 
the peristaltic contractions reduce sodium activity in the 
hyaluronan matrix of the interstitium, resulting in the 

mechanism described previously functions only in the renal 
outer medulla and medullary rays of the cortex. The ascending 
limbs of loops of Henle that reach into the inner medulla 
are thin-walled and do not actively transport NaCl416,448,449; 
nonetheless, in antidiuresis a substantial axial osmolality 
gradient is generated in the inner medulla of many mammals. 
For nearly 50 years, controversy has persisted regarding the 
nature of the mechanism that generates the inner medullary 
osmolality gradient. Moreover, the energy source for the 
concentrating of nonurea solutes in the inner medullary 
interstitium is not known. General analysis of inner medullary 
concentrating processes indicates that, to satisfy mass balance 
requirements, either an ascending stream (thin ascending 
limbs or ascending vasa recta) must be diluted relative to 
the inner medullary interstitium, or a descending stream 
(descending thin limbs, descending vasa recta, or collecting 
ducts) must be concentrated locally relative to the inner  
medulla.87,450

Three major hypotheses have been proposed for the 
concentrating mechanism of the inner medulla.

1.  The “Passive Mechanism”

Kokko and Rector408 and Stephenson409 independently 
proposed a model by which the osmolality in the thin ascend-
ing limb could be lowered below that of the interstitium 
entirely by passive transport processes in the inner medulla. 
This mechanism is generally referred to as the “passive model” 
or the “passive countercurrent multiplier mechanism.” The 
passive mechanism depends on the separation of urea and 
NaCl that is accomplished by NaCl absorption from the thick 
ascending limbs; indeed, this absorption is the hypothesized 
energy source for the passive mechanism. In this model, 
rapid urea reabsorption from the inner medullary collecting 
duct generates and maintains a high urea concentration in 
the inner medullary interstitium, causing the osmotic with-
drawal of water from the thin descending limb. This con-
centrates NaCl in the descending limb lumen and results in 
a transepithelial gradient favoring the passive reabsorption 
of NaCl from the thin ascending limb of Henle loop. Addition-
ally, if the ascending limbs have extremely low urea perme-
ability, then any NaCl that has been reabsorbed from the 
thin ascending limb will not be replaced by urea. Thus, the 
ascending limb fluid will be dilute relative to the fluid in 
other nephron segments, generating a “single effect” analo-
gous to active NaCl absorption from thick ascending limbs. 
This single effect can then be multiplied by the counterflow 
between the ascending and descending limbs of Henle loops. 
This model requires that the thin descending limbs are highly 
permeable to water but not NaCl or urea, whereas the thin 
ascending limb would have to be permeable to NaCl but not 
water or urea. However, several objections to the passive 
mechanism have since been made. Contrary to the perme-
ability requirements of the passive model, high urea perme-
abilities have been measured in the thin descending limb 
and thin ascending limb (summarized in Gamba and 
Knepper451), whereas little or no osmotic water permeability 
has been measured in the lower portions of thin descending 
limbs in the inner medulla.20 In addition, studies in UT-A1/
A3 urea transporter knockout mice found that urea accumula-
tion in the inner medulla was largely eliminated, but inner 
medullary NaCl accumulation was not affected143,358,407 (see 
“UT-A1/A3 knockout mice” in earlier section).
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This mechanism is consistent with the nodal compartments 
found by Pannabecker and Dantzler28: these compartments, 
which are likely rich in hyaluronan, are in contact with col-
lecting ducts, thin ascending limbs, and ascending vasa recta. 
Thus, they are well-configured to be sites of transduction 
(i.e., sites where the mechanical energy of peristalsis is 
harnessed to generate an ascending flow that is dilute relative 
to average local osmolality). However, no quantitative analyses 
or mathematical models have examined the mass balance 
consistency or the thermodynamic adequacy of hypotheses 
that depend on the peristaltic contractions.
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BOARD REVIEW QUESTIONS

1.	 Which diuretic will interfere with the ability to both 
concentrate and dilute the urine?
	a.	 Thiazide
	b.	 Furosemide
	c.	 Amiloride
	d.	 Acetazolamide
	e.	 Spironolactone
Answer: b
Rationale: Furosemide inhibits NKCC2 in the thick ascend-

ing limb, thereby inhibiting NaCl reabsorption. The inability 
to remove NaCl from the luminal fluid interferes with the 
ability to generate dilute urine. The inability to add NaCl to 
the meduallary interstitium prevents the generation of a 
hypertonic medulla and interferes with the ability to con-
centrate the urine. The other diuretic choices do not act on 
the thick ascending limb.

2.	 All of the following are required to reabsorb water across 
the collecting duct EXCEPT
	a.	 Hypertonic medulla
	b.	 Vasopressin (ADH)
	c.	 Aquaporin 1 water channels
	d.	 Aquaporin 2 water channels
	e.	 Aquaporin 3 water channels
Answer: c
Rationale: Vasopressin acts on the collecting duct to 

stimulate transcellular water reabsorption via aquaporin 2 
in the apical membrane and aquaporin 3 in the basolateral 
membrane, provided that a hypertonic medulla exists to 
provide the osmotic driving force for water reabsorption. 
Aquaporin 1 is not expressed in the collecting duct.

3.	 Which urea recycling pathway is most likely to play a major 
role in urine concentration?
	a.	 Recycling of urea through the ascending limbs, distal 

tubules, and collecting ducts
	b.	 Recycling of urea through the vasa recta, short loops 

of Henle, and collecting ducts
	c.	 Urea recycling between ascending and descending 

limbs of the loops of Henle
	d.	 Urea recycling across the renal pelvic (calyceal) 

epithelium
	e.	 Urea recycling from the proximal tubule to peritubular 

capillaries
Answer: a
Rationale: Vasopressin stimulates urea reabsorption across 

the inner medullary collecting duct. The reabsorbed urea 
can be recycled into the thin ascending limb in the inner 
medulla. This recycled urea remains in the tubular fluid as 
it moves into the urea impermeable thick ascending limb, 
distal tubule, and cortical collecting duct. The other choices 
represent urea recycling pathways but are less important 
than the inner medullary urea recycling pathway in choice a.

4.	 Urine concentrating ability is improved by
	a.	 Hypokalemia
	b.	 Protein malnutrition
	c.	 Hypercalcemia
	d.	 Decrease in medullary blood flow
	e.	 Mutations in the V2 receptor
Answer: d
Rationale: A decrease in medullary blood flow improves 

urine-concentrating ability but improving the efficiency of 
countercurrent exchange while an increase reduces urine 
concentrating ability by decreasing the efficiency of coun-
tercurrent exchange. The other choices all cause reduced 
urine-concentrating ability.
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