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CHAPTER 52 

Novel Drugs for Acute Kidney Injury
Laurence W. Busse and Lakhmir S. Chawla

OBJECTIVES
This chapter will:
1.	 Review the current literature guiding fluid type and amount 

of resuscitation in treating acute kidney injury.
2.	 Examine current and future therapies designed to treat 

intrinsic renal disease.

Acute kidney injury (AKI) is a complex disease with a 
myriad of causes. The understanding of molecular basis of 
AKI is nascent, and its definition until very recently has 
been pathophysiologically simplistic.1 Treatment has been 
largely supportive. Mainstays of therapy include volume 

management, avoidance of nephrotoxic agents, hemodynamic 
management, and renal replacement therapy. In addition, 
there has been in the past decade recent efforts aimed at 
looking at fluids and their impact on kidney function. Recent 
data have emerged that implicate chloride in the develop-
ment of acute kidney injury.2 However, there are other 
clinical trial data that suggest this effect may be small or 
nonexistent, leaving more questions than answers with 
regard to how to treat AKI.3

There have been efforts recently aimed at looking deeper 
into the causes of acute kidney injury. These efforts have 
yielded new information as to pathophysiology at the cellular 
and subcellular level. Much of the recent focus has been 
on inflammation, immune dysregulation, and oxidative 
injury.4 Considerable strides have been made in identifying 
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research has focused on the types of fluids administered 
and kidney injury. Much of the recent effort has focused 
on the use of balanced versus chloride-rich solutions, 
colloids versus crystalloids, and synthetic colloids (starches).

Hydroxyethyl starch (HES) was compared with Ringer’s 
acetate in the 6S trial, a parallel-group, randomized blinded 
trial, and found to be associated with an increased risk of 
AKI.12 Similar results were seen in the Crystalloid vs 
Hydroxyethyl Starch Trial (CHEST), a randomized control 
trial (RCT) comparison of HES and normal saline published 
of the same year.13 A more recent meta-analysis found that 
in comparison with other fluids (including crystalloids, 
albumin, and gelatin) resuscitation with HES was associated 
with an increased risk of AKI and death.14 Accordingly, 
HES has fallen out of favor as a resuscitative fluid.

Albumin has been compared with normal saline as early 
as 2004 in the Saline versus Albumin Fluid Evaluation 
(SAFE) trial, which concluded that the two fluids were 
more or less equivalent with regard to their effects on 
multiple organ systems.15 A 2010 meta-analysis comparing 
hyperoncotic (20%) albumin to various fluids (including, 
among others, normal saline, isotonic [4% to 5%] albumin, 
and lactated Ringer’s) found that hyperoncotic albumin 
decreased the odds of AKI substantially.16 Hypertonic 
albumin recently was evaluated against crystalloid solution 
in more than 1800 septic and septic shock patients in the 
Albumin Italian Outcome Sepsis (ALBIOS) study.17 The 
investigators of this study concluded that there was no 
difference in either the primary outcome metric (death) or 
the secondary metrics, which included renal function.

Chloride-rich solutions may be deleterious to kidney 
function. In animal models, renal vasoconstriction and a 
decrease in GFR have been described.18 The 2012 JAMA 
study by Yunos et al. compared normal saline with a bal-
anced solution (Hartmann, Plasma-Lyte 148, or chloride-poor 
20% albumin) on kidney injury and found that saline was 
an independent risk factor for AKI and the use of renal 
replacement therapy (RRT).2 The authors opined that this 
effect was directly a result of chloride-mediated renal 
vasoconstriction and changes in tubule-glomerular feedback, 
which regulates GFR. A follow-up analysis by the same 
authors yielded the same results.19 In contrast, the 2015 
SPLIT Randomized Clinical Trial found that the incidence 
of AKI did not increase in a population of critically ill 
patients who received saline versus a balanced solution.3 
These diverging results, the authors opine, may be related 
to the lack of inclusion of colloidal solutions (albumin and 
gelatin) as a comparator. The optimal solution for the preven-
tion or mitigation of AKI is still hotly debated.

NOVEL THERAPIES FOR INTRINSIC DISEASE

Intrinsic disease can result from dysfunction in the renal 
parenchyma, which is made up of diverse tissue types, 
including glomerular units, tubules, interstitium, and 
microvasculature. Because of the complexity of renal histol-
ogy and function, it is difficult to pinpoint the root cause 
of injury in AKI. However, there does seem to be a com-
monality among many of the different pathologic processes 
in AKI. Inflammation, immune hyperreactivity, and oxidative 
stress have been elucidated in renal ischemia/reperfusion 
injury, toxic insult, and sepsis. The inflammatory milieu 
seen in AKI is associated with tubular phenotypic changes, 
intrarenal microvascular hemodynamic factors, cellular 
metabolic imbalance, and alterations in transtubular dynam-
ics.20 Candidate therapies have been proposed to address 

molecules, enzymes, genes, and metabolic pathways that 
contribute to AKI. These new targets have been correlated 
to certain types of kidney injury, such as metalloproteinase, 
which are reflective of cellular dysfunction. Others include 
intermedin, adenosine, inducible nitric oxide synthase, 
vitamin D, and sphingosine 1 phosphate and are implicated 
variously in inflammation, apoptosis, and oxidative damage. 
Despite recent progress in understanding the basic science 
of AKI, there has been a tremendous challenge in identifying 
novel therapies. There are, however, some candidate thera-
pies that have been studied recently that show promise in 
certain types of kidney injury.

NOVEL THERAPIES FOR PRERENAL DISEASE

Prerenal azotemia is characterized as a physiologic response 
to reduced effective extracellular volume.5 As volume deple-
tion occurs, neurohormonal mechanisms, including increased 
adrenergic tone and the renin-angiotensin-aldosterone axis, 
influence the tubular reabsorption of water. The reduction 
in glomerular filtration rate (GFR) in prerenal azotemia is 
seen when reabsorption is inadequate. Treatment of low 
circulating volume hinges on the administration of fluid. 
Recently, research has focused on the types and amounts 
of fluids in the treatment of prerenal azotemia.

Fluid Restriction
Conventionally, one of the hallmarks in the treatment of 
AKI has been liberal administration of intravenous fluid. 
The rationale for this strategy has been the restoration of 
cardiac output, improvement in systemic blood pressure, 
and the maintenance of renal perfusion via the augmentation 
of transglomerular pressure gradient.6 This conventional 
approach, however, has been challenged recently. Interstitial 
edema, increased intraabdominal pressure, and renal 
vascular congestion have been implicated in the develop-
ment of AKI from fluid overload. On a cellular level, fluid 
overload can lead to changes in microanatomy, defects in 
oxygen and metabolite transfer, and capillary and lymphatic 
congestion.7 A number of studies have identified a positive 
fluid balance as a risk factor for the development of AKI, 
including the important Sepsis Occurrence in Acutely Ill 
Patients (SOAP) and Program to Improve Care in Acute 
Renal Disease (PICARD) studies.8,9 In a secondary analysis 
of the prospective randomized, controlled Fluid and Catheter 
Treatment Trial (FACTT), investigators compared a fluid-
restrictive strategy versus a fluid liberal strategy in critically 
ill patients and found that fluid balance was correlated 
positively with AKI.10 In a more recent data analysis from 
the prospective, observational, multicenter Beijing Acute 
Kidney Injury Trial, fluid overload was found to be an 
independent risk factor for the incidence of AKI and also 
was correlated positively to the risk of death.11 Although 
a conservative fluid management strategy is not a novel 
therapeutic agent in the strict sense, the concept still applies 
and represents an emerging tactic in the fight against AKI. 
Many authorities now endorse a guided approach to fluid 
management, although how this is achieved is still debated.

Type of Fluid
In addition to the recent work on the quantity of fluids 
administered to patients and the development of AKI, recent 
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over the age of 70 (lower incidence of CIN). A 2016 study 
of patients receiving a simultaneous kidney-pancreas (SLK) 
transplant showed decreased markers of inflammation when 
the donor and the recipient were treated with ALA compared 
with the control group (untreated) and recipient-only treated 
group.29 Although it could be argued that these patients do 
not have acute kidney injury but rather chronic disease, 
this study showed a reduced detrimental effect of the newly 
transplanted kidney in patients receiving ALA, suggesting 
that, in the acute setting, the mediation of inflammatory 
molecules may be of benefit. There are currently no actively 
enrolling human trials listed on ClinicalTrials.gov that seek 
to evaluate ALA in acute kidney injury (a 2013 study as a 
status listed as “unknown” and appears not to be enrolling 
[NCT01978405]). However, there is a considerable amount 
of ongoing and completed animal research that points to 
an improved surrogate and clinical outcomes, including 
in disease processes such as ischemia-reperfusion injury,30 
sepsis,31 toxic injury,23,32 and obstructive aeropathy.33

I5NP
Cell cycle arrest in the setting of hypoxia and oxidative 
stress has been implicated as one of the pathophysiologic 
mechanisms of acute tubular necrosis (ATN).34 The pro-
apoptotic gene p53 is activated as part of this process.35 
Preclinical evaluations of p53 inhibition elucidated a benefit 
in ischemic and toxic animal models of AKI.36 I5NP is 
a synthetically derived, small interfering RNA (siRNA) 
that temporarily inhibits p53 and is active in the tubules 
after being filtered through the glomerulus. I5NP has been 
evaluated in animal models for safety and pharmacokinetics 
and in a rat model of ischemia-reperfusion, where it has 
been shown to lessen the rise of serum creatinine (SCr).37,38 
A couple of dose escalation and safety studies of I5NP for 

generalized renal inflammation as well as specific compo-
nents of pathophysiology, as outlined above (Table 52.1).

Alpha Lipoic Acid
Endothelial dysfunction caused by oxidative stress has 
been implicated in kidney injury. Alpha lipoic acid (ALA) 
is a potent antioxidant that reduces oxidative stress as it 
converts to its reduced form in tissues, and it acts as a 
scavenger of free radicals.21 It has been shown in animal 
models to improve glomerular function, as well as reduce 
inflammation in kidney cells.22,23 ALA is used in the treat-
ment of diabetic neuropathy and retinopathy and has been 
evaluated in humans for ischemia reperfusion injury and 
contrast-induced nephropathy. A 2013 study evaluated ALA 
prospectively in patients with diabetes receiving contrast 
as part of coronary angiography.24 This study evaluated 
the number of end points, including plasma cystatin C 
and urinary neutrophil gelatinase-associated lipocalin 
(NGAL), which have been shown to be highly correlated to 
CIN.25–27 Traditional biomarkers including serum creatinine, 
creatinine clearance, and blood urea nitrogen (BUN) also 
were evaluated. The study concluded that there was no 
appreciable amelioration of acute kidney injury after contrast 
in the group receiving ALA versus the control. A similar 
study from the same year evaluated more than 200 patients 
with baseline kidney dysfunction (defined as a creatinine 
clearance of less than 60 mL/minute) who were to undergo 
percutaneous coronary intervention and receive contrast 
intravenously.28 End points included peak increase in serum 
creatinine as well as CIN incidence. The study found no 
difference between the group receiving ALA and the control 
group. However, ALA showed benefit in the predefined 
high-risk subgroups of patients who received a larger dose 
of contrast (lower serum creatinine increase) and patients 

TABLE 52.1 

Novel Therapeutics for Intrinsic Renal Disease

DRUG MECHANISM(S) OF ACTION PROPOSED INDICATION(S)

•	 Alpha lipoic acid •	 Antioxidant
•	 Free radical scavenger

•	 IRI
•	 CIN

•	 I5NP •	 Inhibitor of p53 gene
•	 Prevents cell cycle arrest

•	 IRI

•	 Alkaline phosphatase •	 Dephosphorylation of LPS
•	 Reduction of ATP

•	 Gram-negative sepsis

•	 Selenium •	 Co-factor in enzymatic antioxidation •	 Cisplatin injury
•	 ECSL

•	 MESNA •	 Antioxidant
•	 Free radical scavenger

•	 CIN

•	 Propofol •	 Antioxidant
•	 Free radical scavenger

•	 IRI

•	 ATII •	 Enhance glomerular perfusion
•	 Correct RAS deficiencies

•	 Sepsis

•	 Curcumin •	 Antioxidant
•	 Free radical scavenger

•	 IRI
•	 Diabetic nephropathy
•	 Lupus nephritis

•	 DPP-4 inhibitors •	 Enhance GLP-1 activity
•	 Antiinflammatory

•	 Diabetic nephropathy
•	 Cisplatin injury

•	 S1P analogue •	 Antiinflammatory
•	 Immunosuppressant

•	 None to date

•	 Adenosine analogues •	 Alteration of arteriolar blood flow •	 CIN
•	 IRI
•	 Cardiorenal syndrome

ATII, Angiotensin II; ATP, adenosine triphosphate; CIN, contrast-induced nephropathy; DPP-4, dipeptidylpeptidase-4; ECSL, extracorporeal shockwave 
lithotripsy; GLP-1, glucagon-like peptide-1; IRI, ischemia/reperfusion injury; LPS, lipopolysaccharide; MESNA, sodium 2-mercaptoethane sulfonate; 
RAS, renin-angiotensin system; S1P, sphingosine 1 phosphate.
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in the plasma.51 Preclinical models have established the 
role of selenium in preserving kidney function or mitigating 
kidney injury in a variety of settings. Selenium administra-
tion was associated with improved metrics of serum cre-
atinine, urea, and histopathologic evidence of injury in a 
rat model of cisplatin-induced kidney injury.51 Similar effects 
were seen histologically and functionally in rats subjected 
to gentamicin-related acute kidney injury.52 Selenium also 
appeared to be of some benefit in ischemia-reperfusion 
injury in a murine model, when given in combination with 
erythropoietin.53 In a porcine model, selenium improved 
the antioxidant profile of the transplanted kidney on 
immunohistopathology.54

Human studies have shown that selenium may or may 
not confer a potential clinical benefit in preventing or 
attenuating kidney injury. An early analysis by Hu et al. 
showed an improved kidney biomarker profile in patients 
pretreated with selenium before receiving cisplatin che-
motherapy.55 However, this did not translate into a clinical 
benefit in a 2004 double-blinded study, which found no 
difference in creatinine clearance between micronutrient-
pretreated (including selenium) cancer patients and control 
patients who were to receive cisplatin.56 In a 2013 random-
ized, controlled trial, Ghorbani et al. noted a decreased 
incidence of AKI in cancer patients who were to receive 
cisplatin chemotherapy when pretreated with selenium.57 
A micronutrient bundle (including selenium) conferred no 
benefit in the prevention of kidney failure to patients 
undergoing extracorporeal shockwave lithotripsy.58 Similarly, 
a combination of selenium, zinc, vitamin C, and vitamin 
B1 failed to improve the incidence of kidney failure in 
critically ill cardiac surgery, major trauma, and subarachnoid 
hemorrhage patients in a 2008 study.59 Numerous studies 
have evaluated selenium and its effect on overall mortality, 
composite end points, and organ dysfunction scores, but 
few of these articles mention of renal-specific effects, which 
are underwhelming.60,61 The currently enrolling SodiUm 
SeleniTe Administration IN Cardiac Surgery (SUSTAIN 
CSX) trial is planning to compare the effect on persisting 
organ dysfunction and death in 1400 critically ill patients 
who will be randomized to selenium administration versus 
placebo and will include markers of renal function.62

Sodium-2-Mercaptoethane Sulphonate
Sodium-2-mercaptoethane sulphonate (MESNA) is a small 
molecule containing a sulfhydryl moiety, which allows it 
to scavenge for reactive oxygen species. Administered 
intravenously, it is filtered readily across the glomerulus 
and taken up by renal tubular cells within 30 minutes, 
where it is found in high concentrations.63 MESNA was 
considered as a renoprotective adjunctive therapy to 
chemotherapy, where it was described thoroughly by the 
early 1990s.64–66 MESNA was evaluated in an ischemia-
reperfusion kidney injury in rats in 2001, where it was 
found to ameliorate histologic kidney damage but also 
functional kidney damage, preserving GFR and fractional 
excretion of sodium (FENa).63

MESNA was evaluated as a prophylactic agent for 
contrast-induced nephropathy in 2011. This study, which 
evaluated 100 patients with preserved eGFR, found that 
the incidence of contrast-induced nephropathy was signifi-
cantly lower when patients were pretreated with MESNA 
compared with the untreated group.67 As of a 2014 review 
article published by the same authors, the 2011 study thus 
far has been the only randomized controlled trial of MESNA 
in kidney injury.68

AKI in patients undergoing major cardiovascular surgery 
were considered, with results never reported by the study 
sponsor (NCT00683553, NCT00554359). A third study by 
the same sponsor sought to evaluate I5NP in the setting 
of kidney transplant, but also has not reported any results 
(NCT00802347).

Alkaline Phosphatase
The enzyme alkaline phosphatase (AP) may have a beneficial 
role in amelioration of kidney injury during gram-negative 
sepsis. Lipopolysaccharide (LPS), a component of endotoxin, 
has been characterized thoroughly as one of the major 
pathogenic contributors to the inflammatory cascade, 
immune alteration, and cellular dysregulation in gram-
negative sepsis.39 In the kidney, LPS has been shown to 
accumulate during sepsis, where it causes oxidative stress 
and the release of immune-modulating cytokines such as 
tumor necrosis factor-alpha (TNF-α) and interleukin-6 
(IL-6).40,41 These factors result in intrarenal microvascular 
endothelial damage and regional hypoxia, with ensuing 
kidney injury.42 The structure of LPS contributes to its 
pathogenicity, specifically with regard to its Lipid A 
component, which is phosphorylated. AP acts to dephos-
phorylate LPS, rendering it far less toxic, as has been shown 
in numerous animal models.43 In addition to its role in the 
detoxification of LPS, AP also plays a role in reducing the 
harmful effects of adenosine triphosphate, which is released 
from mitochondria during periods of endotoxemic-induced 
inflammation and hypoxia.44 Adenosine, the dephosphory-
lated form of ATP, which is converted with the enzyme 
AP, has been shown in vitro to protect human renal proximal 
tubular epithelial cells from oxidative injury.45

The effect of AP on the kidney has been evaluated in 
humans. A 2009 randomized controlled trial evaluated 
AP’s effects on certain markers of kidney injury in 36 
patients with gram-negative sepsis and found a significant 
improvement in serum creatinine compared with placebo.46 
In subgroup analysis, AP attenuated the metabolism of 
nitric oxide, and subsequent inflammatory cytokines, in 
the kidneys of patients compared with that of placebo. This 
study was underpowered, however, to elucidate clinical 
outcome data. An additional 36 patients were evaluated 
in a 2012 study for creatinine clearance and progression to 
renal replacement therapy.47 Although creatinine clearance 
was significantly lower in the AP group compared with 
placebo, progression to RRT between the two groups did 
not meet statistical significance. Secondary end points, 
consisting of levels of markers of inflammation, were 
also lower. A phase I trial in healthy volunteers showed 
safety in healthy volunteers and set the stage for the larger 
STOP-AKI trial (Safety, Tolerability, efficacy and quality 
of life Of a human recombinant alkaline Phosphatase in 
patients with sepsis-associated Acute Kidney Injury).48 
STOP-AKI seeks to evaluate a human recombinant form 
of AP in sepsis-associated AKI in at least 290 patients for 
changes in serum creatinine and need for renal replacement  
therapy.49

Selenium
Selenium plays an active role in enzymatic antioxidation, 
and a deficiency in this trace element has been linked to 
acute kidney injury.50 Glutathione peroxidase, an important 
cytosolic enzyme in the peroxidation of free radicals during 
cellular aerobic respiration, is linked to the level of selenium 
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physiology. In addition to contributing to vasomotor tone, 
it serves various important autocrine and paracrine func-
tions.80 A component of the renin-angiotensin system (RAS), 
AT2 is extremely active in the kidney, where it regulates 
adrenal aldosterone release, sodium and water homeostasis 
in the proximal tubular cells, and vasopressin secretion.81

There is evidence linking the RAS dysfunction to 
immune-active and inflammatory states, as seen in endo-
toxemic sepsis and sepsis-induced kidney failure.82 RAS 
dysregulation leads to a relative deficiency in aldosterone, 
despite high renin levels, which results in hypotension, 
organ hypoperfusion, and subsequent failure.83 RAS upregu-
lation in sepsis is well described84 and is accompanied by 
the downregulation of AT-1 type of angiotensin receptors.85 
It has been contemplated this relative substrate deficiency 
may contribute to the development of shock in sepsis and 
that exogenous ATII would mitigate the hormonal deficien-
cies seen in this disease state.86

There is emerging consensus that an alteration in intra-
glomerular pressure may contribute to the onset of AKI in 
septic shock. It is well established that angiotensin blockade 
results in decreased glomerular filtration fraction and 
intraglomerular pressure,87 which may result in decreased 
creatinine clearance and an elevation on serum creatinine. 
ATII acts to constrict efferent renal arterioles more so than 
afferent arterioles and therefore can improve intraglomerular 
flow. Exogenous ATII administration has been shown in 
sheep to increase urine output and creatinine clearance, 
despite a decrease in renal blood flow.88 Renal bioenergetics 
also were examined in a sheep model and found to be 
unaffected by intravenous ATII, suggesting that the reduction 
in renal blood flow did not compromise renal cellular 
metabolism.89 In a subsequent septic pig model by Correa 
et al., the effects of intravenous ATII, norepinephrine, and 
enalapril on a number of physiologic parameters (including 
renal plasma flow and prevalence of AKI) and biochemical 
parameters (mitochondrial activity) were compared.86 The 
investigators found no decrement in kidney function with 
the use of ATII compared to norepinephrine, as well as no 
significant effect on renal mitochondrial activity.

Data on the use in humans of ATII to treat AKI are sparse. 
A number of older studies have evaluated ATII and its 
effects on kidney function, which included decreased 
GFR,90–96 alteration in glomerular pore size,97 decreased 
fractional excretion of sodium,91,92,96,98–107 and decreased 
renal plasma flow.91–96,98–100,103–105,108–113 None of these older 
studies, however, was designed as a randomized, placebo-
controlled trial with renal function as a primary end point. 
The ongoing Angiotensin in Septic Kidney Injury Trial 
(ASK-IT) seeks to evaluate the effect of a systemic infusion 
of ATII as a selective efferent arteriolar vasoconstrictor on 
hemodynamics and urine output in critically ill patients 
with severe sepsis/septic shock and acute renal failure 
(NCT00711789). ATII has been evaluated recently as a  
novel pressor in high output shock, but this pilot study of 
20 patients was not powered to evaluate for the  
drug’s effects on kidney function.80

Curcumin
Curcumin, a member of the ginger family, is related to 
turmeric and is sold as an herbal supplement. It is used as 
a food-coloring agent and as an antioxidant, where it is 
thought to be a direct scavenger of superoxide, hydroxyl, 
hydrogen peroxide, and peroxyl radicals, as well as a catalyst 
for the upregulation of the antioxidant molecules superoxide 
dismutase, catalase, and glutathione peroxidase.114 Curcumin 

Propofol
The anesthetic propofol is similar in chemical structure to 
alpha-tocopherol (vitamin E), which is a known antioxidant. 
Propofol acts as a free radical scavenger by converting free 
oxygen radical species into a less toxic phenoxyl form.69 
In animal models, propofol has been found to ameliorate 
both markers of systemic inflammation as well as specific 
markers of renal health. In a 2006 piglet study comparing 
propofol to the volatile anesthetic sevoflurane during aortic 
surgery (cardiopulmonary bypass), propofol was associated 
with lower levels of serum creatinine, TNF-α, interleukin-1 
(IL-1), interferon-gamma, and other markers.70 A similar 
result was achieved in a piglet model of ischemia-reperfusion 
in 2008.71 A 2007 study by Wang et al. showed attenuation 
of kidney injury with propofol in an ischemia/reperfusion 
rat model.72 Kidney injury resulting from ureteral obstruction 
also was attenuated in a 2016 mouse model.73 Human  
renal tubular cells were pretreated with propofol in an in 
vitro experiment in 2008 and showed decreased rates of 
apoptosis and increased rates of proliferation compared 
with untreated cells.74

As early as 2001, two of the volatile anesthetics and 
propofol were evaluated in vivo in humans with regard 
to renal impairment.75 In this fairly large open-label study 
of 354 cardiopulmonary bypass patients, there was no 
appreciable difference in serum creatinine between the three 
groups. In contrast, Yoo et al. found a decreased incidence 
of AKI (defined by Acute Kidney Injury Network [AKIN] 
criteria) in cardiopulmonary bypass patients receiving 
propofol general anesthesia compared with sevoflurane 
general anesthesia.76 The biomarkers serum creatinine 
and cystatin C were significantly lower, as was hospital 
length of stay. A more recent retrospective analysis of 
propensity-matched critical care patients receiving either 
propofol or midazolam elucidated a lower incidence of AKI 
(by serum creatinine and urine output levels), the need 
for renal replacement therapy, and mortality.77 Propofol’s 
apparent renoprotective effect was elucidated further in yet 
another retrospective analysis of 4320 patients receiving 
either propofol or sevoflurane as general anesthesia during 
colorectal surgery.78 In this propensity-matched analysis, 
AKI (by AKIN and Risk, Injury, Failure, Loss, and End-stage 
Kidney [RIFLE]) was more likely in the sevoflurane group 
compared with the propofol group, as was hospital length of 
stay and ICU readmission. Results of a randomized clinical 
trial in humans undergoing cardiopulmonary bypass as 
part of elective open abdominal aortic repair comparing 
propofol to sevoflurane for general anesthesia were published 
recently.79 In this study, renal and systemic biomarkers 
were measured in 50 patients who were randomized to 
receive one of the two anesthetics, and all of the measured 
biomarkers were significantly lower in the propofol group. 
A recent comparison of renal impairment using propofol 
and sevoflurane during extracorporeal mechanically assisted 
(ECMO) lung transplant showed improvement in NGAL 
but not serum creatinine or other clinical markers.79a Other 
studies examining propofol in renal transplant patients 
(NCT01132157, NCT01870011) were never published.

Overall, the preponderance of evidence suggests that pro-
pofol exerts a beneficial effect on the kidney during episodes 
of ischemia/reperfusion, and possibly other scenarios.

Angiotensin
Angiotensin II (ATII) is a well-described octapeptide that 
contributes in a complex way to homeostasis in human 
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of GLP-1 throughout the body (such as the pancreas,  
vascular endothelium, and brain), including the suppression 
of IL-1β, TNF-α, TNF-γ, plasminogen activator inhibitor 
type-1 (PAI-1), and intercellular adhesion molecule-1.139–141 
Dipeptidylpeptidase-4 (DPP-4) inhibitors inhibit the conver-
sion of GLP-1 to its inactive breakdown products by the 
enzyme DPP-4. Inhibition of DPP-4 results in the enhance-
ment of the biologic half-life of GLP-1. DPP-4 inhibitors 
originally were approved by the United States Food and 
Drug Administration (US FDA) and launched in the mid-
2000s as a novel oral antidiabetic therapy. Used in this 
way, DPP-4 inhibitors act to attenuate the inflammation, 
insulin resistance, and insensitivity, and islet cell destruction 
seen in diabetes.138

Based on their antiinflammatory properties, DPP-4 inhibi-
tors have been evaluated in the prevention and mitigation 
of diabetic nephropathy and nondiabetic kidney disease. 
GLP-1 receptors have been described in the glomeruli of 
mice, rats, and pigs.142–144 A deficiency in GLP-1 receptors has 
been proposed as a pathogenesis for diabetic nephropathy 
and that the presence of an adequate amount of GLP-1, 
both receptors and substrate, would mitigate the onset of 
kidney failure.

A number of animal studies have evaluated the effect 
of various DPP-4 inhibitors on kidney function. Kodera 
et al. evaluated a DPP-4 inhibitor on renal function and 
inflammation in diabetic rats and found decreased albumin-
uria and glomerular hyperfiltration, as well as decreased 
levels of inflammatory markers and evidence of oxidative 
stress.145 Comparable results were reported in other diabetic 
animal models.146–148 In the nondiabetic kidney, there is also 
evidence of amelioration of kidney injury. Higashijima et al. 
found decreased numbers of inflammatory macrophages 
in a glomerulonephritis rat model.149 In mice exposed to 
cisplatin, pretreatment with a DPP-4 inhibitor ameliorated 
functional renal injury (BUN and serum creatinine) as 
well as histologic evidence of tubular injury.150 Finally, 
in an ischemia/reperfusion rat model, the DPP-4 inhibitor 
sitagliptin improved kidney injury and inflammatory marker 
profiles compared with control.151

The results seen in animal models have not been as 
straightforward in humans. In a large retrospective analysis 
by Shih et al., DPP-4 use actually was associated with an 
increase in the risk of AKI.152 However, another retrospective 
review concluded that no association was found between 
the DPP-4 inhibitor sitagliptin and renal failure.153 The Trial 
Evaluating Cardiovascular Outcomes with Sitagliptin 
(TECOS) randomized more than 14,000 patients with 
diabetes to the DPP-4 inhibitor sitagliptin or placebo and 
found that, as a secondary endpoint, there was no difference 
in renal function.154 These results echoed the results of the 
even larger saxagliptin and cardiovascular outcomes in 
patients with type 2 diabetes mellitus (SAVOR-TIMI 53) 
trial.155 Data from the TECOS trial were examined for primary 
renal end points in a subsequent analysis and were con-
sistent with the conclusions of the original trial, that there 
was no significant degradation of renal function in the DPP-4 
group.156 In contrast, a recently conducted nonrandomized 
and noncontrolled observational study found a decrease 
in eGFR in a population of 247 patients with diabetes.157 
Finally, in a case-control study of more than 13,000 diabetic 
patients (half of whom were taking DPP-4 inhibitors), the 
investigators found an increase in AKI in the DPP-4 group 
compared with the control group.152 Based on the available 
evidence, the question of DPP-4 inhibition on renal function 
is far from answered, and more research is being conducted, 
including The Effects of DPP4 Inhibitor on Cisplatin Induced 
Acute Kidney Injury trial (NCT02250872). This trial currently 

has been evaluated in a number of different animal  
models of AKI, in which its renoprotective effect is well 
established.

In a 2016 rat model of cisplatin-induced kidney injury, 
curcumin was found to attenuate AKI by histopathology 
and function (serum creatinine), a number of inflammatory 
markers (including TNF-α, myeloperoxidase, and IL-1β), 
and the expression of a number of proapoptotic genes on 
immunohistology (including p53).114 Similar findings were 
made in a rat model of carbon-tetrachloride (CCl4)-induced 
kidney injury, including histologic improvement of inflam-
mation as well as functional markers of renal function 
(serum creatinine and blood urea nitrogen).115 Gentamycin-
mediated AKI (by serum biomarkers creatinine, BUN, NGAL, 
and kidney injury molecule-1 (KIM-1) as well as histologic 
examination) in rats was mitigated significantly when the 
rats were pretreated with curcumin.116 Other investigators 
similarly have elucidated curcumin’s beneficial impact on 
toxin-mediated AKI.117–121 One negative study found no 
benefit in kidney function with curcumin after a hypertonic 
glycerol-induced kidney injury.122 Amelioration of kidney 
function (serum creatinine, BUN) and inflammatory markers 
(indices of oxidative stress) were noted in rat models of 
renal ischemia/reperfusion123,124 as well as another rat model 
of secondary renal failure (remote alteration phenomenon) 
from limb ischemia/reperfusion.125 Similar results were 
obtained by a number investigators examining curcumin’s 
impact on ischemia/reperfusion injury in animals.126–130 A 
single 2007 rat study evaluated the effect of curcumin on 
endotoxemic sepsis and disseminated intravascular coagula-
tion and found that curcumin was associated with a 
reduction in glomerular deposition of fibrin, as well as a 
mortality benefit.131 In this study, the rats pretreated with 
curcumin showed a reduction in the inflammatory cytokine 
TNF-α.

Despite an inordinate amount of preclinical research, 
human studies of curcumin’s effects on acute kidney injury 
are lacking. In vitro, curcumin was shown to attenuate the 
apoptotic and necrotic effects of Shiga toxin on human 
renal proximal tubular cells.132 Interestingly, the investiga-
tors attributed this benefit not to curcumin’s antioxidant 
properties, but rather to the induction of heat shock proteins. 
A handful of trials have examined the beneficial effects 
of curcumin on chronic kidney disease, specifically with 
regard to diabetic nephropathy.133–135 Khajehdehi et al. 
randomized diabetic nephropathy patients to receive 
either placebo or curcumin and found an attenuation 
in proteinuria as well as inflammatory markers in the 
curcumin group.136 The same authors found a similar 
benefit in lupus nephritis patients in a 2012 randomized 
controlled trial.137 Neither of these studies, obviously, dealt 
directly with the question of AKI. An ongoing trial seeks to 
evaluate curcumin in the prevention of renal complications 
related to abdominal aortic aneurysm (AAA) repair and 
will include biomarker endpoints such as serum creatinine 
and urine IL-18 as well as functional parameters like time-
to-dialysis and death (NCT01225094). As of the time of 
publication, this trial has ended but results have not been  
published.

Dipeptidylpeptidase-4 Inhibitors
Glucagon-like peptide-1 (GLP-1) is a well-characterized 
incretin hormone, with wide-ranging activity in the body, 
including blood glucose control and stimulation of insulin 
secretion and inhibition of glucagon secretion.138 Emerging 
research has elucidated the antiinflammatory properties  
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persistent worsening renal function.169 These negative studies 
add to the debate, which heretofore has been promulgated 
by a myriad of positive and negative studies on the use of 
adenosine receptor antagonism in AKI.170–174 Interest con-
tinues, though, in adenosine antagonism in the prevention 
of AKI. The Pharmacology of Aminophylline for Acute 
Kidney Injury in Neonates (PAANS) trial currently is enrolling 
(NCT02276170) and at least one other study is exploring 
of the use of pentoxyfylline in AKI (NCT01469624).

CONCLUSION

AKI remains an important health concern and is marked 
by a paucity of available treatment options. Prerenal azotemia 
traditionally has been treated with fluid administration. 
However, new data exist that elucidate the importance of 
the amount and type of fluid given. The trend in current 
practice habits is to adopt a conservative fluid administration 
strategy, aided by goal-directed therapy. Moreover, chloride-
rich solutions are falling out of favor in lieu of more balanced 
buffered solutions.

The complexities of intrinsic renal disease have made 
it difficult to identify therapies aimed at preventing acute 
kidney injury. Focus has turned, instead, to the common 
pathway found in many types of renal injury: inflammation, 
immune hyperreactivity, and oxidative stress. Many of the 
novel therapies discussed in this chapter are being developed 
to address this pathophysiology. Some, including curcumin, 
I5NP, MESNA, propofol, and selenium, act as direct oxygen 
free radical scavengers. Others, such as angiotensin II and 
adenosine receptor antagonists, hope to ameliorate kidney 
injury via manipulation of renal hemodynamics and tubule-
glomerular feedback. Still others, such as S1P analogues, 
alkaline phosphatase and DPP-4 inhibitors, act via manipula-
tion of inflammatory pathways. Research continues on all 
of these potential therapeutics, and as the complexities of 
renal pathophysiology continue to unfold, interest will only 
grow.

Key Points

1.	 The treatment of prerenal acute kidney injury 
includes a goal-directed, goal-conservative fluid 
administration strategy, with balanced buffered 
solutions preferred over chloride-rich solutions.

2.	 The common pathway found in many types of 
renal injury includes inflammation, immune hyper-
reactivity, and oxidative stress.

3.	 Curcumin, I5NP, MESNA, propofol, ALA, and 
selenium act as direct oxygen free radical scaven-
gers, whereas S1P analogues, alkaline phosphatase 
and DPP-4 inhibitors act via manipulation of 
inflammatory pathways.

4.	 Angiotensin II and adenosine receptor antagonists 
ameliorate kidney injury via manipulation of renal 
hemodynamics and tubule-glomerular feedback.
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